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ABSTRACT. Let PW(G) and TW(G) denote the path-width
and tree-width of a graph G, respectively. Let G + H denote
the join of two graphs G and H. We show in this paper that

PW(G + H) = min{|V(G)| + PW(H),|V(H)| + PW(G)}

and
TW(G + H) = min{|V(G)| + TW(H), |V(H)| + TW(G)}

1 Introduction
Graphs considered in this paper are finite, and may have loops or multiple
edges. For a graph G, V(G) and E(G) denote its sets of vertices and edges,
respectively.

To study the theory of graph minors, the concepts of path-width and
tree-width were introduced in [1,2,3].

A path-decomposition of a graph G is a sequence (X, X2,...,Xm) of
subsets of V(G) such that

(i) XIUX2U---UXm=V(G);

(ii) For every e € H(G), there exists i with 1 < i < m such that X;
contains both ends of e;

(ifi) For 1<i<j<k<m, XiN Xk C X;.
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The path-width PW(G) of G is the minimum of max(|X;| —1: 1 < i < m),
taken over all path-decompositions (X}, ..., Xp) of G. (The null graph has
path-width 0).

A tree-decomposition of a graph G is a pair (T, X), where T is a tree
and X = (X,: t € V(T)) is a family of subsets of V(G), with the following

properties:
(W1) U(X,: t e V(T)) = V(G);

(W2) For every e € H(G) there exists t € V(T') such that e has both ends
in X;;

(W3) For ¢, t', t” € V(T), if t' is on the path of T between ¢ and ¢”, then
XiNXy C Xy,

The width of the tree-decomposition (T, X) of G is defined as
TW(G,T,X) = max{|X,| — 1|t € V(T')}
And the tree-width of G is defined as
TW(G) = min{TW(G, T, X)|(T, X) is a tree-decomposition of G}.

We can easily see that the definition of path-decomposition and path-
width can be equivalently restated as:

(I) A path-decomposition of a graph G is a tree-decomposition (T, X) of
G such that T is a path;

(II) PW(G) = min{TW(G, T, X)|(T, X) is a path decomposition of G}.

The join G+ H of two graphs G and H (suppose that G and H are disjoint)
is the graph obtained from G and H by adding all edges between V(G) and
V(H).
The main results of this paper are as follows:
PW(G + H) = min{|V(G)| + PW(H),|V(H)| + PW(G)}
and
TW(G + H) = min{|V(G)| + TW(H), |V(H)| + TW(G)}

Terminology and notation not defined in this paper can be found in [1-3).
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2 Foundamental Lemmas

A graph H is a minor of a graph G if either H = G or H can be obtained
from G by using (may be repeatedly) the following graph operations:

(i) Deleting a vertex;
(ii) Deleting an edge;
(iii) Contracting an edge.

When a tree H is a minor of a graph G, we say that H is a minor subtree
of G.

Lemma 2.1. Suppose that (T, X) is a tree-decomposition of the join G+ H
of two graphs G and H, where X = (X,: t € V(T)). Then there is a minor
subtree T’ of T together with a family X’ = (X{: t € V(T")) satisfying the
following three conditions.

(1) (T",X') is a tree-decomposition of G + H;
(2) Either V(G)C N(X{:te V(T")) or V(H) C N(X{: t € V(T));
(3) TW(G+ HT X)<TW(G+HT,X).

Proof: Note that (T, X) is a tree-decomposition satisfying (1) and (3).
Choose a minor subtree T of T' together with a family X’ = (X]: t € V(T”))
which satisfies the above conditions (1) and (3) such that [V (T")| is as small
as possible.

If [V(T")| = 1, then (2) holds trivially.

Suppose |V (T')| > 2, and set

Vo = {t € V(T")|t is a vertex of T’ of degree 1}.

Statement 1 For each t € Vp, either V(G) C X] or V(H) C X].

Otherwise, there exist t € Vp, y € V(G), 2 € V(H), such that y,z € X].
Suppose that ¢’ is the vertex adjacent to ¢t in 7”. For each u € V(G) N X},
uz € H(G + H). By (W2), there is a certain ¢t” € V(T”), such that u,z €
Xi». Now, ¢’ lies on the path of T between ¢ and ¢”. According to (W3),
v € X;N X,,G C X|,. Hence, V(G) N X{ C X,,. Similarly, we can prove
that V(H) N X; C X!, and then X] = X; N (V(G)UV(H)) C X}. Set
T"=T'-t, X" = X' - X{. Then we can easily see that T" is also a minor
subtree of T', and T” together with X satisfies the conditions (1) and (3).
But |[V(T")| < [V(T")|, contrary to the choice of 7”.
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Statement 2 Either V(G) C N(X;: t € Vo) or V(H) C N(X;: t € V).
Otherwise by Statement 1, there exist ¢/,t” € Vg such that

V(@) C XL V(G)ZL X,
V(H)C X!, V(H)Z X

Suppose that (1,t2,...,t,) is the path of T between t’ and t”, where
ty=t,t. =t". By (W2), we can deduce

V(H)nX{‘ C V(H)nX,’,
and
V(G)nX{j cV(@e)nXy,

for 1 < i < j <r. Now we consider the following three cases.

Case 1 V(G) C Xi,.

In this case, X;, C X;,. Set T" = T' —¢;, X" = &' - X;,. Asin
Statement 1, we can get a contradiction.

Case 2 V(H)nX; =V(H)N X}, and V(G) € Xj,.

In this case, X;, C X, . Set

X! = Xt X, = X{, and X{' = X

for t € V(T")\ {¢1,t2}. Then T” together with X" = (X;': t € V(T")) is
still a tree-decomposition of G + H and TW(G + H,T',X’) = TW(G +
H,T'.X"). But V(G) € X;. and V(H) € X, this contradicts our State-
ment 1.

Case 3 V(H)NX; #V(H)n X}, and V(G) € X,

In this case, there exists uv € E(G + H) such that u € V(G) \ X}, C

ta =
X, \ X[, and v € (V(H)NX},)\ X}, C Xi,\ X},. Especially, u ¢ X}, and
{u,v} € X{,. By (W2), there is a certain ¢ € V(T") such that »,v € Xj.
Because ¢ lies on the path of T’ between ¢; and ¢, by using (W3), we have
u € X; NX; C Xi,, a contradiction. This completes the proof of Statement
2.

Without loss of generality, we can suppose that V(H) C N(X]: t € Vp)
For each vertex t € V(T”) \ Vb, there exist two vertices t’,t"” € Vp such that
t lies on the path of 7' between ¢’ and t”. By using (W3) again, we deduce
V(H)C X, n X, C X{. Hence

V(H) C N(X!: t e V(T")

This completes the proof of our Lemma.

Because a path-decomposition is in fact a special tree-decomposition. We
can see that the following Lemma is also true.

260



Lemma 2.2. Let (T,X) be a path-decomposition of G + H. Then the
result of Lemma 2.1 is still true, and in this case (I”, X’) (in Lemrna 2.1)
is also a path-decomposition of G + H.

3 Proof of the Main Results
Theorem 3.1. TW(G + H) = min{{V(G)| + TW(H), |V(H)| + TW(G)}

Proof: Given a tree-decompesition (T, X') of H such that TW(H,T, X) =
TW(H). Set T' =T, X; = X;UV(G) and X' = (X{: t € V(T")). We
can easily see that (TV,X’) is a tree-decomposition of G + H with width
IV(G)|+ TW(H), so TW(G + H) < |V(G)| + TW(H). Symmetricaly, we
also have TW(G + H) < |V(H)| + TW(G). Hence

TW(C + H) < min{|V(G)| + TW(H), |V (H)| + TW(G)}

On the other hand, suppose that (T, X) is a tree-decomposition of G+ H
such that TW(G + H,T,X) = TW(G + H). According to Lemma 2.1,
we can further suppose that either V(G) C N(X,: t € V(T)) or V(H) C
N(X¢:t € V(T)). If V(G) C N(X,:t € V(T)), thenset T =T, X; =
X\ V(G), for t € V(T), and X' = (X;:t € V(T')). We can easily
see that (T”, X’) is a tree-decomposition of H with width TW(H,T',X’) =
TW(G+H)—|V(G)|. In this case, we have TW(G+H) > |V(G)|+TW (H).
If V(H) C N(X,: t € V(T)), we also can prove that TW(G+H) > |V(H)|+
TW(G). Hence we always have

TW(G + H) > min{|V(G)| + TW(H), |V(H)| + TW(G)}

This completes our proof.

By using Lemma 2.2 and the similar technique as in Theorem 3.1, we
can prove the following Theorem.

Theorem 3.2. PW(G + H) = min{|V(G)|+ PW(H), |V(H)| + PW(G)}.

Using the above results, we can deduce the tree-width and path-width of
the join of k graphs.

Theorem 3.3. Let G = Gy + G2 + --- + G be the join of k graphs
Gl,Gg, .. .,Gk. Then

TW(G) = [V(G)| = max{|V(G;)| - TW(G;)|]1 < i <k},
and

PW(G) = |V(G)| — max{|[V(Gi)| — PW(G;)|1 <i <k}
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