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ABSTRACT. A pseudosurface is obtained from a collection of
closed surfaces by identifying some points. It is shown that a
pseudosurface S is minor-closed if and only if S consists of a
pseudosurface S°, having at most one singular point, and some
spheres glued to S° in a tree structure.

1 Introduction

By a pseudosurface we understand a connected topological space resulting
when finitely many identifications, of finitely many points each, are made
on a finite collection of closed surfaces (=compact 2-manifolds). Any point
obtained by such an identification of at least two distinct points is called a
singular point. Let G be a graph and S a surface or a pseudosurface. We say
that G is embeddable in S if there is a continuous mapping ¢ : G — S which
maps G homeomorphically onto its image ¢(G). An embedding ¢: G — S
is called a 2-cell (or cellular) embedding if each component of S — ¢(G),
called a face, is homeomorphic to an open 2-cell.

Embeddability in a closed surface can be characterized by a finite set
of forbidden subgraphs; constructive proofs of this theorem were given by
Kuratowski for the sphere [4], Bodendiek and Wagner for orientable surfaces
[3], and by Archdeacon and Huneke for nonorientable surfaces [1]. It is
natural to ask whether the same is true for pseudosurfaces. The answer is
negative in general, as shown by Siréfi and Gvozdjak in [7] for 2-banana
surface, i.e. the 2-amalgamation of two spheres. However, the 2-banana
surface is not minor-closed, see [2]. We remark that a surface S is minor-
closed if and only if the set of graphs embeddable in S is minor closed (i.e.
closed under a deletion of an edge or a vertex, and under contraction of an
edge).
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As shown by Robertson and Seymour in [6], any minor-closed class of
graphs can be characterized by a finite set of forbidden subgraphs. Thus, it
seems to be reasonable to characterize minor-closed pseudosurfaces; by [6]
the embeddability in such pseudosurfaces can be characterized by a finite
set of forbidden subgraphs.

Let S be a pseudosurface. If S contains as a topological subspace a sphere
S; having exactly one singular point, then S is called spherically-reducible.
Otherwise, S is called spherically-irreducible. Clearly, from each pseudosur-
face S we obtain a spherically-irreducible pseudosurface S° by successively
deleting the spheres that are "glued” to the rest of the pseudosurface in
exactly one singular point. Moreover, S° is determined uniquely by S. The
main result of this paper is the following theorem:

Theorem 1. Let S be a pseudosurface. Let S° be the spherically-
irreducible pseudosurface that arises from S by successively deleting the
spheres containing exactly one singular point. Then S is minor-closed if
and only if S° contains at most one singular point.

2 Preliminaries
Let G be a graph. As usual, V(G) denotes the vertex set of G and E(G)
the edge set of G. The degree of a vertex u in G is denoted by degg(u).
By G/uv we denote a graph that arises from G by contracting the edge
uwv € E(G). A cycle on n vertices is denoted by C, and a path on n
vertices is denoted by P,.

Let S be a closed surface and let G be a graph cellularly embedded in S
with F faces. Then the number

x(8) = V(&) - |E@@)| + F

depends only on S (and not on G) and is known as the Euler characteristic
of S. The non-negative quantity e(S) = 2 — x(S) is called the Euler genus
of S. If S is orientable, then S has a positive orientability characteristic.
Otherwise, S has a negative orientability characteristicc We remark that S
is determined uniquely by €(S) and the orientability characteristic.

Definitions and notations ot included here can be found in White [8].

In what follows we introduce concepts of uniqueness and faithfulness due
to [5].

Two embeddings 1,2 : G — S are said to be eguivalent if there is
an automorphism o : G — G and a self-homeomorphism h : S — S with
h o, = py00. When there is just one equivalence class of embeddings of
G in S, G is said to be uniguely embeddable in S.

Faithfulness is defined as follows. Let ¢ : G — S be an embedding of G
in S. Then ¢ is said to be faithful if for any automorphism ¢ : G — G,
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there is a self-homeomorphism h : S — S such that ko = poo. In
other words, ¢ is faithful when all automorphisms of ¢(G) extend to self-
homeomorphisms of S. A graph G is said to be faithfully embeddable in S
if G has a faithful embedding in S.

Thus, G is uniquely and faithfully embeddable in S if G has a unique
embedding in S and this embedding is faithful.

For an arbitrary closed surface S there exists a graph uniquely and faith-
fully embeddable in S by the following lemma (5, Proposition 1.4.7):

Lemma 1. Every closed surface admits an infinite number of triangulations
that are uniquely and faithfully embeddable in it.

Let G be uniquely and faithfully embeddable in S. Then G is uniquely
embeddable in S as a labeled graph. Consider a faithful embedding of G
in S. Then no automorphism of G can map a vertex » of G again to u and
rearrange the neighbors of u. This local property of faithful embedding will
often be tacitly used.

Let G be uniquely and faithfully embeddable in S, and let H be a subdi-
vision of G. Then obviously, H is again uniquely and faithfully embeddable
in S. Moreover, we have the following lemma [5, Corollary 1.5.7):

Lemma 2. Let G have a unique and faithful triangular embedding in a
closed surface S. If a 3-connected graph H is embeddable in S and contains
a subgraph contractible to G, then H is uniquely and faithfully embeddable
in S.

In the proof of Theorem 1 we use the following lemma:

Lemma 3. Every closed surface S admits infinitely many triangulations
that are uniquely and faithfully embeddable in S, and that cannot be em-
bedded in S’ with e(S’) = €(S) and the opposite orientability characteristic.

Proof: Let G be uniquely and faithfully triangularly embeddable in S. In
what follows we construct the barycentric subdivision G2 of G and show
that G satisfies the conditions in Lemma 3. First subdivide all edges of
G by one vertex and denote the resulting graph by G;. Clearly, G; has a
2-cell embedding, say 1, in S. Now insert one new vertex into each face
f of ¢4, join it to all vertices lying on the boundary of f, and denote the
resulting graph by Gs.

Since G triangulates S and contains no loops, there are no multiple edges
in G3. Since G9 is 3-connected and contains a subgraph contractible to G,
G is uniquely and faithfully embeddable in S, by Lemma 2. Moreover, the
unique embedding of G in S is a triangulation of S.

Now assume that G is embedded in S’ with €(8") = €(S). Then G;
necessarily triangulates S’. TClearly, each 3-cycle in G2 contains exactly
one vertex from V(G), one vertex from V(G1)~V(G), and one vertex from
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V(G2)-V(G1). Moreover, each edge of G lies in exactly two 3-cycles.
Thus, the surface admitting a triangular embedding of Gy is determined
uniquely, and hence S = §’.

By Lemma 1 there are infinitely many triangulations of S satisfying
Lemma 3. a

As a matter of fact, the graphs satisfying Lemma 1 were constructed
from triangulations by means of barycentric subdivision, see [5]. Hence,
they also satisfy Lemma 3.

3 Proof of the main result
This section is completely devoted to the proof of Theorem 1.

Proof: Let S be a pseudosurface, and let S° be the spherically-irreduci-
ble pseudosurface that arises from S by successively deleting the spheres
containing exactly one singular point. Suppose that S° contains at most
one singular point.

Clearly, each pseudosurface is closed under deletion of an edge or a vertex.
Thus, it is sufficient to prove that S is closed under edge contraction.

Let G be a graph embeddable in S, and let ¢ be an embedding of G in
S. Then the subgraph of G embedded in S — S° in ¢ is planar. Thus, G is
embeddable in S°. Clearly, S° is closed under edge contraction, and hence,
S is minor-closed.

We now turn to the more difficult part of Theorem 1. The outline of the
proof is as follows. Suppose that S is a pseudosurface closed under edge
contraction. We construct a graph G embeddable in S with two specified
vertices z; and 2, that are joined by an edge. Then we derive properties
(9) - (iv) of any embedding ¢° of G/2122 in S. Finally, considering various
positions of 21 and 22 in G on S, and using () - (iv) we obtain assertions
(1) - (4) that complete the proof.

Let S be a pseudosurface resulting when identifications are made on a
collection Sy, S3,. .., S of closed surfaces. For the sake of convenience, with
S we associate a bipartite multigraph Bs. The vertex set of Bg consists
of S;, 1 <4 <1, and the set P of singular points of S, and S; is joined
to p € P by ¢ edges if and only if ¢ points of S; have been identified to p.
Denote n = |P|, and n; = degp(S:), 1 <i <.

Let p be a singular point of S. If there is S;, 1 < i < I, that is joined
to p by at least two edges in Bg, then p is called a self-singular point. By
S} we denote the topological subspace of S, which had been obtained from
S;, 1 <14 < I. More precisely, Bs; is a subgraph of Bg induced by multiple
edges incident with S;.

The construction of G By Lemma 3 there are graphs H; uniquely and
faithfully triangularly embeddable in S;, 1 < i < I, which cannot be embed-
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ded in S! with €(S!) = €(S;) and the opposite orientability characteristic.
We can assume that each H; has at least n; vertices.

H; H;

fu fo L

r—{
).

Figure 1

Now we locally describe a construction of a graph H] from H;, 1 <i <1
We replace each vertex u of H; by the Cartesian product Cy,.geqy_ (u) X Ppyo
and each edge by n+1 independent edges as shown in Figure 1 for n = 2.
Clearly, H! is 3-connected, embeddable in S;, and contains a subgraph
contractible to H;. Thus, by Lemma 2 H] is uniquely and faithfully em-
beddable in S;, and the only embedding ¢} of H{ in S; is just the one locally
described above.

For every u € V(H;) denote by f, the face of the embedding ¢} that
appears in the position of » in S;, 1 < ¢ < [ (see Figure 1). For a moment
we concentrate on H;. Put one new vertex »’ into each face f, of ¢f,
and join v’ to all vertices incident with f,. There are at least n; such
added vertlces u’; out of them we need to distinguish n1—1 vertices, say
vd,. Moreover, put one new vertex v} into the face where v} has been
placed _]om v} to vz, and denote the resulting graph by G4, see Figure 2.
Similarly, for each 7, 2 < i <[, put one new vertex u’ into each face f, of
¥}, join u’ to all vertices incident with f,, and denote the resulting graph

by Gi. Denote by vi, i, the n; vertices of V(G;)-V(H]),2<i <l
Finally, identify v},.. ,‘,,, 1L T ”n: into n vertices zq,...,2, in
the same way as the corr%pondmg points of Sy,...,S; have been ldentiﬁed

when constructing the pseudosurface S, and denote the resulting graph
by G. More precisely, there is a one-to-one correspondence between the
vertices v" 1< < land 1 < j < n;, and the edges of Bg incident to S;.
Identify v with v}, , whenever the corresponding edges of Bg are incident
to the same smgular point. Note that the structure of G depends on the
ordering of the surfaces S, ..., S and the singular points of S. However,
the assertions () - (iv) we are going to prove below do not depend on this
ordering.
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Figure 2

Clearly, G is embeddable in S. Denote by ¢ the embedding of G in S
which is determined by the embeddings ¢!, 1 <1 <!, as described above.

Denote by 21 and z; the vertices of G obtained from v} and v}, respec-
tively. Assume that 2; # z;. Suppose that G/z;z; is embeddable in S
and denote by ¢° an embedding of G/z;2; in S. In what follows we derive
some properties of ©°. (We remark that so far we have not had any reason
to expect that the supposed embedding ¢° of G/z;2; in S has anything in
common with the original embedding ¢ of G in the same S.)

Basic properties of ¢° There are m < n vertices, say z,,z, ..., T, Of
G/z122 embedded in the singular points of S in ¢°. Let H’ be a subgraph
of G/z1z;. If H’ contains no vertex from {z,... yZm}, then H' is called
an unbroken subgraph of G/z; 2.

For each i, 1 < <, let us do the following. Find a connected subgraph
H{' of H{ - {z1,...,zm} that is uniquely and faithfully embeddable in S;.
For each u € V(H;), include to H/ all unbroken copies of C’,,.deg"i(u) at
u. (Since m < n, for each v € V(H;) there are at least two copies of
Ch-degn,(u) in H{'.) Moreover, for each uv € E(H;), include to H!” all those
unbroken copies of P, at u that correspond to the unbroken copies of
Ppny2 at v, together with the edges joining them. (Since m < n, for each
edge uv € E(H;) there is a pair of corresponding copies of P, in H!)
Finally, throw away the endvertices of H!, see Figure 3.

Clearly, H;’ contains a subgraph contractible to H;. Since H! is a sub-
graph of H{, H; is embeddable in S;. Moreover, from H}’ we obtain a
3-connected graph by a successive contraction of edges incident with ver-
tices of degree two. Thus, H/ is uniquely and faithfully embeddable in S;,
by Lemma 2 and the note before Lemma 2.

Note that each H] is embedded in one closed surface, say Sic, in ©°,
since the connected graph H{’ contains no vertices placed in singular points.
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Clearly, €(S;) < €(Sic), since H; triangulates S; and H;’ contains a subgraph
contractible to H;. Let J, = {j : €(S;) > t}, ¢t > 0. Assume that there is ¢
such that Sje = S; for each j € J; (this is certainly true for ¢ large enough).
Let j € J;. Then ¢° induces a cellular embedding of HY in Sj-. Thus, only
planar graphs can be embedded in Sje together with HJ. By the finiteness
of J, for each j € J; there is k € J; such that Sk = S; (since ¢ > 0, H is
not a planar graph).

Suppose that €(S;) = t. If S; is not a sphere, then H{’ is not a planar
graph, and hence i¢ ¢ J,. Thus, €(S;c) < €(S;) and hence €(S;c) = €(S;).
Moreover, since H; is not embeddable in S’ with €(S’) = ¢(S;) and the
opposite orientability characteristic, we have S;c = S;. Hence, S;c £ S; for
each j € Ji—1. Thus:

(i) For each 4, 1 < i <, ¢° induces an embedding of H{’ in S;c, 1 < i° <
1. If S; is not a sphere, we have S;c = S;. Moreover, if i) # i3, and
S;, and S;, are not spheres, then S;s # Sis.

HY

Figure 3

Clearly, each vertex from V(G;)~V(H!) (except v}) is joined to H!' by
at least n+1 vertex-disjoint paths in G;. Since v} and v} are identified into
a single vertex in G/z; 2z, we have:

(ii) All vertices of G/z122 that have been obtained by the identification of
some vertices from V(G;)-V (H}), and possibly some other vertices,
liein Sk in ¢, 1 <i <.

Suppose that S; is a sphere, but S;c is not. Then there is a j such that
S; is not a sphere and Sje = Sie, by (9) (the second part). Moreover, °
induces a cellular embedding of H' in S, and hence, H!' is embedded in
one cell of the embedding of HY in S;e. Thus, ¢° induces an embedding of
H!' in S;. that arises from thg embedding of H; in S;, since H{ is uniquely
and faithfully embeddable in the sphere (we do not distinguish the exterior
face of the embedding of H! in the cell). Analogously, if S; is not a sphere,
or if S;c is a sphere, then ¢° induces an embedding of H}’ in S;. that arises
from the embedding of H; in S;, by (3).
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Let V; = {1}, ...,9},} — {vi}. Denote by f, the face of the embedding of
H/ in S;. that corresponds to the face f, in ¢, see Figure 3. Since m < n,
for all pairs u,v € V(H;) there are at least four vertex-disjoint cycles in
the embedding of H in S that separate f, from f;, namely the copies of
Ch-degu,(u) aNd Cr.degy (v)- Suppose that u,v € V; have been identified to
z in Gz 22. Since there are at least two vertex-disjoint cycles separating
u from v in S in ¢° (the exterior ones, see Figure 3), z is placed in a
self-singular point of S, in ¢°. Analogously, we have:

(iii) Let vy,...,v, € V; be identified to a vertex z in G/z;22, a > 2. Then
z is placed in ¢° in a self-singular point p of S}. that is joined to S;c
by at least a edges in Bs.

Now we introduce a lexicographical ordering of pseudosurfaces for
which S;; 2 S;, according the multiplicities of edges in Bs- Let S’
Si,- Let S} contain by se]f-smgular pomts with multlphcmes (i.e. the
multlphcmes of edges in BS';,) a¥ > ... > af, 1 < k <2 We write
S;, =5}, if and only if from a > a%, 1 <7 < b it follows that there is 7/,
1 <_1 <], with a}, < a2, IfS,‘1 _-53‘ and S}, % S}, we write S}, < S},.

Let z be a vertex of G/zlzz that has been obtained by the identifica-
tion of a vertex from V;, and possibly some other vertices. Denote by P,
the collection of the paths joining z to H’ that contain no vertex from
{z1,...,zm} (except possibly z). Clearly, for each such z there is at least
one path in P, with this property. Denote by G} the subgraph of G/z;z;
induced by H/” and the paths P,, where z is obtained by the identification
of a vertex from V;, see Figure 3 (the vertices z;; in Figure 3,1 < j < 3,
need not necessarily be distinct). Since HJ’ is embedded in S;c in ¢, the
graph G} is embedded in S}, by (ii).

Suppose that S; is not a sphere. Then S;c 2 S;, by (¢). Moreover,
we have Sj. > S}, by (%) and (ii). Note that Sj. > S} also if z; and
2y are self-singular points of S;. (We remark that Si > S} is only a
necessary but not a sufficient condition for embeddability of G} in S%).
Let J = {j : Sj = S}. By (3) (the second part), if k; # ke, and ki1, k2 € J,
then Sks # Skg. Since J is a finite set, S > S contradicts Sje = 53,
j € J. Hence, S‘c =St

Now suppose that S, is a sphere, but S} is not. Moreover, suppose that
Sic is not a sphere, either. Then there is a j such that S; is not a sphere
and ¢° induces an embedding of G} in S}. with Sj. = S:c, by (i) (the
second part). As shown above, we have Sy 2 Se.. Smce S} is not a sphere,
there is a self-singular point in S}. Since z; # 2; in G, there are at least
two vertices, say u,v € V; that have been identified into a single vertex in
G;. However, ¢° induces an embedding of H/ in S;. that arises from the
embedding of H; in S; (see the note below (iz)). Thus, at least one of the
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vertices u and v, say u, is separated from each vertex from Vj (and also
from V;—u) by a cycle in S;c in ¢°. Since G} is embedded in S % in %, we
have Sj. - Sj, as shown above. Since u is separated from each vertex from
V; U (Vi—u) by a cycle in Si in ¢, we have Sj. > 57, which contradicts
S,c & S3. Hence, if S is not a sphere but S; is, then S,e is a sphere, too.
Now analogously as above, if S} is not a sphere but S; is, we have S} >
+, by (it) and (éi). Moreover, if S}, is not a sphere but S;, is, 1 <k < 2,
we have Sf # Si;. Hence, we have Sj. 2 S}, since the set of those j for
which S - St is *%inite. Thus:

(iv) For each i, 1 < i < I, ¢° induces an embedding of G} in Si.. If S} is
not a sphere, we have S"c = S}. Moreover, if i) # iz, and S}, and S},
are not spheres, then i #S;

Necessary conditions for S To obtain the necessary conditions in
Theorem 1, we now need to utilize the ”finer structure” of G, that is, the
way how G depends on the labelling of the surfaces and the singular points.
In fact, we only need to consider the vertices z; and 23 in G.

Suppose that z; and z; are placed in two self-singular points of S} in ¢.
Let z; be obtained by the identification of ¢; vertices of G1, 1 < j < 2.
Suppose that G} is embedded in S}. in ¢°. Since {1+t2—1 > max{ty,t2},
we have S}. > S}, by (i) and (#z). By (iv) we have:

(1) No pseudosurface S} contains more than one self-singular point,
1<i<L

Suppose that Bg contains a cycle of length at least four. Let p;, Sy,
P2, ...,Pt,St,p1 be a shortest cycle in Bg such that ¢t > 2. Let 2; be placed
in p; and 23 be placed in p; in . Let G be the subgraph of G/z;2; induced
by G3,G;s,...,G;

By (év) each G}, 2 < i < t, is embedded in one pseudosurface S in
¢°. Hence, G is embedded in one pseudosurface, say S}, in ¢° if ¢t = 2.
Now suppose that £ > 3. Then G%,...,G} are joined to a (t—1)-cycle, by
(#). (More precisely, if we replace each G} by a single vertex g;, and join
gi with g; by an edge whenever G| and G} have some common vertices,
then G will result to a cycle on t—1 vertices.) Since 2t is the length of a
shortest cycle of length at least four in Bg, the graph G is embedded in
one pseudosurface, say Sy, if ¢t > 3.

Since G is not a planar graph, S}, is not a sphere. By (iv) (the second
part), at most one pseudosurface from S3,.. ., S; is not a sphere. If Sy % S}
for each ¢, 2 < 7 < t, then the finiteness of the set of those j for which
83 = S}, contradicts (#). Hence, Sy = S} for some j, 2 < j < ¢, and S} is
the unique pseudosurface from S3, ..., S; which is not a sphere.
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Suppose that ¢ = 2. Then G = G} = G} and the vertex z;z; is embedded
in a self-singular point of S} in ¢°. Hence we have S} > S3, by (), which
contradicts Sy & S3.

Now suppose that ¢ > 3. Let G’ be the subgraph of G induced by G,
2<i<tandi#j. Then G is a connected graph containing two distinct
vertices, say z! and z?, of G}. Let 2* be obtained by the identification of a
set V; vertices from V;, and possibly some vertices outside Vi, 1£i<2.
Since S & Sj, the graph HJ’~’ is uniquely and faithfully embeddable in Si.
Hence, each pair of vertices from Vj; is separated by at least two vertex-
disjoint cycles in Sj in ¢ (see the note before (ii)). Hence, also the sets of
vertices le and VJ? are separated by two vertex-disjoint collections of cycles
in Sy in ¢°. Since G’ joins z! with 22 in Sy in ¢°, there is a self-singular
point of S that allows this connection. Hence, we have Sk > S} by (i),
which contradicts S} = 7. Thus:

(2) There is no cycle of length greater than two in Bs.

Thus, S has a "tree structure”. Suppose that at least two pseudosurfaces
from S7,..., S} are not spheres. Let S,,p;, Sy, pa, S3,p3, .e-yP1—1,5; be a
longest path in Bs such that both S and S} are not spheres. Suppose that
¢t > 3. Let 2; be placed in p; and 23 be placed in p; in ¢.

Let G be the subgraph of G/z12; induced by G3,G3, ...,G:. By (i)
each GY, 2 < i < ¢, is embedded in one pseudosurface S in °. Moreover,
G3,...,GYt are joined to a (t—1)-path, by (i). (More precisely, if we replace
each G} by a single vertex g;, and join g; with g; by an edge whenever G}
and G; have some common vertices, then G will result to a path on ¢—1
vertices.) Thus, there are surfaces, say S;, and Si,, at distance 2¢ in Bg,
such that S and S}, are not spheres, and either S}, or S}, are covered by
planar graphs, possibly empty, in ¢, which contradicts (iv). Hence:

(3) If S; and S; are not spheres, then S; and S; are at distance two in
Bs.

Let ST and S3 be not spheres. Let pS; and pS, be edges of Bg, and
let z; be placed in p in . Suppose that S} contains a self-singular point
different from p that is occupied by 2 in . Since p is the unique singular
point lying in at least two pseudosurfaces that are not spheres, by (2) and
(3), the vertex 2;2; is placed in p in ¢°, by (4).

Let p be a self-singular point of S, 2 <i <. Thenpisa self-singular
point of 5., by () and (3). However, p is a self-singular point of S}., while
p is not a self-singular point of Sf, by (1). Since there is just a finite set
of S} that contains p as a self-singular point, by (iv) (the second part) we
have:
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(4) If S} and Sj are not spheres and p is a self-singular point of S7, then
pES;.

Hence, if there are three pseudosurfaces, say Si, S5, and S3, that are
not spheres, then they are glued in a unique singular point p, by (2) and
(8). Moreover, if one of them, say S}, contains a self-singular point p’, then
p’ = p, by (4). Thus, the spherically-irreducible subspace of S contains at
most one singular point. This completes the proof. (]

We remark that if a pseudosurface S is not minor-closed, then there are
infinitely many graphs G embeddable in S such that G/zy is not embed-
dable in S for some zy € E(G), by Lemma 3. The problem of determining
whether or not the embeddability in a given non-minor-closed pseudosur-
face can be characterized by a finite set of forbidden subgraphs remains
open.
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