Complete *m*-partite decompositions of complete multigraphs

Qing-Xue Huang
Department of Mathematics
Zhejiang University
Hangzhou, CHINA

Graham and Pollak [1] proved that n-1 is the minimum number of complete bipartite subgraphs into which the edges of K_n can be decomposed. Subsequently, simple proofs have been given by Tverberg [9], Lovász (see [7]) and Peck [7].

Let [i,j] denote the integer interval including i and j. Let K(n|t) denote the complete multigraph with vertex set [1,n], containing exactly t edges between every pair of distinct vertices (but containing no loops). For m disjoint nonempty subsets A_1, A_2, \ldots, A_m of [1,n], the graph $K(A_1, A_2, \ldots, A_m)$ is called a complete m-partite graph, or a CmPG for short, where the A_i 's are called its parts. Let f(n,t,m) be the minimum number of CmPG's into which the edges of K(n|t) can be decomposed if a decomposition exists, otherwise letting $f(n,t,m)=\infty$. If K(n|t) has a decomposition of CmPG's, we call it a complete m-partite decomposition of K(n|t), or a CmPD.

Pritikin [8] proved that $f(n, t, 2) \ge \max\{n-1, t\}$, and that if n = 2, 3, 5, f(n, 2, 2) = n; otherwise f(n, 2, 2) = n-1. In [3] and [4], we proved that $f(n, 1, m) \ge \lceil (n-1)/(m-1) \rceil$, and that when n is large enough, $f(n, 1, m) = \lceil (n-1)/(m-1) \rceil$. In [5], for f(n, t, 2) we gave some results. This note is an addendum to [5]. Here, using the methods of [5], for general t and $m \ge 3$ we obtain several results of f(n, t, m).

First, combining the proof of Theorem 1 of [3] with that of Theorem 1 of [8], we obtain the following

Theorem 1.
$$f(n,t,m) \ge \max\{\lceil (n-1)/(m-1)\rceil,t\}$$
.

Let D be an affine 2- (v, k, λ) design. Then D admits an inner and outer σ -resolution with c block classes (see p. 154 of [6]), with $\sigma = 1$ and inner constant $\rho = 0$. Let μ be its outer constant, and let m be the block number in each block class. Thus, $v = \mu m^2$, $k = \mu m$, $\lambda = (\mu m - 1)/(m - 1)$ and $c = (\mu m^2 - 1)/(m - 1)$ (see Theorem 5.8 of p. 164 of [6]). Therefore, D is a 2- $(\mu m^2, \mu m, (\mu m - 1)/(m - 1))$ design.

Using the method of Lemma 3.14 of [5], we may easily prove the following.

Lemma 2. If an affine 2- $(\mu m^2, \mu m, (\mu m - 1)/(m - 1))$ design exists, then $f(\mu m^2, \mu m, m) = (\mu m^2 - 1)/(m - 1) = [(\mu m^2 - 1)/(m - 1)]$.

We note that in the CmPD of $K(\mu m^2|\mu m)$ in the foregoing method, each part has μm vertices, implying the following.

Lemma 3. If an affine $2-(\mu m^2, \mu m, (\mu m-1)/(m-1))$ design exists, then $f(\mu m^2 - i, \mu m, m) = (\mu m^2 - 1)/(m-1)$ (= $\lceil (\mu m^2 - i - 1)/(m-1) \rceil$) for $i = 0, 1, \ldots, m-2$; and when $i = m-1, m, \ldots, \mu m-1$, $f(\mu m^2 - i, \mu m, m) \leq (\mu m^2 - 1)/(m-1)$.

Applying the method of Lemma 2.2 of [5], we have

Lemma 4. If $K(n_i|t)$ can be decomposed into p_i CmPG's for i = 1, 2, then $K(n_1 + n_2 - 1|t)$ can be decomposed into $p_1 + p_2$ such graphs; in particular, $K(2n_i - 1|t)$ has a CmPD of $2p_i$ CmPG's..

Applying Lemma 4 to Lemma 3, we may obtain the following two results:

Theorem 5. Suppose that there is an affine $2 - (\mu m^2, \mu m, (\mu m - 1)/(m - 1))$ design. Then for k = 1, 2, ..., and $i = 0, 1, ..., m - 2, f(k(\mu m^2 - 1) + 1 - i, \mu m, m) = k(\mu m^2 - 1)/(m - 1) (= [(k(\mu m^2 - 1) + 1 - i - 1)/(m - 1)]). <math>\square$

Theorem 6. Suppose that there is an affine $2-(\mu m^2, \mu m, (\mu m-1)/(m-1))$ design, and let $s = \lceil (\mu m^2 - 1)/(\mu m - 1) \rceil - 1$. If one of the following conditions holds:

(i)
$$k = 1, 2, ..., s$$
, and $i = m - 1, m, ..., k(\mu m - 1)$,

(ii)
$$k = s + 1, s + 2, ..., \text{ and } i = m - 1, m, ..., \mu m^2 - 2;$$

then
$$f(k(\mu m^2 - 1) + 1 - i, \mu m, m) \le k(\mu m^2 - 1)/(m - 1)$$
.

Note that when m is a prime power, an affine plane $2 \cdot (m^2, m, 1)$ (outer constant $\mu = 1$) and designs $\mathcal{A}_n(m)$ (= $\mathcal{A}_{n,n-1}(m)$) are all affine designs. Since $\mathcal{A}_n(m)$ is a $2 \cdot (m^n, m^{n-1}, (m^{n-1} - 1)/(m - 1))$ design ($\mu = m^{n-2}$), by Theorem 5 and Theorem 6, we have the following two results:

Theorem 7. If m is a prime power, then $f(k(m^n-1)+1-i, m^{n-1}, m) = k(m^n-1)/(m-1)$ (= $\lceil (k(m^n-1)+1-i-1)/(m-1) \rceil$), where $n=2,3,\ldots,k=1,2,\ldots$, and $i=0,1,\ldots,m-2$.

Theorem 8. Let m be a prime power, n = 2, 3, ..., and $s = \lceil (m^n - 1)/(m^{n-1} - 1) \rceil - 1$. If one of the following conditions holds:

(i)
$$k = 1, 2, ..., s$$
, and $i = m - 1, m, ..., k(m^{n-1} - 1)$,

(ii)
$$k = s + 1, s + 2, ..., \text{ and } i = m - 1, m, ..., m^n - 2;$$

then
$$f(k(m^n-1)+1-i,m^{n-1},m) \le k(m^n-1)/(m-1)$$
.

References

- [1] R.L. Graham and H.O. Pollak, On embedding graphs in squashed cubes, *Springer Lecture Notes* **303** (1973), 99-110.
- [2] E.D. Boyer and B.L. Shader, On biclique decompositions of complete *t*-partite graphs, to appear.
- [3] Q.X. Huang, On the decomposition of K_n into complete m-partite graphs, J. Graph Theory 15 (1991), 1-6.
- [4] Q.X. Huang, On the minimum number of edge-disjoint complete m-partite subgraphs into which K_n can be decomposed, J. Graph Theory 17 (1993), 727-754.
- [5] Q.X. Huang, On complete bipartite decomposition of complete multigraphs, Ars Combinatoria 38 (1994), 292–298.
- [6] D.R. Hughes and F.C. Piper, Design Theory, Cambridge Univ. Press, Lonoon/New York, 1985.
- [7] G.W. Peck, A new proof of a theorem of Graham and Pollak, *Discrete Math.* 49 (1984), 327-328.
- [8] D. Pritikin, Applying a proof of Tverberg to complete bipartite decompositions of digraphs and multigraphs, J. Graph Theory 10 (1986), 197-201.
- [9] H. Tverberg, On the decomposition of K_n into complete bipartite graphs, J. Graph Theory 6 (1982), 493-494.
- [10] K.N. Vander Meulen, Decompositions of complete multigraphs into complete s-partite subgraphs and related designs, to appear.