The Connectivity Of The Leaf-Exchange Spanning Tree Graph Of A Graph

H.J. Broersma and Li Xueliang*
Department of Applied Mathematics
University of Twente
7500 AE Enschede
The Netherlands

ABSTRACT. Let G be a connected (multi)graph. We define the leaf-exchange spanning tree graph $T_l(G)$ of G as the graph with vertex set $V_l = \{T|T \text{ is a spanning tree of } G\}$ and edge set $E_l = \{(T,T')|E(T)\Delta E(T') = \{e,f\}, e \in E(T), f \in E(T') \text{ and } e \text{ and } f \text{ are incident with a vertex } v \text{ of degree 1 in } T \text{ and } T'\}$. $T_l(G)$ is a spanning subgraph of the socalled spanning tree graph of G, and of the adjacency spanning tree graph of G, which were studied by several authors. A variation on the leaf-exchange spanning tree graph appeared in recent work on basis graphs of branching greedoids. We characterize the graphs which have a connected leaf-exchange spanning tree graph and give a lower bound on the connectivity of $T_l(G)$ for a 3-connected graph G.

1 Introduction

We use [1] for terminology and notation not defined here and consider simple graphs only, although obvious analogues of the results also hold for multigraphs.

Let G be a connected graph. The spanning tree graph T(G) of G has vertex set $V_T = \{T|T \text{ is a spanning tree of } G\}$ and edge set $E_T = \{T, T'|E(T)\Delta E(T') = \{e, f\}, e \neq f\}$. Spanning tree graphs were studied in several papers (e.g. [3,6]) and many of the results on spanning tree graphs have been generalized to results on basis graphs of matroids. In more recent papers [5,8], the spanning subgraph $T_a(G)$ of T(G) was studied. The edge set of $T_a(G)$

^{*}On leave from the Department of Mathematics, Xinjiang University, Urumchi, Xinjiang, P.R. China

is the subset of E_T formed by pairs (T,T') such that $E(T)\Delta E(T')=\{e,f\}$ for a pair of adjacent edges e and f. For a (spanning) tree T (of G), a vertex of degree one in T will be called a leaf of T, and an edge of T incident with a leaf will be called a leaf edge of T. We define the leaf-exchange spanning tree graph $T_l(G)$ of G as the spanning subgraph of T(G) for which the edge set is formed by pairs (T,T') with $E(T)\Delta E(T')=\{e,f\}$ such that e and f are leaf edges (of T and T', respectively). It is obvious that $T_l(G)$ is also a spanning subgraph of $T_a(G)$.

In Section 2 we characterize the graphs that have a connected leaf-exchange spanning tree graph, while in Section 3 we give a lower bound on the connectivity of $T_l(G)$ in terms of parameters of G. The latter result may be of some help in finding spanning trees with a given number of leaves, which is an NP-complete problem in general [7]. A slight variation on the leaf-exchange spanning tree graph appeared in recent work on basis graphs of branching greedoids [2,4,9]. In these graphs the spanning trees all have a common root vertex.

2 Graphs with a connected leaf-exchange spanning tree graph

A graph G is a block if either G is isomorphic to K_2 or G is 2-connected; G is a multiblock if it can be obtained from a number of blocks $\not\cong K_2$ by identifying precisely one vertex of each block; this vertex is called the center of the multiblock. A graph is called tree-like if it can be constructed from a tree T and a number of disjoint multiblocks (disjoint from T) by identifying the centers of the multiblocks with distinct vertices of T. Note that a 2-connected graph is a multiblock and that it is tree-like.

It is clear that the leaf-exchange spanning tree graph of a tree is K_1 . In the sequel of this section, we assume G is not a tree.

Theorem 1. $T_l(G)$ is connected if and only if G is tree-like.

Proof: Suppose G is tree-like and M_1, M_2, \ldots, M_m are the multiblocks used to construct G from a tree. Regard M_i as a rooted graph with the center as the root. The spanning trees of M_i are the bases of a branching greedoid (See [4]) and the basis graph $G(M_i)$ of this branching greedoid is connected. Since $T_l(G)$ has a spanning subgraph isomorphic to $G(M_1) \times G(M_2) \times \ldots \times G(M_m)$, this implies that $T_l(G)$ is connected.

Now suppose G is not tree-like. Then G contains a block $H \not\cong K_2$, such that H has at least two vertices u and v in common with two other blocks H_1 and H_2 (possibly K_2), respectively. Let e_1, e_2, \ldots, e_p be the edges of H incident with v. Consider a spanning tree T_1 of G containing e_1 and none of e_2, \ldots, e_p , and a spanning tree T_p of G containing e_p and none of e_1, \ldots, e_{p-1} . Using the fact that there is a unique path in T_1 (and T_p) from u to v and that u and v are not leaves of T_1 (and T_p), it can be shown that

3 The connectivity of the leaf-exchange spanning tree graph

For a spanning tree T of a connected graph G, let $\Lambda(T)$ denote the set of leaves of T, and let $\lambda(G) = \min\{|\Lambda(T)| | T \text{ is a spanning tree of } G\}$. For a subset $S \subset V(G)$, let $\overline{S} = V(G) \setminus S$, and for a vertex $v_i \in S$, let $(v_i, \overline{S}) = \{v_i u | u \in \overline{S}\}$ and $s_i = s(v_i) = |(v_i, \overline{S})|$.

Note that $s_i \geq \delta - |S| + 1$. Let

$$\rho(t) = \min \left\{ \sum_{i=1}^t s_i - t | S = \{v_1, v_2, \dots, v_t\} \subset V(G) \right\}$$

Then $\rho(t) \geq t(\delta - t + 1) - t = t(\delta - t)$.

In this section we prove the following result.

Theorem 2. Let G be a k-connected graph $(k \ge 3)$. Then $T_l(G)$ is $\rho(t)$ -connected, where $t = \min \{\lambda(G), \lfloor \frac{1}{2}(k-1) \rfloor \}$.

To prove Theorem 2 in the sequel we are going to show there are at least $\rho(t)$ internally-disjoint paths between any two vertices X and Y of $T_l(G)$. We use several lemmas. First we give a lower bound on the number of spanning trees of G with t common leaves (Lemma 3). Using a variation on Menger's Theorem (Lemma 4) we prove that the set of spanning trees of G with t common leaves induces a $\rho(t)$ -connected subgraph of $T_l(G)$ (Lemma 5). This implies the existence of $\rho(t)$ internally-disjoint paths between X and Y if the corresponding spanning trees in G have t common leaves. For the other case, we use the above results in combination with some counting lemmas (Lemmas 6 and 7) to prove that for any vertex T of $T_l(G)$ there is a set of disjoint paths (except for the origin T) to at least $\rho(t)$ distinct vertices of $T_l(G)$ corresponding to spanning trees of G with t common leaves (Lemma 8). Together with Lemma 5 this completes the proof of Theorem 2.

Lemma 3. Let G be a k-connected graph $(k \ge 2)$, and let $S = \{v_1, \ldots, v_t\}$ $\subset V(G)$ for some $t \le k-1$. Then G has at least $\prod_{i=1}^t s_i$ spanning trees containing v_1, \ldots, v_t as leaves.

Proof: Since G is k-connected and $t \leq k-1$, G-S is connected and contains a spanning tree. For every v_i we can use one of the s_i edges to extend this tree to a spanning tree of G containing v_1, \ldots, v_t as leaves. This can be done in $\prod_{i=1}^t s_i$ different ways.

The following lemma is an easy consequence of Menger's Theorem.

Lemma 4. Let G be a k-connected graph $(k \ge 1)$, and let $A = \{u_1, \ldots, u_h\}$ $\subset V(G)$, $B = \{v_1, \ldots, v_h\} \subset V(G)$ with $h \le k$ and $C = A \cap B$. Then there

are at least $|A\setminus C|$ internally-disjoint paths from $A\setminus C$ to $B\setminus C$ which do not contain vertices of C.

Lemma 5. Let G be a k-connected graph $(k \ge 3)$, and let $S = \{v_1, \ldots, v_t\}$ $\subset V(G)$ for some $t \le k-2$. Let B(S) be the set of spanning trees of G containing v_1, \ldots, v_t as leaves. Then B(S) induces a $\rho(t)$ -connected subgraph of $T_l(G)$.

Proof: Since G is k-connected and $t \leq k-2$, G-S is 2-connected and hence $T_l(G-S)$ is connected by Theorem 1. For two elements X and Y of B(S) let T = X - S and T' = Y - S. Then T and T' are spanning trees of G-S. Hence there is a path $T=T_1T_2...T_p=T'$ in $T_l(G-S)$. For all i with $1 \le i \le p$, let \mathcal{T}_1 denote the set of all spanning trees induced by $E(T_i) \cup \{e_{1i_1}, \dots, e_{ti_t}\}$ with $e_{ji_i} \in (v_j, \overline{S})$. Clearly T_i induces a subgraph of $T_l(G)$ which is isomorphic to $K_{s_1} \times K_{s_2} \times \ldots \times K_{s_t}$, hence a $\left(\sum_{i=1}^t (s_i - 1)\right)$ connected graph and thus a $\rho(t)$ -connected graph. Since at most one of the edges incident with v_i is incident with the leaf that makes T_i and T_{i+1} adjacent, there are at least $\Pi_{i=1}^t(s_i-1)$ independent edges between \mathcal{T}_i and T_{i+1} in $T_l(G)$. Since $t \leq k-2 \leq \delta-2$, we have $s_i \geq \delta-t+1 \geq 3$, so that $\prod_{i=1}^t (s_i-1) \geq \sum_{i=1}^t (s_i-1) \geq \rho(t)$. Hence there are at least $\rho(t)$ independent edges between T_i and T_{i+1} $(1 \le i \le p-1)$. For a triple T_i, T_{i+1}, T_{i+2} $(1 \le i \le p-2)$, let A and B be subsets of the graph induced by \mathcal{T}_{i+1} determined by $\rho(t)$ edges between \mathcal{T}_i and \mathcal{T}_{i+1} and \mathcal{T}_{i+1} and \mathcal{T}_{i+2} , respectively, and let $C = A \cap B$. Then, by Lemma 4, there are at least $|A\setminus C|$ internally-disjoint paths from $A\setminus C$ to $B\setminus C$ which do not contain vertices of C. Using this at each stage we can find $\rho(t)$ internally-disjoint paths between X and Y.

Lemma 6. Let $x_i \in \mathbb{R}$ and $x_i \geq 2$ $(i = 1, 2, ..., r + t \text{ with } 1 \leq r \leq t \text{ and } r, t \in \mathbb{N})$. Then

$$\Pi_{i=1}^{r+t} x_i \ge \sum_{i=1}^{r+t} x_i + 2rt - (r+t).$$

Proof: Consider the function

$$f(x_1,\ldots,x_{r+t}) = \prod_{i=1}^{r+t} x_i - \sum_{i=1}^{r+t} x_i - 2rt + (r+t).$$

Since $\frac{\partial f}{\partial x_i} = \prod_{\substack{j=1 \ j \neq i}}^{r+t} x_j - 1$ $(1 \le i \le r+t)$, it clearly suffices to show $f(2,\ldots,2) = 2^{r+t} - 2rt - (r+t) = g(r,t) \ge 0$. Straightforward calculations show g(1,1) = 0, g(2,2) = 4 and $g(1,t) = 2^{t+1} - 3t - 1 = 3(2^{t-1} - t) + 2^{t-1} - 1 > 0$ if $t \ge 2$. For $t \ge r \ge 2$, we get

$$\frac{\partial g}{\partial r} = 2^{t+1}(2^{r-1}\ln 2) - 2t - 1 > 2^{t+1} - 2t - 1 > 0,$$

and similarly $\frac{\partial q}{\partial t} > 0$. This completes the proof.

Lemma 7. Let G be a k-connected graph $(k \geq 3)$, and let $S = S' \cup S''$, where $S' = \{u_1, \ldots, u_r\} \subset V(G)$, $S'' = \{v_1, \ldots, v_t\} \subset V(G)$ such that $S' \cap S'' = \emptyset$. Moreover, let

$$s_i' = |(u_i, \overline{S'})| \text{ and } s_i = |(u_i, \overline{S})| \quad (i = 1, ..., r), \text{ and } s_j'' = |(v_j, \overline{S''})| \quad (j = 1, ..., t) \text{ and } s_p = |(v_{p-r}, \overline{S})| \quad (p = r + 1, ..., r + t).$$

If $1 \le r \le t \le \lfloor \frac{1}{2}(k-1) \rfloor$, then

$$\Pi_{i=1}^r s_i \Pi_{p=r+1}^{r+t} s_p \geq \sum_{i=1}^r s_i' + \sum_{j=1}^t s_j'' - (r+t) \geq \rho(r) + \rho(t).$$

Proof: It is easy to see that

$$\sum_{i=1}^{r} s_i' + \sum_{j=1}^{t} s_j'' \le \sum_{i=1}^{r} s_i + \sum_{p=r+1}^{r+t} s_p + 2rt, \text{ hence}$$

$$\sum_{i=1}^{r} s_i' + \sum_{j=1}^{t} s_j'' - (r+t) \le \sum_{i=1}^{r} s_i + \sum_{p=r+1}^{r+t} s_p + 2rt - (r+t). \tag{*}$$

Since $s_i \ge \delta - (r+t) + 1 \ge k - 2t + 1 \ge k - 2\lfloor \frac{1}{2}(k-1)\rfloor + 1 \ge 2$ and similarly $s_p \ge 2$, by Lemma 6,

$$\Pi_{i=1}^{r} s_{i} \Pi_{p=r+1}^{r+t} s_{p} \ge \sum_{i=1}^{r} s_{i} + \sum_{p=r+1}^{r+t} s_{p} + 2rt - (r+t). \tag{**}$$

From (*), (**) and the definition of ρ we get the result.

If v, u_1, u_2, \ldots, u_n are distinct vertices in a graph G, then a fan between v and $\{u_1, u_2, \ldots, u_n\}$, denoted by $v - \{u_1, u_2, \ldots, u_n\}$, is a set of n paths having only v in common and connecting v to each vertex of $\{u_1, u_2, \ldots, u_n\}$.

Lemma 8. Let G be a k-connected graph $(k \ge 3)$, and let T be a spanning tree of G, and $\{v_1, \ldots, v_t\} \subset V(G)$ with $t \le \min\{\lambda(G), \lfloor \frac{1}{2}(k-1) \rfloor\}$. Then there is a fan $T - \{T_1, T_2, \ldots, T_{\rho(t)}\}$ in $T_l(G)$ such that each T_i contains v_1, \ldots, v_t as leaves $(i = 1, 2, \ldots, \rho(t))$.

Proof: If v_1, \ldots, v_t are leaves of T, then the result follows from Lemma 5. Since $t \leq \lambda(G)$, T has at least t leaves. Without loss of generality, assume v_1, \ldots, v_r are not leaves of T with $1 \leq r \leq t$, and $u_1, \ldots, u_r, v_{r+1}, \ldots, v_t$ are t leaves of T. Since $r \leq t$ implies $r + t \leq 2t \leq 2\lfloor \frac{1}{2}(k-1) \rfloor \leq k-1$, by Lemma 3, $T_l(G)$ has at least $\prod_{i=1}^{r+t} s_i$ spanning trees containing u_1, \ldots, u_r ,

 v_1, \ldots, v_t as leaves, where $s_i = |(u_i, \{\overline{u_1, \ldots, u_r, v_1, \ldots, v_t}\})|$ $(i = 1, \ldots, r)$ and $s_p = |(v_{p-r}, \{\overline{u_1, \ldots, u_r, v_1, \ldots, v_t}\})|$ $(p = r+1, \ldots, r+t)$. By Lemma 7, $\prod_{i=1}^{r+t} s_i \geq \rho(r) + \rho(t) \geq \rho(t)$, so $T_l(G)$ has at least $\rho(t)$ spanning trees $T_1, \ldots, T_{\rho(t)}$ containing $u_1, \ldots, u_r, v_1, \ldots, v_t$ as leaves. T and T_i have t common leaves $u_1, \ldots, u_r, v_{r+1}, \ldots, v_t$ and $T \neq T_i$ $(i = 1, \ldots, \rho(t))$, since at least one of v_1, \ldots, v_r is a leaf of T_i but not of T. By Lemma 5, there is a fan $T - \{T_1, \ldots, T_{\rho(t)}\}$.

Proof of Theorem 2: Consider arbitrary spanning trees X and Y of G. We want to show there are at least $\rho(t)$ internally-disjoint paths in $T_l(G)$ connecting X and Y.

If $|\Lambda(X)\cap\Lambda(Y)|\geq t$, this follows from Lemma 5. Assume $|\Lambda(X)\cap\Lambda(Y)|< t$. Since $t\leq \lambda(G)$, both X and Y have at least t leaves. Let v_1,\ldots,v_t be leaves of Y and suppose v_1,\ldots,v_q are leaves of X while v_{q+1},\ldots,v_t are not leaves of X for some q< t. By Lemma 8 there is a fan $X-\{Y_1,\ldots,Y_{\rho(t)}\}$ such that Y_i contains v_1,\ldots,v_t as leaves $(i=1,\ldots,\rho(t))$. By Lemma 5, for every Y_i there are $\rho(t)$ internally-disjoint paths from Y_i to Y. It is not difficult to see that this implies there are $\rho(t)$ internally-disjoint paths from X to Y.

The following result is an immediate consequence of Theorem 2.

Corollary 7. Let G be a k-connected graph $(k \ge 3)$ and suppose, for some $n_1, n_2 \in \mathbb{N}$ with $n_1 < n_2$, there are spanning trees T_1 and T_2 of G with n_1 and n_2 leaves, respectively. Then, for any $n \in \mathbb{N}$ with $n_1 < n < n_2$, there are at least $\rho(t)$ spanning trees of G with n leaves.

If T_1 and T_2 in Corollary 7 have common leaves v_1, \ldots, v_t for some $t \le k-2$, then all $\rho(t)$ spanning trees can be chosen to have v_1, \ldots, v_t as leaves. This follows from Lemma 5.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (MacMillan, London and Elsevier, New York, 1976).
- [2] H.J. Broersma and Li Xueliang, The connectivity of the basis graph of a branching greedoid, J. Graph Theory 16 (1992) 233-237.
- [3] R.L. Cummins, Hamiltonian circuits in tree graphs, IEEE Trans. Circuit Theory CT-13 (1966) 82-90.
- [4] B. Korte and L. Lovász, Basis graphs of greedoids and twoconnectivity, Math. Program. Study 24 (1985) 158-165.
- [5] G.Z. Liu, Connectivities of adjacency tree graphs of simple graphs, Acta Appl. Math. Sinica (1987).
- [6] G.Z. Liu, On connectivities of tree graphs, J. Graph Theory 12 (1988) 453-459.
- [7] C.H. Papadimitriou, Combinatorial Optimization: Algorithms and Complexity (Prentice-Hall, London, 1986).
- [8] F.J. Zhang and Z.B. Chen, Connectivity of (adjacency) tree graph, J. Xinjiang University 4 (1986).
- [9] G.M. Ziegler, Branchings in rooted graphs and the diameter of greedoids, Combinatorica 8 (1988) 217-234.