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ABSTRACT. A two-valyed function f defined on the vertices of
a graph G = (V,E), f: V — {-1,1}, is a signed dominating
function if the sum of its function values over any closed neigh-
borhoods is at least one. That is, for every v € V, f(N[v]) > 1,
where N[v] consists of v and every vertex adjacent to v. The
function f is a majority dominating function if for at least half
the vertices v € V, f(N[v]) 2 1. The weight of a signed (ma-
jority) dominating function is f(V) = }_ f(v), over all vertices
v € V. The signed (majority) domination number of a graph
G, denoted 7,(G) (yma;(G), respectively), equals the minimum
weight of a signed (majority, respectively) dominating function
of G. In this paper, we establish an upper bound on 7,(G) and
a lower bound on Ymq;(G) for regular graphs G.

1 Introduction

Let G = (V| E) be a graph with vertex set V and edge set F, and let v be
a vertex in V. If v € V, the degree of v in G is written as deg v. The graph
G is r-regular if degv = r for all v € V. In particular, if r = 3, then we call
G a cubic graph. For a connected graph G, the distance d(u,v) between
two vertices u and v is the length of a shortest u-v path. If S is a set of
vertices of G and v is a vertex of G, then the distance from v to S, denoted
by dg(v,S), is the shortest distance from v to a vertex of S. For graph
theory terminology not presented here we follow [2].

The open neighborhood of v is defined as the set of vertices adjacent to
v, ie, N(v) = {u|luv € E}. The closed neighborhood of v is N[v] =
N(v)U{v}. For a set S of vertices, we define the open neighborhood
N(S) = [UN(v) over all v in S, and the closed neighborhood N[S] =
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N(S)US. A set S of vertices is a dominating set if N[S] = V. The domi-
nation number of a graph G, denoted (G), is the minimum cardinality of
a dominating set in G.

For any real valued function g: V — Rand S C V, let g(S) = ¥ g(u)
overallu € S. Let g : V — {0, 1} be a function which assigns to each vertex
of a graph an element of the set {0,1}. We say g is a dominating function if
for every v € V, g(N[v]) > 1. We say g is a minimal dominating function if
there does not exist a dominating function h : V — {0,1}, h # g, for which
h(v) < g(v) for every v € V. This is equivalent to saying that a dominating
function g is minimal if for every vertex v such that g(v) > 0, there exists a
vertex u € N[v] for which g(N[u]) = 1. The domination number of a graph
G can be defined as 7(G) = min{g(V) | g is a dominating function on G}.

A signed dominating function is defined in [4] as a function g : V —
{-1,1} such that for every v € V, g(N[v]) > 1. The signed domination
number for a graph G is v;(G) = min{g(V’) | g is a signed dominating func-
tion on G}.

A majority dominating function has been defined by Hedetniemi [5] as
a function g : V' — {—1,1} such that for at least half the vertices v € V,
g(N[v]) 2 1. The majority domination number for a graph G is Ymq;(G) =
min{g(V)|g is a majority dominating function on G}. The majority dom-
inating function was studied in [1].

2 An upper bound on v,(G) for regular graphs G.
We begin by stating a useful result from [4].

Proposition A. A signed dominating function g on a graph G = (V, E) is
minimal if and only if for every vertex v € V with g(v) = 1, there exists a
vertex u € N[v] with g(N[u]) € {1,2}.

In [4] and [6] the following lower bounds on ,(G) for r-regular graphs G
of order n for r even and odd, respectively, are established.

Theorem A. For every r-regular (r > 2) graph G of order n,

;3_;‘—1 for r odd
'Ya(G) >
% for r even.

Zelinka [7] established the following upper bound on v,(G) for a cubic
graph G.

Theorem B. For every cubic graph G of order n, v,(G) < in.
In this section we generalize the result of Theorem B to r-regular graphs.



Theorem 1. For every r-regular (r > 2) graph G = (V, E) of order n,
(;3’%1%7_2—1) n for r odd

'Ya(G) <
(ﬁ'—;—) n for r even.

Proof: Let f: V — {-1,1} be any signed dominating function on G for
which f(V) = 7,(G). Let P and M (standing for ”positive” and ”minus”)
be the sets of vertices in G that are assigned the values +1 and —1, respec-
tively, under f. Then |P|+ |M| =n, and v,(G) = |P| — [M| = n — 2|M].
Each vertex of M must be adjacent to at least [5] + 1 vertices of P, and
each vertex of P is adjacent to at most | 5| vertices of M. Before proceed-
ing further, we introduce the following notation. Let M be the set of all
vertices of M that are adjacent to exactly [5] + 1 vertices of P, and let
M; = M —M,. Hence M = M1UMa. Note that if r = 2 or 3, then My = 0.
Fori=1,2,let P;={v € P|d(v, M) =1i}. Let A be the set of all vertices
of P, that are adjacent to exactly | %] vertices of M. Let B be the set of
all vertices of P; — A that are adjacent to at least one vertex of M;, and
let C = P, — (AUB). Hence P, = AUBUC. Note that if r = 2 or 3, then
B =0 and C =0. Further, let D= P — P,.

Claim 1: d(v,M) <2 forallve V.

Proof: If d(v,M) > 3 for some v € V, then v € P and the function
g:V — {~1,1} defined by g(v) = —1 and g(w) = f(w) ifwe V—{v}isa
signed dominating function on G with g(V') = f(V) — 2, which contradicts
the minimality of f. O

By Claim 1, D = P, and the sets My, M, A, B, C and D are pairwise
disjoint and their union is V.

Claim 2: Each v € CU D is adjacent to at least one vertex of A.

Proof: By Proposition A, there must exist a vertex v € N[v] with f(N[u]) €
{1,2}. Each vertex w € D satisfies f(N[w]) = r +1 > 3. Each vertex of
Py, — A is adjacent to at most | §] —1 vertices of M and therefore to at least
[5] + 1 other vertices of P. Hence f(N[w]) > ([§]1+2) - (|5])-1) >3
for each w € P, — A. However, each vertex w € A satisfies f(N[w]) =
(51 +1) — |5] € {1,2}. Hence, since each v € D is adjacent only to
vertices in P, it follows from Proposition A that each v € D is adjacent
to at least one vertex of A. Furthermore, each vertex of M is adjacent to
at least [5] + 2 vertices of P, so f(N[w]) > ([5]+2) - (5] —2) >4 for
each w € M,. Hence, since each vertex v € C is adjacent only to vertices
in PU M., it follows from Proposition A that each v € C is adjacent to at
least one vertex of A. (]
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Let [My| = my, |Ma| = my, |A| = @, [B| = b, |C] = c and |D| = d.
Further let £ be the number of edges joining a vertex of M; and a vertex of
B. Since G is r-regular, each vertex of M, is adjacent to at most r vertices
of P. By definition of M1, each vertex of M, is adjacent to [§]+1 vertices
of P. Hence there are at most ([7] +1)m; — €+ rmy edges joining a vertex
of M and a vertex of A. On the other hand, since each vertex of A is
adjacent to || vertices of M, there are | ]a edges joining a vertex of M
and a vertex of A. Consequently,

a< (f%] +1)T£J—e+rm2 1)

Since each vertex of B is adjacent to at least one vertex of M;, we have
b<e (2)

Furthermore, since each vertex of A is adjacent to [§] other vertices of P,
it follows from Claim 2 that

T
c+d<[Z]a. (3)
Hence, by (1), (2) and (3), it follows that
n =my+mot+a+btc+d

<mi+me+ ([F1+1)a+¢

=my +m2+['1+1 ([-’-]+1)m1—€+rm2 +£
3 2

=my +ma+ I (151 + Dmy + rma) + (1 - Lfljt‘) e

However, since £ > 0 and (1 - L?%’—l) < 0, it follows that

(- H)ese
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Thus -

1
n 5m1+m2+%—((|’§]+1)m1+7'm2)
r 2 r
=(r,1§+1 +1)m1+(ﬁ%*—12+1)m2
r((51+1 r([§1+1
S(i—rﬂ—l+l)m1+( % +1)m2

since ., 9 ,
([31+1) = ([5]+1)
Hence
15) )
01> () @
Thus, by (4),
7(G) =n-2|M|
2 r
<n~(rrfebmg) »
r[§l+r—1%)
= (Tr §1+:'+|§|) n
(;&%9_2—1) n for r odd
(H—z}) n for r even.
This completes the proof of the upper bound of Theorem 1. a

It remains an open problem to establish whether the upper bounds of
Theorem 1 are sharp.
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8 A lower bound on %4;(G) for regular graphs G.

Zelinka [7] established the following lower bound on ¥,;(G) for a cubic
graph G.

Theorem C. For every cubic graph G of order n, Ymaj(G) > —% and this
bound is sharp.

In this section we generalize the result of Theorem C to r-regular graphs.
Theorem 2. For every r-regular (r > 2) graph G = (V, E) of order n,

(-2-(1'_;_,_"1-5) n forr odd
'Ymcj(G) >
(-2-(;‘%5) n forr even,

and these bounds are sharp.

Proof: Let f : V — {—1,1} be any majority dominating function on G
for which f(V) = Ymaj(G). Let P and M (standing for "positive” and
"minus”) be the sets of vertices in G that are assigned the values 41 and
—1, respectively, under f. Then |P|+ |M| = n. Further, let P* and P~
be the sets of vertices in P whose closed neighborhood sum under f is
positive and nonpositive, respectively. Define M* and M~ analogously.
Then P =Pt UP~ and M = M+ U M~. Further, let [M*|=aq, [P*|=b
and |P~| = c¢. Then, since f is a majority dominating function, a+b > n/2.
We consider two possibilities.

Case 1. a< (Q—(l;?—l)-) .

Then, since |[P]| =b+ ¢ > b 2 n/2 — a, it follows that
n 151 _(rt1-13
P> 3 (2(r+1))”‘( r+1) )"

Ymai(G) =|P| - |M]

=2|P|-n

Hence,

r+1-|
>(HE)n-n

- ()~

which yields the desired result.

Case 2. a > (ﬂl;%;) n.
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Let ¢ be the number of edges joining a vertex of M+ and a vertex of P.
Then, since each vertex of M+ must be adjacent to at least [5] +1 vertices
of P, we have that £ > ([§] + 1) a. On the other hand, although a vertex of
P~ may be adjacent to even r vertices of M, each vertex of Pt is adjacent
to at most | §| vertices of M. It follows that £ < | 7| b+ rc. Consequently,

(51 +)e 5o

IP| =b+ec
> b+ (([5]+ e - 1518) /7
= (- 2D+ ([51+1)
2(1-H5) (G -a)+(51+1)2
= (=450 5 +2 (51 + 5] +1-7)

=(1-2l5) 3+ %

Hence it follows that,

Thus,
Ymai(G) =2|P|-n

2(1-5)n+ 2 -n

This completes the proof of the lower bound of Theorem 2.

That the lower bounds of Theorem 2 are sharp, may be seen as follows.
For positive integers n, z, s where n is divisible by 2(r + 1),

_(_15l _(I51+1
= (2(r+1) n and s= A+ 1) n,
we define a graph G(m, z, s) of order n/2 as follows. The graph has vertex
set M U P where M = {ug,v1,... ,4z—1} and P = {v;,vs,... ,v,}. The
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vertices in M induce a (| §] — 1)-regular graph and the vertices in P induce
a [%]-regular graph. Then for 1 < i < s join v; to the | 5] vertices u; for
151(i-1) <5 < |§Ji—1, where subscripts are read modulo z. Hence there

Caua+n)n
2(r+1)

edges with one end in M and the other end in P, and these are distributed
evenly amongst M. (The above definition is merely one way to ensure an
even distribution.) Hence each vertex of M is adjacent to [§] + 1 vertices
of P, and each vertex of P is adjacent to | 5| vertices of M. It follows that
G(n, z, s) is an r-regular graph. Now let F;, be any r-regular graph on n/2
vertices, and let Gy, be the graph obtained from the (disjoint) union of F,
and G(n, z, 8). Then G,, is an r-regular graph of order n. Furthermore, the
function f : V(Gy) — {—1,1} defined by f(v) =1forv € P and f(v) = -1
for v € MUV (F,,), is a majority dominating function on G, in which every
vertex of G(n,z, s) has positive neighborhood sum under f. Hence

’Ymaj(Gn) < f(V)
=|P|- M| -3
_(ELH__LH _1)n

2(r+1) 2(r+1) 2
51 =151 -
- (Bt )

(ﬂlﬁﬁ) n for r odd

(7(;—"15) n for r even.
This, together with the lower bound of Theorem 2, establishes that

(-2-(‘;‘;’}5) n for r odd

Ymaj (Gn) =
(ﬁ) n for r even.
This completes the proof of Theorem 2. O
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