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ABSTRACT. A (k, \)-semiframe of type g* is a group divisible
design of type g* (X, G, B), in which B is written as a disjoint
union B = P U Q where P is partitioned into partial parallel
classes of X' (with respect to some G € G) and Q is partitioned
into parallel classes of X. In this paper, new constructions
for these designs are provided with some series of designs with
k = 3. Cyclic semiframes are discussed. Finally an application
of semiframes is also mentioned.

1 Introduction

The notion of a semiframe was introduced by Rees [10] who conducted
further research in [11]. These designs are natural generalizations of frames
and resolvable group divisible designs, and have some applications for the
construction of other types of designs, such as incomplete group divisible
designs, resolvable designs with spanning sets of resolvable subdesigns and
complete graphs K, admitting a one-factorization with an orthogonal set’
of u disjoint sub-one-factorizations of K, (see [10, 11]).

A group divisible design, (k, )-GDD of type g*, is a triple (X, G, B) where
X is a set of points, G is a partition of X into u groups and B is a collection
of subsets, called blocks, of X such that

(i) for each group G € G and each B € B, |Gn B|<1;
(ii) any pair of points from distinct groups occurs in exactly A blocks;

(iii) |B| = k for all blocks B € B, |G| = g for all groups G € G and
|X| = gu.
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A parallel class of blocks in a GDD is a subset B’ C B which partitions
the point set X', while a partial parallel class of blocks with respect to X’
(C X) is a subset B” C B which partitions A — &”.

A GDD is said to be resolva‘ble, denoted by RGDD, if B admits a partition
into parallel classes; a frame is a GDD in which B admits a partition into
partial parallel classes with respect to some group G € G.

A (k,\)-semiframe of type g* is a (k,A)-GDD of type g* in which the
collection of blocks B can be written as a disjoint union B = PUQ where P
can be partitioned into partial parallel classes with respect to some group
and Q can be partitioned into parallel classes. Note that when P = ¢ such
a design is an RGDD, while if @ = ¢ the design is a frame.

We will assume here that there are both parallel classes and partial par-
allel classes present (such a semiframe is said to be proper). The extreme
cases were well studied in the literature (cf. [1, 4, 7, 12, 13, 14, 15, 16, 17])
and hence we do not pay attention to these cases here.

Rees [10, 11] discussed some constructions for proper semiframes. Stinson
[18] presented a list of open problems, the third of which states “find more
examples of semiframes”. In this paper, we will provide more methods
of constructing proper semiframes and illustrate these constructions with
some examples. Additionally, a new type of semiframe, which we call a
cyclic semiframe, is discussed. Finally, one more application of semi-frames
for the construction of RGDDs is also described.

2 Preliminary results

In this section we discuss the necessary conditions for the existence of a
proper semiframe.

Lemma 2.1. In a proper (k, A)-semiframe (X, G, B) of type g*, there exists
an integer d such that for each group G; € G, there are d partial parallel
classes with respect to Gj;.

Proof: Let z € G; and B(z) = {B € B: z € B}. Consider the number of
blocks containing z in two ways:
1) 1B() = A(1X| = 1G;1)/(k = 1) = Ag(u — 1)/ (k — 1);

(2) Every block of B(z) belongs either to a parallel class or to a partial
parallel class with respect to G; # G;. If p and d; denote the num-
ber of parallel classes and partial parallel classes with respect to G;,
respectively, then

Bz)=p+ Y di—d;.

1<i<u
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Hence dj = p+ El<t<ud$ Agu—1)/(k—-1)=d; for all i # 7, i,j €
{1,2,...,u}. Thus we can denote d; by d for all j € {1,2,...,u}. a

Henceforth we use (k, A)-SF(p, d; g*) to denote a proper (k, A)-semiframe
of type g* in which there are p parallel classes and d partial parallel classes
with respect to G; € G.

Lemma 2.2. Suppose that there exists a (k, \)-SF(p,d;g%). If r is the
least residue of g modulo k —1, then

(1) g =0 (mod k) and Ar(u—1) =0 (mod k —1);
(2) p=M(u-1)/(k-1) (mod u—1) and d= Ag/(k —1) — p/(u—1).

Proof: From the hypotheses, it follows that g = 0 (mod k). We also have
Ag(u—1)
k-1

which can be written as d = A\g/(k—1)—p/(u—1). Thusif g = r (mod k—1)
for0<r < k-1, then A\r(u—1)=0(mod k—1) and p = Ar(u—-1)/(k—1)
(mod uw —1). O

=p+(u—-1)d

3 Constructions

First we present four constructions without proofs. These are slight gener-
alizations of those given in [10, 11]. Note that a transversal design TD(k, v)
is a (k,1)-GDD of type v*.
Construction 3.1. The existence of a (k, A)-SF(p, d;g*) and a resolvable
TD(k,n) implies the existence of a (k, A)-SF(np, nd; (ng)*).
Construction 3.2. Suppose that (X, G, B) is a (k, \)-frame with ¢; groups
of size s; for i = 1,2,...,n. Further suppose that, for each i = 1,2,...,n,
there exists a (k, /\) SF(p, d; g'+%:/9). Then there exists a (k, \)- SF(E piti,
d: gl+l?fl/9)

Let (X,G,B) be a GDD of type g%. A subset B’ C B is said to be
p-balanced if

(i) B’ can be partitioned into (u — 1)/ parallel classes, and

(ii) uB’ can be partitioned into u partial parallel classes, each of which is
with respect to some group.

Construction 3.3. Let (X, G, B) be a (k, A)-SF(p, d; g*) and p be a posi-
tive integer, and suppose that there are (u — 1)/ parallel classes of blocks
whose union forms a p-balanced set. Further let n > u be a positive in-
teger for which there exists a resolvable TD(k,n). Then there exists a
(k, A)-SF(np — i(u — 1), nd + i; (ng)*) for each i =0,1,..., |n/u].
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Construction 3.4. Suppose that there is a TD(u + 1,n) and that, for
each i = 1,2,...,n, there is a (k,\)-SF(p;,d;;g%). Then there exists a
(k, X)-SF(3; pi, 2, dhii (ng)¥)-

Some new methods. of constructions are now provided. First we use
resolvable GDDs.
Construction 3.5. 'The existence of a (k,1)-RGDD of type ¢* and a
(k’, A)-SF(p, d; n*) implies the existence of a (k’, A)-SF(p- 9—(,:‘—_"19-, gd; (ng)*).
Proof: Let (X, G, B) be a (k, 1)-RGDD of type g* and S(z)={z1, Z2,--.,Zn}-
Then we will construct a (k’, \)-SF(p- &1, gd; (ng)*)) (X', G, B') where

X'= | 8@), ¢ ={J 8=): ¢eg},
4 z€G

and B’ will be described later. It is easy to see that in (X, G, B) there are
exactly r = g(u—1)/(k—1) parallel classes, Py, Py,..., P,. On each parallel
class P;, we can construct p parallel classes Pi;, j = 1,2,...,p, by taking
the union of the jth-parallel classes of semiframes. Hence there are exactly
pr parallel classes.

Let Qf"- denote the ith partial parallel class with respect to S(z) in a
(k', A)-SF(p, d; n*), where z € B € B. Then the required partial parallel
classes with respect to UyegS(y), € G, are

U Qgi’ i=12,...,d,

z€BEB
and ‘
B=(UJ U U Uy U Py
1<i<dz€X ze BEB 1<i<r 1<5<p

o

Now we use almost resolvable designs to construct semiframes, where an
almost resoluable design AR(k,v) is a (k, k — 1)-frame of type 1°.
Construction 3.6. Suppose that there exist an AR(k,v) and a resolvable
TD(k,u) where u = 0 (mod k). Then there exists a (k, k—1)-SF(v—1,u—
1;4Y) in which the v — 1 parallel classes form a 1-balanced set.

Proof: Let (X,G, A) be an AR(k,v) with X = {z,z3,...,2y}. Further
let Z=X xY with Y = {y1,%2,-- -, %u}

For each A € A, we can construct a resolvable TD(k,») on A x ) with
groups {a} x ), a € A, and parallel classes C;(A), 1 <i < u. Let Ci(A;) =
Usea;Ci(A), 1 i<y, 1< <v, where A; is the partial parallel class of
(X, G, A) with respect to {z;}. Then let

cH= |J Gy

1<i<y,1<5<y
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It is readily checked that (2, {{z} xY: z € X}; C(A)) is a (k, k — 1)-frame
of type u”, where C;(A;), 1 <i<wu,1 < j < v, is the partial parallel class
with respect to {z;} x J. Now we will prove that this frame is in fact a
semiframe with the desired 1-balanced set.

Without loss of generality, we can assume C; (A1) = {{(a1, %), (a2, ¥e41),
-oy(@k, Yerk—1)}: {a1,02,..., ax} € A1,1 <t < u}, where t + i, the index
of y, is taken modulo u. Let Dyn(A)={{(a1,%:), (a2, Ye+1), - - - » (@k, Yet-k—1)}:
t=mk+m2k+m,...,(u-k)+mA= {a,az,...,ax} € 41}, 1 <
m < k. Then the elements of D,,(A) are pairwise disjoint. Finally let
Dy, = UpeD,.(4)B and €m(A) = Uz, y,)eD;, (4)(Ai X {y5}). Then [D},(A)n
(X x {ys})| =1, 1 < s < u. Therefore, D, (A) U E,(A) is a parallel class
on Z.

For 2 < i < u, we may take C1(A;) = {A x {y}: y€ Y, A € A;}. Since

it holds that
U Dm(4)=ci(A),
1<m<k,Ac A,

U B=(X_{zl})xyr

BeC1(A)

U é&aw= U U  ix{mh

1<Sm<k,A€A, 1Sm<k,A€A; (x4,y;)€D., (A)

= U  ximh= U @xy)
(z:,y5)€(X—{z21})xY 2<i<y
we have

U i) =ci(anu( | (i)

1<i<y 2<iy

=( U Da@)u(lJ xy)

1<m<k,A€ A 2<i<y

= U (Dm(A) U En(A)).
1<m<k,A€ A,
Hence [J,<;<, C1(A:), where C1(A;), 1 < ¢ < v, is the partial parallel
class with respect to {z;} x ) as mentioned before, can be partitioned into
k-(v—1)/k = v —1 parallel classes on Z. Therefore the required semiframe
has been obtained. a

Construction 3.6 requires a resolvable TD(k, »). It may very well be the
case that the resolvable TD(k, u) is not known to exist. The following con-
struction covers this case when k is a prime power. Note that a resolvable
balanced incomplete bock design RB(k, A;v) is a (k, A)-RGDD of type 1°.
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Construction 3.7. Let k be any prime power. Then the existence of an
RB(k,1;u) and an AR(k,v) implies the existence of a (k,k — 1)-SF(v —
1, — 1;2%) in which the v — 1 parallel classes form a 1-balanced set.
Proof: Let (X,.A) be the AR(k,v) with point set X = {z1,2z2,...,2Zv}
and partial parallel classes .A,, which partition X — {z,}, 1 <m < wv. Let
(¥, B) be the RB(k, 1;u) with point set Y = {y1,%2,...,%u} and parallel
classes By, 1 < n < (u—1)/(k —1). As the point set of the semiframe we
take Z =X x ).

For each A € A and B € B we construct a resolvable TD(k, k) on A x B
with groups {{a} x B: a € A} and parallel classes C;(Ax B), 1 <i < k.
Let

Ci(Am x Ba)= | Ci(A x B)

AEAm
BEBn

u—1
k-1
Since AN A’ = BN B’ = ¢ for any distinct A, A’ € A, and any distinct B,
B’ € B,, without loss of generality we may assume
Cl(At beS B) = {(ats bl)) (at+1: b2)1 seey (a'H-k—l’bk)}’ 1 <t< kr

where {a1,a2,. ..,ak} = A € A and {bl,bz,...,bk} = B € By, and the
indices ¢ + ¢ are taken modulo k.

1<i<k, 1<m<y1<n<

Let
Ci(Ax B)= | Ci(4*x B),
1<t<k
Ci(A* xB)) = | | Ci(A* x B),
BeB,
CiaixB)= |J <Ci(AxB).
A€A,,BeB;

For each (A, B) & A, x By, assume C;(A x B) = {A x {b}: b € B}, and let
C1(Am X B,) =Usca,.,BeB,C1(A x B) for (m,n) # (1,1). Let

C(Ax B) = U Ci(Am % Bn) \ U Ci(Am x Bn)
1<i<k 1€m<v
1€m<v 1€n<(u—1)/(k—1)
1€n<{u—1)/(k—-1) (m,n)#(1,1)
and

c=CAxB)|J( |J (AmnxI)),
2<m<v
where
Am x Y = | (Am x {3})-
yeY
Then (Z,C) is the required semiframe, where
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C={CUxB)\Ci(4 x B} JCi(Ar x BY UL | (Am x I}

2<m<y
= ( U CilAm x B))J( | Ci(4* x By))
s 15

1Sng(u—1)/(k-1)

Ut U Aex{z)
{zm un}E€Cy (AL,B))

=( U cnxB)J U 14 x By)

2<i<k AcA,
1€m<v 1€¢<k
1€n<g(u—1)/(k~1)

LK U (Am x {za}))].

{zm.¥n}eCr(A*xB1)

Hence, C can be partitioned into (k—1)-(u—1)/(k—1) = »—1 partial parallel
classes C;(Am x B,) with respect to group {z,} x Y for 1 < m < v, and
k-(v—1)/k = v —1 parallel classes C1(A* X B1)U(Uyz,, y.}eC, (At xBy ) Am X
{yn}) which form a 1-balanced set, where C;(A; x B,) is a partial parallel
class with respect to {z1} x ), and A, x Y is a partial parallel class with
respect to {zp,} XV, 2<m < w. O

We can also use free difference families in rings to construct semiframes.
By a ring R we mean a ring with an identity being not zero. Recall that,
U(R), the units of R, forms a group under ring multiplication.

Let G be an additive abelian group and B = {b;, b, ..., b} be a subset
of G. Define the development of B as devB = {B + g: g € G}, where
B+g={bi+g,ba+g,...,bx+g} forgeG. Let F = {B1,B,...,B.} be
a family of subsets of G and define the development of F as devF = U;<i<,
devB;. If devF is a (k,\)-GDD of type 17, it is said that F is a (k, A5 v)
difference family, denoted by DF(k, A;v), where the B;’s, 1 < i < t, are the
base blocks. If the base blocks are mutually disjoint, the difference family
is said to be free, and denoted by FDF.

It is easy to see that in an FDF(k, \;v), X < k, where \ = k if and only

ifv=k.
Construction 3.8. Suppose there exist an RB(k, A; u) and an FDF(k, ; v)
over a ring R, where v # k. If there exists a set of u distinct units u;,
0 < i < »—1, whose differences are still units of R, then there exists a
(k, A)-SF((v — 1)(Mu/(k — 1) - 1),1;u").

Proof: By the assumption that v # k, we have A < k — 1, which implies
> o<i<s—1|4i| = sk = A(v — 1)/(k = 1) < v, where {Ao, ..., As_1} is the
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FDF(k, \;v). Thus, without loss of generality, we may assume that 0 & A;
forany:,0<i<s—1.

We construct an RB(k, \;u) on I, = {0,1,...,u—=1}. Let V=Rx I,
and G = {{z} x I,: z € R}. As some base blocks for a (k,\)-SF((v —
1)(Au/(k — 1) — 1),1;u"), we choose

B! = A; x (i} = {(@,1), (@ ), (@i € Tupi = 0,1, 8= 1,

where A; = {a{,a%, .. .,a.f;} is a base block of the given free difference
family. Now replace the base blocks Bf by u;B}.

In order to get further base blocks, for any blocks B = {by, bz, ..., bk} of
the RB(k, A; w) (1., B), we put

CB("’) = {(ub;’ bl): (ubz: b2),---, (ubk’bk)} -z, TER- {0}:
where (u, %) - z means (uz, ).

For any parallel class P of the RB(k, A;u), put

Cr(z)= |J Ca(z), =€ R-{0}
BeP
‘We now have an appropriate set S of base blocks
S={wB}:i€el,j=0,1,...,s-1}
| J{Cs(z): z€ R- {0}, B € B}.

The pure differences all arise: from the blocks 'u,-B;-, and the mixed differ-
ences all arise from Cp(x),z € R — {0}, B € B. By hypothesis,

3 Au(wB) =Y wAuBj=w)_ Auhj=u-ME-{0})
J j j

= AR — {0}).
Furthermore, for i < 7,
A{Ca(): = € R— {0}, B € B} = A(us — us)(R— {0}) = (R - {0}).

Hence Ay S = A(R—{0}), Ai;S = M(R—{0}) for i # j. Thus (V, G, devS) is
a (k, A)-GDD of type u’. It remains to show that this GDD is a semiframe.
We have to partition the blocks into v partial parallel classes and (v —
1)(Au/(k — 1) — 1) parallel classes.
As the partial parallel class Qo with respect to {0} x I, take all blocks
wBi,i €I, j=01,...,5—1, and the blocks Cp,(z), where P, is one
parallel class of the RB(k,\;u), and z is nonzero and distinct from all
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a{,i € I, 5 =0,1,...,5 — 1. Other partial parallel classes are given by
Qg = 75Qo, Where 7,: (z,i)  (z+9,4),9 € R. That s, Q, = {ry(B): B e
Qo}. We now construct the parallel classes.

Let Rp(z) = {7sCp(z): g € R} with z € Uo<j<s-14;5, and P is any
parallel class of the RB(k, A;u), and Sp(z) = {1,Cp(x): g € R} with
ze€ R-{0} - Uo<j<s—14;, and P is any parallel class of the RB(k, \;u)
being not Py. Both Rp(z) and Sp(z) are parallel classes. The total number
of the parallel class is A\(u—1)ks/(k— D+ u-1)/(k-1)-1](v—1 —ks) =
(v = 1)(Mu/(k — 1) — 1), as required. (]

If we restrict ourselves to A\ = k — 1, then, in the proof of Construction
3.8, ks = v — 1, and hence Uo<i<s-14i = R — {0}. This implies that the
partial parallel class Q, does not contain Cp,(z) for any z, and hence so is
Qg for any g € R. In this instance, we permit P = P, in the expression of
Sp(z). Now we re-partition the blocks Cg(z), B € B,z € R— {0}. For any
parallel class P of the RB(k, k — L;u4), Cp = Uy r-{0}Cp(z) is a partial
parallel class with respect to {0} x I,. Other partial parallel classes are
given by 7,Cp, g € R. Hence the parallel classes Rp(z), Sp(z) defined
above form 1-balanced sets for any P.

Construction 3.9. Suppose there exist an RB(k, k—1;u) and an FDF(k, k~
1;v) over a ring R. If there exists a set of u distinct units such that their
differences are still units of R, then there exists a (k, k—1)-SF((v —1)(u —
1), 1;4") in which the parallel classes can be partitioned into u — 1 subsets
of v — 1 parallel classes each of which forms a 1-balanced set.

4 Series of semiframes

Here we give some series of designs with k = 3. Other cases on values
of k (> 4) can be similarly discussed. First a brief description of some
preliminary results is given. The necessary condition for the existence of
an AR(k,v) is v = 1 (mod k). It is known (see, for example, [4]) that
this condition is also sufficient for k — 3,4,5 and almost sufficient for 6 <
k <10. It is also well known that the existence of a TD(k, v) is equivalent
to that of £ — 2 mutually orthogonal Latin squares of order ». For more
information on the lower bound of the number of mutually orthogonal Latin
squares of order v, the reader is referred to, for example, [2] for details.

The only systematic work on (4,1)-RGDDs is due to Shen (15, 16),
and Rees and Stinson [13] who proved that a (4,1)-RGDD of type 3*
exists if and only if u = 0 (mod 4), u > 8, except possibly for » €
{28,44, 88,124, 152, 184, 220, 268,284}. The existence problem of RB(3, A;v)
was completely settled by Hanani, and Ray-Chaudhuri and Wilson (see [1)).

For detailed information on units in rings and free difference family the
reader is referred to [6, 7).
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Theorem 4.1. Let v = 1 (mod 3), 0 < p/(u—1) < g/3, g # 6,18.
Then the necessary condition for the existence of a (3, 2)-SF(p, d; g*) is also
sufficient.

Proof: By Lemma 2.2, if a (3,2)-SF(p, d; ) exists, then g = 0 (mod 3),
d=g—p/(u—1) and u > 4. Let g = 3n for n # 2,6 and p = m(u — 1).
Then0 <m <n Soputm=n—4,0<1i<n Since there exist an
AR(3,u) ([4]) and a resolvable TD(3,3) ([2]), we have a (3,2)-SF(u—1,2;3%)
in which u — 1 parallel classes form a 1-balanced set by Construction 3.6.
Applying Construction 3.3 with a resolvable TD(3,n) ([2]), we obtain a
(3,2)-SF(n(u—1) —i(u—1),2n+4; (3n)*) for each i =0,1,...,n—1, which
is a (3,2)-SF(m(u —1),3n —m; (3n)%), ie. a (3,2)-SF(p, d; g*). O

Theorem 4.2. Let0 <p/3 <m,m#2,6andn € N-{7,11,22,31, 38,46,
55,67, 71}. Then there exists a (3,2)-SF((4n — 1)p, 3d; (9m)*).

Proof: By Theorem 4.1, there exists a (3,2)-SF(p, d; (3m)*). Apply Con-
struction 3.4 with a (4,1)-RGDD of type 3%". m|

Theorem 4.3. Let uw =3 (mod 6), and g =1 (mod 6) be a prime power.
Then there exists a (3,1)-SF((g — 1)(u/2 — 1), 1;u%).

Proof: An RB(3,1;u) exists for any u = 3 (mod 6) (see [18]), and an
FDF(3,1;q) exists for any ¢ = 1 (mod 6) if g is a prime power (see [8]).
Apply Construction 3.8. Q

Theorem 4.4. Let u = 0 (mod 3), u # 6, and v = []; ¢/ be the prime
power factorization of v such that ¢; =1 (mod 3) for all i and min;{q}"* —
1} > u. Then there exists a (3, 2)-SF((v — 1)(z — 1 —5),1 + 3; u’) for
j=01,...,u—1

Proof: An RB(3,2;u) exists for any u = 0 (mod 3), u # 6 (see [4]), and

an FDF(3,2;v) exists for any of such v (see [7, 8]). Apply Construction

3.9. Then apply Construction 3.3 withn=p=1. In this instance, there is

no need for the existence of a resolvable TD(k,1). We can obtain a (3,2)-

SF((v - 1)(u —2),2;u") from a (3,2)-SF((v — 1)(u — 1), 1;u”). Repeat this

procedure. O
Theorem 4.4 can be used to establish the following.

Theorem 4.5. Let v = []; ¢ be the prime power factorization of v such
that ¢; = 1 (mod 3) for all i and min;{q;"* — 1} > v where u # 6. Then
the necessary conditions for the existence of a (3, 2)-SF(p,d;u") are also
sufficient.

Proof: The necessity follows from Lemma 2.3, where u = 0 (mod 3),
d=u—p/(v—1), and v > 4. The sufficiency follows from Theorem 4.4. O
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5 Cyclic semiframes

We have described some constructions for semiframes in Section 3 and
illustrated them with some examples in Section 4. Here we shall deal with
a special type of semiframe which we call a cyclic semiframe. The ideas
of the constructions here are based on those in [5], and hence sketches for
their proofs will be only given.

Let (X, G, B) be a (k, \)-GDD of type g%, and ¢ be a permutation on X.
For any block B = {by,...,bx} € B and any group G = {zi,...,z,} € G,
define B = {b{,...,bZ} and G° = {:c‘{,...,z;}. IfB° = {B°: B €
B} =B and G° = {G?: G € G} = G, then o is called an automorphism of
(X, G, B). If there is an automorphism o of order gu = |X|, then the (k, \)-
GDD is said to be cyclic, and denoted by (k,A)-CGDD. For a (k, \)-CGDD
of type g%, the point set X can be identified with Zgyu. In this case, the
design has an automorphism o i+ i + 1 (mod gu), and each group must
be the subgroup uZ, of Z,,, or its cosets (see [9]).

For a partial parallel class P;, let P{ = {B?: B € P}, and for a parallel
class Q;, let Q7 = {B?: B € Q;}. If the underlying GDD of a (k, A)-
SF(p, d; g*) is cyclic with respect to an automorphism ¢ of order gu = |X|,
such that P” = {P{,P{,...} = P and Q° = {Q1,Q3,...} = Q, then
the semiframe is said to be cyclic with respect to o, and denoted by (k, A)-
CSF(p, d; g*).

At first, we give a construction for such semiframes by using a kind of
difference method similar to that of [19).

Let k be odd, say k = 2m+1. We shall say that a prime power p satisfies
the condition Ry if and only' if p = 1 (mod k(k — 1)) and there exists a
primitive kth root of unity, €, in GF(p) such that {e-1,...,e™~1}isasys-
tem of representatives for the m cosets modulo H™ = {1,a™,...,alf~1im}
for a primitive element o of GF(p), where f = (p — 1)/m. Note that the
condition Ry is well defined. In fact, it does not depend on the choice of
the primitive kth root of unity in GF(p).

Construction 5.1. If a prime p satisfies the condition Ry, then there
exists a (k, 1)-CSF((p — 1)/(k — 1), 1; k®).

Proof: Arbitrarily choose a primitive element o of GF(p) = Z, such that
a # 0 (mod k), and let p = nk(k—1)+1. Without loss of generality, let e =
a®™" since ™" is a primitive kth root of unity. Let A = {l1,¢,...,e2m}
(mod p) and A; = Aa¥™ for j = 0,1,...,n — 1. It is known that Aj’s,
J=0,1,...,n~1, form the base blocks of a cyclic balanced incomplete
block design CB(k, 1;p) and U7Zg AA; = kZ, — {0} (mod kp).

Next, let B; = {o*,ea’ +p,...,6™a* + 2mp} (mod kp) fori=0,1,...,
2mn —1. Then U5~ 'AB; = Zy, — kZ, — pZ), which implies that the base
blocks B;’s together with the base blocks Aj’s generate a (k,1)-CGDD of
type kP.
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The blocks of this design can be partitioned into partial parallel classes
and parallel classes. The partial parallel class with respect to {h,p +
h,...,(k=1)p+h} =pZx+hare Pn=Po+h (mod kp) for h € Z,, where
Po = {Aj+¢p, Bi+fp (mod kp): =0,1,... ,n—1;i=0,1,...,2mn-1;i #
o,m,...,(n —1)m;€=0,1,....k — 1}. Furthermore, the parallel classes
are Qje = Qjo +£ (mod kp) for j =0,1,...,n-1;£=0,1,.. ., k-1, where
Qjo={B,-m+hk(modkp):heZ,}forj:O,l,...,n—l. a

This result can be generalized to the following.

Construction 5.2. If two primes p and g satisfy the condition Rj respec-
tively, then there exists a (k,1)-CSF((pg — 1)/(k - 1),1; kP9).
Proof: Let p = n'k(k—1)+1 and ¢ = n"k(k — 1) + 1. By virtue of
Construction 5.1, there exists a (k, 1)-CSF((p—1)/ (k—1),1; kP) with partial
parallel classes P}, Pj, ..., P,_, and parallel classes Qb0s Q015+ -+ @nr—1,k—1
where P = {Ai+£p (mod kp): i =0,1,... ,n'(k—1)-1;£=0,1,...,k-1},
Qi = {Ai + hk (mod kp): j = 0,1,...,n' —L;h € Z,}, and a (k,1)-
CSF((g — 1)/(k — 1),1;k%) with partial parallel classes Fy', Py,.. Y A
and parallel classes Qgo, @01, - - oy Qpu_y k1 Where Py = {B; + g (mod
kq):i=0,1,...,n"(k—1) =1;£=0,1,...,k -1}, Qjp = {Bj + hk (mod
kq):j =0,1,...,n”—1;h=0,1,...,k—1}.

Now for each block A; = {1, @iz, - - ., @ik}, we define the following g base
blocks

AE") = {a;; +stkp (mod kpg): s=1,2,..., k}

fort=0,1,...,q— 1, where st = st (mod ¢) and 0 < st < g¢—1. Similarly,
A® for each block A is defined. Then it can be checked that any point
of pZky does not occur with the point 0, while every point of Zxpq — PZkq
occurs once together with the point 0.

Next, for each block B; = {bﬂ, biy .-« b,'k}, let pB,' = {pbu,pb;z, e ,pbik}
(mod kpg) be a base block of the desired semiframe, and similarly let pB;’s
be also base blocks of the semiframe. Then any point of pqZ; does not
occur with the point 0, while every point of pZxg — pqZ). occurs once with
the point 0.

By developing the base blocks Agt), A;.(t), g¢B; and ¢Bj, a (k, 1)-CGDD
of type kP? is obtained.

Finally, we partition the blocks into partial parallel classes and parallel
classes .

Let Py = {A,(t) + ¢pg (mod kpq):t =0,1,...,9— ;4 =0,1,...,(k—
Nn' -1;£=0,1,...,k—1} U pPY. Since P{ is a partial parallel class
with respect to gZy of the (k, 1)-CSF((g — 1)/(k —1),1; kq), every point of
(Zkg—q2Zx) = PZkq—P9Zk 19 contained in pP§’ exactly once. Furthermore,
{A® 4 tpg (mod kpg): t = 0,1,...,q = Lji =0,1,...,(k = D)o’ — ;€ =
0,1,...,k —1} = Zgpg — pZxq- Then P, is a partial parallel class with
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respect to pgZx. More pq partial parallel classes can be obtained by letting
Py =P+ h (mod kpq) for h=0,1,...,pqg— 1.

Let Qugrr = {A;? + hk (mod kpq): h = 0,1,...,pq — 1} for ¢ =
0,1,....g-1and j = 0,1,...,n' — 1, and let Q;; = {vBj + hk (mod
kpq): h=0,1,...,pg—1} for j =0,1,...,n” —1. Then Q(jqrs) and Q;
are parallel classes respectively. Then we can obtain n'gk + n’k parallel
classes by defining Q(jg+s)k-+e = Qig+eyr+¢ (mod kpg) and Qjiye = Qi+
respectively. O

Note that the partial parallel classes and parallel classes in Construction
5.2 have same properties as those in Construction 5.1, and hence we can
extend Construction 5.2 to the cases when the number of primes exceeds
two.

Now we present a recursive construction for cyclic semiframes by using
a difference matrix. It looks similar to that of Construction 3.1.

Let D = (di;),i =1,2,...,k;5 = 1,2,...,g), be a matrix with entries
from Z, such that the list (diz — dje)e=1,... g1 contains each element of Zg
precisely A times, whenever i # j and 4,5 € {1,2,...,k}. Then D 'is called
a difference matriz and denoted by DM(k, );g). A DM(k, ); g) is said to
be homogeneous, denoted by HDM(k, }; g), if the list (die)e=1,....gx contains
each element of Z, precisely A times for i = 1,2,...,k. It is well known
that an HDM(k, J; g) is equivalent to a DM(k + 1, ); g).

Construction 5.3. Let p be a prime satisfying the condition Rj. If
there exists an HDM(k, 1; g), then there exists a (k, 1)-CSF(g(p — 1)/ (k-
1), g (gk)?).

Proof: Classes Fj,...,P;_,, Qb -- -, 1,1 are defined just as in the
proof of Construction 5.2, while for each 4;, we define AE‘) = {ais + dstkp
(mod kpg): s =1,2,...,k} fort =0,1,...,g — 1, andisimilarly we define
Aj(t) for each A;. Then the blocks developed from the base blocks AE‘) and
A;(t) form the collection of blocks of a (k,1)-CGDD of type (kg)P, where
Pa = {A{® +pg+h (mod kpg): ¢ =0,1,...,g—1;4=0,1,..., (k= 1)’ +
1;£=0,1,...,k~1}, h € Z,,, forms a partial parallel class with respect to
PZig+h and Qg ppyire = {AS? +hk+£ (mod kpg): h=0,1,...,pg—1}
fort =0,1,...,g-1;7=0,1,...,n~1,and ¢ = 0,1,...,k—1, forms a
parallel class. a

An immediate consequence of these constructions is the following.

Theorem 5.4. Let g be a positive integer not divisible by 2 and 3, and
Pi’s are primes such that p; = 1 (mod 6) for i = 1,2,...,n. Then there
exists & (3, 1)-CSF((p1p2 - - pn — 1)9/2, g; (3g)P1P2Pn).

Proof: By (3], an HDM(3, 1; ;;) always exists for such g. Furthermore, every
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prime p; = 1 (mod 6) satisfies the condition Ry, thatis,e —1€ H. O

6 Another application of semiframes

Rees [10, 11] listed some applications of semiframes for the construction
of other types of designs. In this final section, we describe one more ap-
plication for the construction of RGDDs. This shows that there is some
possibility of constructing RGDDs and frames, which are the extreme cases
of semiframes, from proper semiframes.

Construction 6.1. Let d < Ag(n —1)/(k — 1). Then the existence of a
(k, \)-SF(p, d; (ng)*) and a (k,A)-RGDD of type g" implies the existence
of a (k, \)-RGDD of type g™*.

Proof: Let (X,G, B) be the semiframe in which B is written as a disjoint
union B = P U Q where P is partitioned into partial parallel classes P,
1<i<d, G e G, with respect to G € G, and Q is partitioned into parallel
classes Q;, 1 < j < p. Let (G, Hg, Bg) be the RGDD of type g™ in which Bg
is partitioned into parallel classes Bg, 1 < €< A\g(n—1)/(k—1),0of G € G.
Then (X, UcegHc, BUUgegBg) is the required design, where @, PLUBE,
UgegBY, G€G,1<i<d 1<j<p, d+1<€<Mg(n—1)/(k—1), are
the Ag(nu — 1)/(k — 1) parallel classes. ]
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