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ABSTRACT. For a positive integer k, a k-subdominating func-
tion of G = (V,E) is a function f: V — {-1,1} such that
the sum of the function values, taken over closed neighbor-
hoods of vertices, is at least one for at least k vertices of G.
The sum of the function values taken over all vertices is called
the aggregate of f and the minimum aggregate amongst all k-
subdominating functions of G is the k-subdomination number
7ks(G). In the special cases where k = |V| and k = [|V]|/2],
ks is respectively the signed domination number [4] and the
majority domination number [2]. In this paper we characterize
minimal k-subdominating functions. By determining vk, for
paths, we give a sharp, lower bound for ~x, for trees. We also
determine an upper bound for vk, for trees which is sharp for
k<|vi/2.

1 Introduction

For a graph G = (V,E) and vertex v € V, let N(v) = {u € V:uv €
E} and N[v] = {v} U N(v) denote the open and closed neighborhoods,
respectively, of v. For k € Z*, a k-subdominating function (kSF) of G is
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a function f: V — {~1,1} such that fv] = 3, f(1) 2 1 for at least
k vertices v of G. The aggregate ag(f) of such a function is defined by
ag(f) = T ,ev f(v) and the k-subdomination number 7ks(G) by 1xs(G) =
min{ag(f): f is a kSF of G}. In the special cases where k = |V| and
k = [|V|/2], 7xs is respectively the signed domination number v, [4] and
the majority domination number yna;j [2].

In this paper we characterize minimal k-subdominating functions and
give a sharp lower bound for the k-subdomination number of trees. Special
cases of these results solve the open problems 2 and 3 posed in [2]. A sharp
upper bound for the majority domination number was given by Alon [1].
This bound also gives an upper bound for v, if k < [|V|/2]. For trees
we improve this bound and extend it to an upper bound for 4, for all
ke{},...,n}, where n=|V|.

2 Minimal k-subdominating functions

Let f be a kSF of G. We say v € V is covered by f (or simply covered
if the function is clear from the context) if ffv] > 1 and denote the set
of vertices covered by f, by Cy. Let Py ={v € V: f(v) =1} and By =
{v € V: f[v] € {1,2}. Note that each v € By is covered. However, v is no
longer covered if a function value of 1 in N[v] is changed to —1. The kSF
f is minimal if no g < f is a kSF. For A, B C V, we say A dominates B,
denoted by A > B, if foreach b€ B, NpJNA#0. If A>V,then Aisa
dominating set of G.

Theorem 1. The kSF f is minimal if and only if for each k-subset K of
Cy, KNBy > Py,

Proof: Suppose f is a kSF satisfying the above condition but, contrary
to the result, g < f is a kSF with k-subset K’ C C, C Cy. Then there
exists v € V with g(v) < f(v), i.e., g(v) = —1 and f(v) = 1. By assumption
B;NK' = {v}, i.., there exists w € ByNK'NN[v]. Now, f[w] € {1,2} and
v € N[w), hence g[w] < 1, a contradiction which shows that f is minimal.
Conversely, suppose that f is a minimal kSF and there exists a k-subset
K C Cy with Byn K  {v}, where v € Py. Let h: V — {—1,1} be defined
by h(v) = -1 and h(w) = f(w) for w € V — {v}. If w € K N By, then
w ¢ N[v] so that v ¢ N[w] and hlw] = flw] > 1. Forw € K- By, f[w] > 3.
It is possible that v € N[w]; however, hfw] > flw] -2 > 1. Thus his a
kSF, contrary to the minimality of f. O
We digress to remark that Theorem 1 may be embedded in a far more
general setting by a simple transformation. Let h: V — {0, 1} satisfy

hlv] > [1+|N[]})/2] foreachveV.
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Then f defined by

_)-1 ifh(u)=0
f(")"{l if h(u) = 1

is a signed domination function (i.e., a kSF with k = |V|). The function-
h as defined here is a special case of an 7-function (see [3]). Many results
concerning signed domination and kSFs (including Theorem 1) may be
generalized into the n-function framework. The details will be presented
elsewhere.

3 Lower bound for the k-subdomination number of trees

Let v be the minimum value of 7, taken over all n-vertex trees (n > k)
and G be the set of such trees T with 4x,(T") = 4. Further, let o(T) be
the degree sum of all vertices of T with degree at least three and define
T ={T € G: o(T) is minimum }. An endvertex of T is also called a leaf of
T. Let P, denote the path on n vertices.

Proposition 2. For any n, T = {P,}.

Proof: Suppose, to the contrary, that T' € T has vertex v with deg(v) > 3
and set of neighbors N (T, v). Let f be a kSF of T with ag(f) = v. Consider
T to be rooted at v and for u € N(T\,v), let T'(u) denote the subtree of T
induced by u and its descendants.

For any {z,y} C N(T,v) we show the existence of a tree T/ = T'{z, y}
such that (i) V(T") = V(T), (ii) N(T",v) = N(T,v), (iii) f is a kSF of T,
(iv) T'(2) = T(2) for each z € N(T,v) — {z,y} and (v) f(£) =1 for some
leaf € of T'(z).

The tree T itself satisfies conditions (i) - (iv). If it does not satisfy (v)
for some {z,y} C N(T,v), then f takes value —1 for every leaf of T(z)
and T(y) (since the roles of z and y can be interchanged). (Note that if
u is a leaf with f(u) = —1, then u ¢ Cj.) In this case, set Tp = T and
form a sequence of trees To, Tt,...,T; = T" recursively as follows. Choose
leaves zg of To(y) and z; of To(x). Form T} from Tp by deleting the edge
ziw; and adding a new edge xox;. Observe that a(T}) < a(Tp) and (since
the same vertices are covered) f is a kSF of T,. The minimality of a(Tp)
implies that a(T}) = a(Ty). Hence z; # z, T) € T and satisfies (i) - (iv).

This process is now continued if necessary until a tree T; = T” is formed
with f = 1 on some leaf of Tj(x). Specifically, at the ith stage, select a leaf
z; of T;_1 (z) and form T; from T;_; by removing the edge z;w; and adding
a new edge z;_1z;. At each stage a(T;) < a(T;-1), f is a kSF for T; and
the minimality of a(Tp) implies a(T;) = a(Ty). Hence z; # z,each T; € T
and satisfies (i) - (iv). Finiteness ensures that the process terminates and
hence (v) is also satisfied, say, for T; = T".
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Suppose there exists 4 € N(T,v) with f(u) = —1. Choose {z,y} C
N(T,v) — {u} and form T’ = T'{z,y} as above. Now construct T* from
T’ by deleting uv and adding the new edge ul. It is easily verified that
T* € G with a(T*) < a(T") = ofT), contradicting the minimality of o(T).
If f(u) =1 for all u € N(T,v), then f[v] > 2. Select any « € N(T,v) and
form T* as above. Again T* € Gand the same contradiction is obtained. O

Let F = {f: f is a kSF of P, with ag(f) =~}.

Proposition 3. Let the vertex sequence of P, be 1,2,...,n. There exists
f* € F such that {1,2,...,k} C Cye.

Proof: Let s = min{i: i € Py}, t = max{i: i € Py} and choose f € F
such that w(f) = ¢ — s is minimum. Suppose that the vertices in Cy
are not consecutive on P,. Then there exists i satisfying i =1 € Cj,
i ¢ C; and ¢ € Cy for some € > i. Now, for any u € V(P,), u € Cf
it at least two vertices in {u — 1,u,u + 1} are in P;. This implies that
fE+1) = -1, Let j = min{€: € > i+ 1 and f(¢) = 1}. - Define
£ 1V = (1,1} by (f/(1), £(2), ..., f'(n)) = (F (1), ..., F(E), S(), ST +
1),...,f(t),-1,...,—1). Then f’ is a kSF of P, with ag(f') = eg(f) =7
and w(f’) < w(f), contrary to the minimality of w(f). Hence the ver-
tices in C; are consecutive on P,. If 1 € Cy, then f* = f satisfies the
requirements. Now suppose that ¢ > 1 is the first vertex of P,, covered by
f.

If f(c—1) = —1, define f*: V — {-1,1} by

(£ ), £ .., 1)) = (f(0), fle+ D)., f(2), =150, —1).
If f(c—1) = 1 (this implies f(c) = -1 and f(c+ 1) = 1), then define
Vo {-1,1} by
(), £ 2),.... £/ ()=, flc+1), f(c+2),..., f(t), -1,...,-1).

In each case f* is a kSF with ag(f*) = ag(f) =~ and {1,2,...,n} C Cye
as required. a

Theorem 4. Forn>2and1<k <n,
vko(Pa) = 2|(2k +4)/3] — n.

Proof: For k = n the result is proved in [4], hence we may assume k <
n. By Proposition 3, we require a kSF f with minimum size Py covering
{1,...,k}. Observe that f has value 1 on at least two of any consecutive
triple of vertices in {1,...,k+ 1} and that f(1) = f(2) = 1. Let o be the
infinite sequence 1,1,—1,1,1,-1,.... Let (f(1), f(2),..., f(n)) be the first
k+1 terms of o followed by (n —k — 1) — 1’s . Then f is a kSF of P, with
minimum aggregate and |Py| = | (2k +4)/3]. The result now follows. O
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Note that Theorem 4 generalizes the corresponding results of [2] and [4].
Corollary 5. For any n-vertex tree T and k < n, where n > 2,

Yes(T) 2 2|(2k +4)/3] —n
with equality for T = P,. O

4 Upper bounds for the k-subdomination number of trees

Alon [1] showed that if G is a connected graph, then ¥;,,;(G) < 2. We
record this short and elegant proof here.

Theorem 6 [1). For any connected n-vertex graph G,

1 ifnisodd
2 ifn is even.

Ymaji(G) < {

Proof: Suppose firstly that n is odd; say n = 2k+1. Amongst all partitions
{A’, B’} of V(G) with |A’| = k+1 and |B’| = k, let {A, B} be one such
that the number of edges joining vertices in A to vertices in B is minimum.
Then each vertex v € A is adjacent to at least as many vertices in A as
to vertices in B, for otherwise {B U {v}, A — {v}} contradicts the choice of
{A, B}. Define f: V(G) — {-1,1} by

1 ifue A
Sy = {-1 ifue B.

Clearly, f is a majority dominating function and it follows that ymas(G) <
k+1-k=1.

Now suppose n is even, let v € V(G) be arbitrary and define the partition
{A, B} of G —v as above. Clearly, the function g: V(G) — {~1,1} defined

by
1 ifuceAu{v}
9u) = { 1 ifueB
is a majority dominating function and ymej(G) <k+2-k=2. a

Obviously, if f is a majority dominating function, then f is a k-subdominating
function for each k < [|V|/2]. Hence we have

Corollary 7. For any connected n-vertex graph G and integer k < [1n],

1 ifnis odd
2 ifn is even.

Tes(G) < {
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That this bound is sharp can be seen by noting that vx,(K2p+1) =1 and
Yis(K2p) = 2 for each k < p+1. For trees we now improve this bound and
extend it to an upper bound for v, for all k € {1,...,n}. We need the
following definitions.

A vertex z of a tree T is said to be remote if z is adjacent to a leaf of
T. A remote vertex z is very remote if z is adjacent to at most one vertex
of T that is not a leaf. Note that each tree T has at least one very remote
vertex: Let r(T') denote the radius and C(T') the center of T. Let 2 € C(T")
and consider any leaf y at distance r(T') from 2. Say N(y) = {z}. Then =
is a very remote vertex of T. A tree T” is a full subtreeof Tif T' =T or T
is a component of T' — e for some edge e of T. In the latter case, if e = uv
where u € V(T'), we say that TV is attached at u. If TV = Ky, is a full
subtree of T', then T” is called a full substar of T. Note that if T is a full
subtree attached at a very remote vertex z of T, then T” is a full substar
of T with center z.

Let L denote the set of leaves of T'. For each v € V, define L(v) = N(v)NL
and (v) = |L(v)|. If confusion is possible, we also write L(T), Lr(v) and
£r(v) to emphasize that T is the tree under consideration, and if T = S;
(say), we write &(v) for ér(v).

Theorem 8. For any n-vertex tree T and integer k € {1,...,n}, Yks <
2(k+1) —n.

Proof: The result clearly holds if T = Kb or if k = 1; thus we assume
that £ > 2 and n > 3. Set So = T and 39 = k. We construct a sequence
Ti,...,T, of disjoint subtrees of T as follows: If Sp contains a full substar
G, with center v, such that sy < &y(v;), let T} be the subtree of Sy induced
by v; and any sp leaves of Gy, and set 8y = —1. Otherwise, let T} be
a (nontrivial) full subtree of Sp of order k; < so attached at vy (if T} #
So) and define 8; = sp — ky. Continuing in this way, if s; > 0, define
Si = Si~1 — T;. If S; contains a full substar G;;; with center v;;;, where
8; < 4(vi41), let T4y be the subtree of S; induced by v;;, and any s; leaves
of Gi+1, and set 8¢1; = —1. Otherwise, let 75,1 be a full subtree of S; of
order ki) < s; attached at viyy (if Ti1 # Si) and set 8341 = 8y — ki1,
We thus obtain a finite sequence of disjoint subtrees T},...,T,. of T and a
sequence of integers sg > 8y > -+ - > 8., Where s, € {0, -1}.

Let F be the (possibly disconnected) subgraph of T' induced by U_, V' (T3).
Note that |V(F)| = k+ 1 if s, = —1 and |V(F)| = k otherwise. Define
f:V(T) = {-1,1} by

f@) = {1 if z € V(F)

—1 otherwise.

Note that for each i = 1,...,r, v; is the only vertex of T; that is possibly
adjacent to a vertex of S, = T — F, and since T; is full (except possibly T
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if 8, = —1), v; (except possibly v,) is adjacent to at most one vertex of S,.
Moreover, if v; (§ =1,...,r) is adjacent to a vertex of S,, then v; is not a
leaf of T' (since T; is nontrivial). Hence f covers each vertex of F except
possibly v, if s, = —1. In either case, f covers at least k vertices of T' and
ag(f) <2(k+1)-n. (]

That this bound is exact for n-vertex trees when k < in follows easily
since ks (K1,n-1) = 2(k + 1) — n if k < in. However, we have not been
able to find a tree (or any other connected graph) of order n for which
Yes =2(k+1)—nifk > %n. Hence we formulate the following conjectures.

Conjecture 1: For any n-vertex tree and any k with §n < k < n, Y, <
2k —n.

Conjecture 2: For any connected graph of order n and any k with -;-n <
k<n, v <2k—n.

If either of these conjectures is false, there still remains the problem of
determining the smallest integer p = p(n) such that ¢, < 2k —n for all
graphs (trees) of order n and all k > p.

In the rest of this section we determine conditions on k'such that yi, <
2k — n for certain classes of n-vertex trees. For a rooted tree T and any
vertex u of T, let T(u) denote the subtree of T induced by u and its de-
scendants. (Then T'(u) is a full subtree of T' attached at u. However, not
all full subtrees of T are of the form T'(u) for some vertex u, with respect
to a fixed root of T.)

Theorem 9. Let T be an n-vertex tree rooted at v, where deg(v) = s and
é(v) =t; say N(v) = {wy,...,w,u1,...,us—¢} where L(v) = {wy,...,w}
and |V(T(u1))| € -+ < [V(T(us—e))l. Ifr = [3(s+2)] < s—¢ and
n > k2 V@) + -+ [V(T(ur)l, then i < 2k — n.

Proof: Let ¢ > r be the largest integer such that k > |V(T(u1))| +--- +
[V(T(u))| = m and let F' be the subforest of T of order m with F’ =
T(u)U---UT(w). Let K =k—m—1. Ifi =s—t and k' > 0, let F be
the substar of T induced by {v,wy,...,wx}. fi<s—tand k¥’ >0, let F
be the subforest of T(u;41) of order &’ + 1 or k’ constructed as described
in the proof of Theorem 8. Define F* by

[P iF<o
“FUF itk >0

and f: V(T) — {-1,1} by

fla) = {1 if z € V(F*)

—1 otherwise.
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It follows from the proof of Theorem 8 and the fact that per definition of
uj, T(u;) # K1 (j =1,...,8 —t), that V(F*) — {z} C Cy, where z is the
vertex of F corresponding to the vertex v, in the proof of Theorem 8, in the
case where i < s—t and |V(F)| =k’ +1. Also, {u,...,u,} C Py and thus
) 2r—(s—7r)—-1=2[8/2] +2 - 8—1 > 1. Therefore v € Cy so that
ICrl =2 1+ m+ k' = k. Hence f is a kSF with ag(f) <2(m+k +1)—n=
2k — n and the result follows. - a

For any vertex v of T', define n(v) by

di2 if deg(v) = 2d + 1 for some integer d > 1
n(v) = { 255"
ﬂ‘i_fala)- if deg(v) = 2d for some integer d > 1.

Corollary 10. If T is an n-vertex tree such that n(v) < 1 and n(v)(n —
£(v) — 1) < k < n for some vertex v of T, then v, < 2k —n.

Proof: We use the notation of Theorem 9. If n(v) <1, thenr < s—t and
if k > n(v) (n — ¢t — 1), then k > [V(T'(u1))| + -+ - + |V(T(ur))| so that the
result follows from Theorem 9. a

Obviously, the bound on k given by Theorem 9 can be smaller than -%n.
However, if the subtrees T'(y;), : = 1, ..., s—t, are of comparable size, then
this bound may exceed [4n], even if £(v) = 0. Consider, for example, the
(6d + 1)-vertex tree T which has a central vertex v of degree 2d such that
each neighbor of v is adjacent to two leaves and to no other vertices. By
Theorem 9 (or, equivalently in this case, Corollary 10), vk, (T) < 2k — n if
k > 3d+ 3. However, [3n] =3d+1 < 3d+ 3. Note that 3d +1 is also not
the smallest value of p such that y;,(T") < 2k —n for all k& > p, for it can
easily be shown that 44,(T") < 2k —n for all k > 2d + 1.

In general, if more is known about the structure of T, the techniques used
in the proof of Theorem 9 can be refined to find smaller lower bounds p
for k as described above. We illustrate this by considering full m-ary trees.
A full m-ary tree of height h is a rooted tree such that each vertex which
is not a leaf has exactly m children, and all leaves are at distance h from
the root. For each i =0,..., A, the ith level of a rooted tree consists of all
vertices at distance i from the root.

We need the following result from number theory:

Lemma 11. For any integer £ > 1, each integer k > 20+ 4 can be written
as

k=a1(€+2)+a(€+3)+ -+ ary1(2¢ + 2), (A)
where each o; (i=1,...,€+ 1) is a non-negative integer.

Proof (by induction on £): If £ = 1, we must show that each integer
k > 6 can be written as k = 3a + 42 for some non-negative integers a;
and a3. This is an easy exercise, using induction on k.
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Suppose the lemma holds for some fixed integer £ > 1. Using induction
on k we now prove that each integer k > 2¢ + 6 can be written as

k=01(€+3) + az(€+4) + - - + cer2(2¢ + 4), (B)

where a3, a2,..., a2 are non-negative integers.

(B) obviously holds for k = 2¢ + 6, so assume it holds for some fixed
k>20+46. If a; #0 for each i € {1,2,...,¢+ 1}, then

k+1=a;(€+3)+ax(f+4)+---+aet2(20+4)+1
=a(€+3)+az(t+4)+ -+ (- 1)(+i+2)
+ (i1 + 1)+ +3) + - - + aey2(20 + 4).

If oy =0foreachie€ {1,2,...,£+ 1}, then azrp > 2since k > 2(+46. In
this case,

k+1=(0gp2 —2)(26+4)+4¢+8+1
= (ags2 — 2)(2€ + 4) + 2(€+ 3) + (2 + 3).

Hence (B) holds for k + 1 and hence, by the induction principle, for all
k > 2¢ 4 6. The lemma now follows, also by the induction principle. a

Theorem 12. For any full m-ary tree with n vertices, vy < 2k —n
whenever 2[3(m +3)] <k <n.

Proof: Let T = (V, E) be a full m-ary tree of, say, height h (> 1) and
consider any k > 2[4(m + 3)]. Note that T has m® vertices at level §; in
particular, T has m” leaves and m"»~—! remote vertices. Let V; denote the set
of vertices of T at level i, i =0, ..., h. For any function f: V — {-1,1} and
any integer i € {1,...,h}, if UV;_; C Py, then V;_; C Cy. Hence if k >
mh 4+ mP-1, let 5 > 1 be the largest integer such that k > m? + ... 4+ mh—J
and let W be any subset of Vj_(;11) of cardinality k — (m? + - .. + mh=7).
Define f: V — {-1,1} by
_J1 MfzeVUu---UV_;UW
f(=)= {—l otherwise.

Since j > 1, Vj, C Cy and by the above, V; C Cy for each i € {h;,...,h—1}.
Moreover, for each w € W, |N[w]N Py| =m+1 and |N[w] - Py| < 1; hence
flw] 2 m > 1. Thus W C Cy so that [Cy| > k. It follows that f is a kSF
with ag(f) <2k —n.

Now suppose 2[3(m +3)] Sk <mP +m*P-1. Ifm =1, then T is a
path and the result follows from Theorem 4. If m > 2, then m = 2¢ or
m = 2¢ + 1 for some integer £ > 1 so that by Lemma 11, k can be written
as described in (A).

\
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Case 1. m=2¢+1.

Then 2¢ + 2 = m + 1. Of all possible partitions of k of the form (A),
choose one in which @ = a; + az + --- + a4 is minimum. We show
that & < m»~!: Suppose a > mP~!. We may assume that amongst all
partitions of k of the above type we have chosen one for which agy; is
maximum. Since k < mP~! (m + 1) and 2+ 2 = m + 1, it follows that
apyy < mh=1 —1 and thus 8 = a — agy; = 2. 1B = 2, then agyy =
mP1_1and k > 2(€+2) + (m*! = 1)(20+2) > m+ 1+ (mh~! —
1)(m + 1) = m*(m + 1), a contradiction. Hence, 8 > 3 and we may
write B4 (8 +i+1) = T4, Bi(€+ i+ 1) +r, where £f_, 5 = — 3 and
3(6+2) <r<3(20+1). Ifr <46+ 4, thenr = (204 2) + (¢ +1¢) for
some t € {4,...,£+2}, so that k = Tftlal(¢+i+1) with Zitlal = a -1,
contradicting the minimality of . If + > 4€+6, then k = S5 1/ (4i+1)
with B/t1a! = a and off,; > ag41, contradicting the maximality of azy1.
Thus r = 4+ 5. If 8 = 3, then mP! —2 < apy; < mP! -1 and
k > 46454 (mP—1-2)(2042) > 2(m+1)+(m* 1 =2)(m+1) = mh~}(m+1),
a contradiction. Thus 8 > 4 and T¢_,a;(¢+i+1) = L, Bi(€+i+1)+r+7,
where £¥_,8! = f—4 and £+2 < v’ < 20+1. Then 5¢+7 < r+r' < 6€+6
and as before there exists a partition of k which contradicts the maximality

of ags1. Therefore a < mh~2,

For i € {1,2,...,€ 4+ 1}, choose pairwise disjoint sets W; as follows.
Let W; C V4 U V1 consist of a; vertices of Vi—; together with € 4 ¢
leaves adjacent to each of these vertices and let W = Uf*1W;. Note that
|Wi] = ai(€+i +1) so that |W| = k. Define f: V — {-1,1} by

f() = {1 frew

-1 otherwise.

If z € WV, then flz] =2. If z € WNVj_y, then |[N[z]N Pf| 2> €+ 2
and |[N[z] - Py| Sm+2—£€-2=2¢+1. Hence f[z] > £+2—(£+1)=1.
Thus W C C so that f is a kSF with ag(f) = 2k —n.

Case 2. m = 2¢.

Then 2¢ + 2 = m + 2. Consider any partition of k of the form (A) in
which a4 is minimum. Then a,; < 2, for otherwise k can also be written
as k = k — 3(2€+ 2) + 2(¢£ + 2) + 2(2¢ + 1), a contradiction. Moreover, if
£ > 2, then az4y < 1, for otherwise k = k — 2(2¢ + 2) + 2(€ + 2) + 2¢.
Finally, if £ > 8 and a4 = 1, then a; # 0 for some i € {1,2,..., €} since
k>20+4. If i <€ then we may write kask =k — (20+2) — (¢+i+
1) + (2€+ 1) + (€ + i + 2), contradicting the choice of azy;. If § = ¢, then
k=k—(20+2)—(2¢+1)+2(¢+2)+(2¢—1), again a contradiction. Hence
a1 =0if € > 3.

Amongst all partitions of k of the form (A) in which agy) is minimum,
choose one such that a) +az+---+agty is minimum. By further assuming
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that this partition has been chosen such that a, is maximum, it follows, as
inCase 1, that a; +as +--- ‘a1 < mh-1, If g4y = 0, define W and f
as in Case 1. Then f is a kSF with ag(f) = 2k —n.

Suppose az;1 # 0. Note that ay; + <+ ap < mh-1 — (a¢+1 +1). If
Qg1 = 2, then £ = 1 and k > 6. Since also k < 2% 4251, it follows
that A > 3. Let £ € V,._o with y; and y2 the children of z. Choose
¥3 € Vi1 — {1, 2} and let the children of y; be z;; and 2, i € {1,2,3}.
Let Wao = {z,y1,¥2,¥s, 211, 221, 231, 252}. Then [We| = 8 = 2(2¢ + 2).
Choose W, disjoint from W; asin Case 1 and let W = Wy UW,, If f is
defined as in Case 1, then it is easy to check that W C Cj.

Ifagy =1, then o; # 0 forsome s < €+ 1. For & =1, let Wy =
{z, y1, 2, 211, 212, 221, 222} and let W}, disjoint from Wa, consist of ay — 1
vertices of V—; together with their adjacent leaves. For £ = 2, note that
a; = 0, for otherwise k = k — 4 — 6 + 2(5), contradicting the choice of
a3. Also, h > 2. Let u € V_2 have children vy,...,v4 and let v (i €
{1, ceeoy 4}) have children Wily ooy Wiq. Let Ws = {u, 0, Vg, V3, W11, Wi2, W3,
way, wo2, w31, w3z} and let Wa, disjoint from W3, consist of ap —1 vertices of
Vh-1 together with their children. In either case, if W and f are defined as
before, it is straightforward to verify that f is a kSF with ag(f) = 2k—-n.0

Note that the lower bound for ¥ given in Theorem 12 depends only on
m and not on the order of the tree.
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