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ABSTRACT. Let G be a connected (multi)graph. We define the
leaf-exchange spanning tree graph T;(G) of G as the graph with
vertex set Vi = {T'|T is a spanning tree of G} and edge set E; =
{(T,T)|E(T)AE(T') = {e, f}, e € E(T), f € E(T") and e and
f are incident with a vertex v of degree 1 in T and T"}. T}(G)
is a spanning subgraph of the socalled spanning tree graph of
G, and of the adjacency spanning tree graph of G, which were
studied by several authors. A variation on the leaf-exchange
spanning tree graph appeared in recent work on basis graphs of
branching greedoids. We characterize the graphs which have a
connected leaf-exchange spanning tree graph and give a lower
bound on the connectivity of Ti(G) for a 3-connected graph G.

1 Introduction

We use (1] for terminology and notation not defined here and consider
simple graphs only, although obvious analogues of the results also hold for
multigraphs. ‘

Let G be a connected graph. The spanning tree graph T(G) of G has ver-
tex set Vr = {T|T is a spanning tree of G} and edge set Er = {T, T'|E(T)A
E(T’) = {e, f}, e # f}. Spanning tree graphs were studied in several papers
(e-g. [3,6]) and many of the results on spanning tree graphs have been gen-
eralized to results on basis graphs of matroids. In more recent papers [5,8),
the spanning subgraph T,(G) of T(G) was studied. The edge set of Ta(G)
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is the subset of Er formed by pairs (T, T") such that E(T)AE(T') = {e, f}
for a pair of adjacent edges e and f. For a (spanning) tree T (of G), a vertex
of degree one in T will be called a leaf of T, and an edge of T incident with
a leaf will be called a leaf edge of T. We define the leaf-ezchange spanning
tree graph Ti(G) of G as the spanning subgraph of T'(G) for which the edge
set is formed by pairs (T, T") with E(T)AE(T’) = {e, f} such that e and
f are leaf edges (of T and T”, respectively). It is obvious that T}(G) is also
a spanning subgraph of T,(G).

In Section 2 we characterize the graphs that have a connected leaf-
exchange spanning tree graph, while in Section 3 we give a lower bound
on the connectivity of T;(G) in terms of parameters of G. The latter re-
sult may be of some help in finding spanning trees with a given number of
leaves, which is an NP-complete problem in general [7]. A slight variation
on the leaf-exchange spanning tree graph appeared in recent work on basis
graphs of branching greedoids [2,4,9]. In these graphs the spanning trees
all have a common root vertex.

2 Graphs with a connected leaf-exchange spanning tree graph

A graph G is a block if either G is isomorphic to K or G is 2-connected;
G is a multiblock if it can be obtained from a number of blocks 22 Ko
by identifying precisely one vertex of each block; this vertex is called the
center of the multiblock. A graph is called tree-like if it can be constructed
from a tree T and a number of disjoint multiblocks (disjoint from T') by
identifying the centers of the multiblocks with distinct vertices of T. Note
that a 2-connected graph is a multiblock and that it is tree-like.

It is clear that the leaf-exchange spanning tree graph of a tree is K. In
the sequel of this section, we assume G is not a tree.

Theorem 1. Ti(G) is connected if and only if G is tree-like.

Proof: Suppose G is tree-like and My, My, ..., M,, are the multiblocks
used to construct G from a tree. Regard M; as a rooted graph with the
center as the root. The spanning trees of M; are the bases of a branching
greedoid (See [4]) and the basis graph G(M;) of this branching greedoid is
connected. Since T;(G) has a spanning subgraph isomorphic to G(M;) x
G(Mz) x ... x G(M,,), this implies that T;(G) is connected.

Now suppose G is not tree-like. Then G contains a block H ¥ K>, such
that H has at least two vertices u and v in common with two other blocks
H, and H, (possibly K3), respectively. Let e;,ez,...,e, be the edges of
H incident with v. Consider a spanning tree T} of G containing e; and
none of ey,...,ep, and a spanning tree T}, of G containing e, and none of
e1,...,ep—1. Using the fact that there is a unique path in T} (and Tp) from
u to v and that u and v are not leaves of T (and Ty), it can be shown that
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T and T, are not connected in T;(G). O

3 The connectivity of the leaf-exchange spanning tree graph

For a spanning tree T of a connected graph G, let A(T') denote the set
of leaves of T, and let A(G) = min{|A(T)| |T is a spanning tree of G}.
For a subset S C V(G), let § = V(G)\S, and for a vertex v; € S, let
(vi, S) = {viulu € S} and s; = s(v;) = |(vi, 5)|.

Note that s; > 6 — |S| + 1. Let

p(t) = min {zt: 8 —t|S = {vy,v,...,9,} C V(G)}

i=1

Then p(t) > t(6—t+1)—t =t(6 —t).
In this section we prove the following result.

Theorem 2. Let G be a k-connected graph (k > 3). Then Ti(G) is
p(t)-connected, where t = min {\(G), |3(k—1)]}.

To prove Theorem 2 in the sequel we are going to show there are at least
p(t) internally-disjoint paths between any two vertices X and Y of Ti(G).
We use several lemmas. First we give a lower bound on the number of
spanning trees of G with ¢ common leaves (Lemma 3). Using a variation on
Menger’s Theorem (Lemma 4) we prove that the set of spanning trees of G
with ¢ common leaves induces a p(t)-connected subgraph of T;(G) (Lemma
5). This implies the existence of p(t) internally-disjoint paths between X
and Y if the corresponding spanning trees in G have ¢ common leaves. For
the other case, we use the above results in combination with some counting

_lemmas (Lemmas 6 and 7) to prove that for any vertex T of T;(G) there
is a set of disjoint paths (except for the origin T') to at least p(t) distinct
vertices of T;(G) corresponding to spanning trees of G with ¢ common leaves
(Lemma 8). Together with Lemma 5 this completes the proof of Theorem
2.

Lemma 3. Let G be a k-connected graph (k > 2), and let S = {v,,...,v;}
C V(G) for some t < k — 1. Then G has at least II{_,s; spanning trees
containing vy, ..., v, as leaves.

Proof: Since G is k-connected and ¢ < k — 1, G — S is connected and
contains a spanning tree. For every v; we can use one of the s; edges to
extend this tree to a spanning tree of G containing v,,...,v; as leaves. This
can be done in IT¢_,s; different ways. ]

The following lemma is an easy consequence of Menger’s Theorem.

Lemma 4. Let G be a k-connected graph (k > 1), and let A = {u,...,un}
C V(G), B={v,,...,0} C V(G) with h < k and C = AN B. Then there

227



are at least | A\C| internally-disjoint paths from A\C to B\C which do not
contain vertices of C.

Lemma 5. Let G be a k-connected graph (k > 3), and let S = {v,,...,v:}
C V(G) for some t < k — 2. Let B(S) be the set of spanning trees of
G containing v,,...,v, as leaves. Then B(S) induces a p(t)-connected
subgraph of Ti(G).

Proof: Since G is k-connected and t < k — 2, G — S is 2-connected and
hence T;(G — S) is connected by Theorem 1. For two elements X and Y of
B(S)letT=X-SandT'=Y —S. Then T and T” are spanning trees
of G — S. Hence there is a path T = T\T>...T, =T’ in T}(G — S). For
all ¢ with 1 < i < p, let 7; denote the set of all spanning trees induced by
E(T:)U{exi,,..., e, } With eji; € (v5,5). Clearly T; induces a subgraph of
T(G) which is isomorphic to K, x K,, X...x K,,, hence a (Ef=1(s.- - 1))-
connected graph and thus a p(t)-connected graph. Since at most one of the
edges incident with v; is incident with the leaf that makes T; and T;4,
adjacent, there are at least IT{_,(s; — 1) independent edges between 7; and
Tit1in Ti(G). Sincet <k—-2<6-2, wehave s; > 6—t+12> 3, so
that ITf_ (s; = 1) > 35 (s: — 1) > p(t) Hence there are at least p(t)
independent edges between 7; and T3, (1 < i < p—1). For a triple
T, Ti41, Tiv2 (1 <1 < p—2), let A and B be subsets of the graph induced
by 741 determined by p(t) edges between 7; and T;;, and T;4; and T;;o,
respectively, and let C = AN B. Then, by Lemma 4, there are at least
|A\C| internally-disjoint paths from A\C to B\C which do not contain
vertices of C. Using this at each stage we can find p(t) internally-disjoint
paths between X and Y. a

Lemma 6. Letz; e Randz; >2 (1=1,2,...,7+t with1 <r <t and

r,t € N). Then
r+t

Otz > ) i+ 2rt — (r+t).
i=1
Proof: Consider the function

r+t
f(zl’ e )zl'+t) = H::l‘z‘ - in - 2rt+ (T+ t).
i=1

Since 3-1 =, a:, —-1(1 €£1i < r+t), it clearly suffices to show

f2,...,2) = gret’ 2rt— (r+t) = g(r,t) > 0. Straightforward calculations
show g(l,l) =0, 9(2,2) =4 and g(1,t) = 2t+1 -3t -1 =3(2*"! —¢) +
2¢-1_1>0ift>2 Fort>r>2 weget

Og

5 = 2t+1(27"1in2) — 2t —1 > 2¥1 —2¢t -1 > 0,
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and similarly %% > 0. This completes the proof. a

Lemma 7. Let G be a k-connected graph (k > 3), and let S = S' U §”,
where S’ = {uy,...,u,} C V(G), $” = {vy,...,u} C V(G) such that
S'NS" = 0. Moreover, let

s} = J(u;, S")|and 8; = |(u;,5)| (i=1,...,r),and
85 = I(v;,87)| (j=1,...,t) and 8p = |(Up—r,5)| (P=7T+1,...,7 +1¢).

If1<r<t<|}(k-1)], then

oIt 0> 3+ Zs" = (r+2) 2 p(r) + p(t).
=1 j=1

Proof: It is easy to see that

rit

23 -l-Zs" < Zs.—i— Z 8p + 2rt, hence
p=r+1
r+t
Zsﬁ+Zs}'-(r+t)sti+ E sp+2rt — (r + ). *)
=1 j=1 i=1 p=r+1

Since i 26— (r+¢)+12k-24+12>k-2|3(k—-1)]+1 > 2 and
similarly s, > 2, by Lemma 6,

r r+it
M_ysdlpti sp 2 ) si+ Y sp+2rt—(r+1). (**)
i=1 =r+1
From (*), (**) and the definition of p we get the result. a
Ifv,u;,u2, ..., uy are distinct vertices in a graph G, then a fan between v

and {uy,uz,...,un}, denoted by v—{u1,us,...,u,}, is a set of n paths hav-
ing only v in common and connecting v to each vertex of {uy,u2,...,un}.

Lemma 8. Let G be a k-connected graph (k > 3), and let T be a spanning
tree of G, and {vy,...,v:} C V(G) with t < min{\(G), | 3(k — 1)]}. Then
there is a fan T — {T1, T3, ...,Tp)} in Ti(G) such that each T; contains
v1,...,v asleaves (i=1,2,..., p(t)).

Proof: If vy, ..., v, are leaves of T, then the result follows from Lemma 5.
Since t < A(G), T has at least ¢ leaves. Without loss of generality, assume
v1,...,Yr are not leaves of T with 1 < r < ¢, and uy,...,ur, Vp41,...,%
are t leaves of T. Since r <t lmphes r+t<2t < 2|_§(k— 1) <k- 1 by
Lemma 3, Ti(G) has at least IT;*}s; spanning trees containing uy,...,ur,
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vy,...,v; as leaves, where s; = |(ui, (BT, .m0, o)l (= 1,...,7)
and s, = |(vp—r, (@1, - T 01, )| (P=7+1,...,7+t). By Lemma
7, Mi1si > p(r) + p(t) > p(t), so Ti(G) has at least p(t) spanning trees
T1,...,Tp) containing ui,...,ur, ¥1,...,?; as leaves. T and T; have ¢
common leaves ui,...,%r, Vr41,...,% ad T # T; (2 = 1,..., p(t)), since
at least one of vy, ..., v, is a leaf of T; but not of T. By Lemma 5, there is
afanT—{Tl,...,Tp(,)}. O

Proof of Theorem 2: Consider arbitrary spanning trees X and Y of G.
We want to show there are at least p(t) internally-disjoint paths in T;(G)
connecting X and Y.

If JA(X)NA(Y)| > ¢, this follows from Lemma 5. Assume |[A(X)NA(Y)| <
t. Since t < A(G), both X and Y have at least ¢ leaves. Let v;,...,v; be
leaves of Y and suppose v, . ..,v, are leaves of X while vg41,...,v; are not
leaves of X for some ¢ < ¢t. By Lemma 8 there is a fan X — {Y,...,Y,(»}
such that Y; contains vy,...,v, as leaves (i = 1,...,p(t)). By Lemma 5,
for every Y; there are p(t) internally-disjoint paths from ¥; to Y. It is not
difficult to see that this implies there are p(t) internally-disjoint paths from
XtVY. : (]

The following result is an immediate consequence of Theorem 2.

Corollary 7. Let G be a k-connected graph (k > 3) and suppose, for some
ny,n2 € N with ny < ng, there are spanning trees T, and T, of G with n,
and no leaves, respectively. Then, for any n € N with n; < n < ng, there
are at least p(t) spanning trees of G with n leaves.

If T} and T3 in Corollary 7 have common leaves vy,..., v, for some t <
k—2, then all p(t) spanning trees can be chosen to have vy, ..., v, as leaves.
This follows from Lemma 5.
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