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Abstract

Our purpose is to determine the minimum integer fi(m) (gi(m),
hi(m) respectively ) for every natural m, such that every digraph D,
fi(m)-connected, (gi(m), hi(m)-connected respectively) and
o'(D) < m is hamiltonian (D has a hamilton path, D is hamilton
connected respectively), (i = 0,1,2). We give exact values of fi(m)
and g;(m) for some particular values of m. We show the existence of
h2(m) and that k2(1) =1, h2(2) = 4 hold.

1 Introduction and Terminology

Let G = (V(G), E(G)) be a finite k—connected graph (k > 2), on n vertices,
without loops or multiple edges, and with independence number a(G) = a.

In 1972, V. Chvatal and P. Erdds gave the following sufficient condition
for a graph to have a hamilton cycle (path) or for every z, y in V(G), G
has a zy— hamilton path, that is to say G is hamilton connected.

Theorem 1.1 ([1]) If @ < k, then G is hamiltonian. If a < k+1, then
G contains a hamilton path. If @ < k=1, then G is hamilton connected.

This result has given rise to many other sufficient conditions involving
connectivity and independence number for graphs and digraphs to have
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various path or cycle properties, for example hamilton path (cycle), hamilton
connected, pancyclic, path (cycle) covers, 2—cycle. Several related results
and conjectures are presented in a well structured survey by Jackson and

Ordaz (7).

We shall use D = (V(D), E(D)) to denote a finite digraph on n vertices,
without loops or multiple arcs. Let a®(D), a!(D), a?(D) be the size of the
largest subset S of V(D) such that D[S], induced subdigraph by S, contains
no arcs, no cycles, no cycles of length two, respectively.

Note that if G is an undirected graph and D is the symmetric digraph
obtained by replacing each edge of G by a directed cycle of length two then
a(G) = a®(D) = o!(D) = o?(D). Thus a®, o', a? can be considered as an
extension of a from graphs to digraphs. Moreover, by the definition of a?,

o, o? we have:

a’(D) < a!(D) < o*(D) (1)

Hence, any upper bound on o?(D) will also bound «°(D) and o!(D). It
follows that, although a® is in some sense the most natural extension of «
to digraphs, it will be easier to obtain “Chvital- Erdés sufficient condition”

using o? than o! or af.

For every natural m, we denote by f;(m)(resp. gi(m), hi(m)) the
minimum integer such that every digraph D, fi(m)—connected
(resp.gi(m)—connected, h;(m)—connected) and (D) < m is hamiltonian
(resp. D has a hamilton path, D is hamilton connectd), (i = 0, 1, 2). Exact
values of f;(m), gi(m) are given for some particular values of m. We show
the existence of hy and ha(1) = 1, h2(2) = 4 hold.

We denote by z z y a hamilton path from z to y in the graph or
digraph T. For definitions and notations not given here see [1] or [7].

2 Hamilton Path and Cycle

In [2], Bondy suggested partial extending Theorem 1.1 to digraphs by
conjecturing that if a?(D) < k then either D is hamiltonian or else D
belongs to a finite set of exceptional graphs.

Unfortunately, Thomassen [10] and Chakroun (3] have each constructed
an infinite family of conterexamples to Bondy’s conjecture for a?(D) = k =
2 and a?(D) = k = 3 respectively.
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However, if we allow “ well characterised ” infinite families of exceptional
graphs, or, if we restrict ourselves to digraphs of connectivity at least four,
then it is conceivable that Bondy’ conjecture is true.

In this paper we re-structure some results of survey [7] in order to
present them in this context.

The following results ensure the existence of f;, g; and we give some
exact values of them.

Using (1), it follows that if fo(m) exists, then f;(m) and f2(m) both
exist and we have:

fa(m) < fi(m) < fo(m) 2)

Theorem 2.1 ([6]) Let D be a digraph with «*(D) < m. If D is
2™(m + 2)'—connected then D is hamillonian.

We deduce from Theorem 2.1 that for all m > 1, fa(m) exists and
fo(m) < 2™(m + 2)! holds. Since g2 < f2 then the existence of g, is
guaranteed. '

Theorem 2.2 m — 1 < g2(m), (m > 2).

Proof. It is sufficient to consider the symmetric complete bipartite digraph
D = Kpm-2. It is clear that D is (m — 2)—connected and a*(D) = m.
Since there exists a o> — stable set S with |S| = m and |[N*(S)| =m—-2 <
m—1=|S| -1 then D does not contain a hamilton path.

Theorem 2.3 m < fa(m)

Proof. Let F be the digraph obtained from D = Ky, m_2 adding a new
vertex joined by edges with all vertices in D. We have a?(F) = m and F
is (m — 1)—connected. Since D does not contain a hamilton path then F
is not hamiltonian. Hence m < fa(m). The same result can be obtained
directly using Ky m—1.

Theorem 2.4 ([5]) Let D be a sirongly connected digraph with a°(D) < 2
then D conlains a hamillon path.

274



Theorem 2.5 ([7]) 92(2) = g1(2)
strongly connected with o*(D) =2 (i
path.

90(2) = 1, that is to say if D is
0,1,2) then D contains a hamilion

Proof. By Theorem 2.2 and Theorem 2.4 we have go(2) = 1 and since
a® < a! < a? we can conclude that g;(2) = g2(2) = 1.

Theorem 2.6 If o®(D) = 1 and D is strongly connected then D is
hamiltonian.

Proof. Directly from the following Theorem due to H. Meyniel [8]: Let D
be a strongly connected digraph of order n. If for every pair of non adjacent
vertices z,y we have d(z) + d(y) > 2n — 1 then D is hamiltonian.

Theorem 2.7 fi(1)=1(i=0,1,2)

Proof. Let D be strongly connected. By Theorem 2.6, if a®(D) = 1 then
D is hamiltonian. If a?(D) = 1 then D is a symmetric complete digraph
hence D is hamiltonian. Moreover, since fo < fi < fo then fi(1) = 1.

In [10] it is shown that every 2—connected digraph D with a?(D) < 2
except the following digraphs D;, is hamiltonian. Let D; be obtained
from two disjoint symmetric complete digraphs K7, and K by choosing
distinct vertices z1, z2 of K}, and y1, y2 of K, and then adding the 4—cycle
11 z2y22) to K UK.

Then we have:

Theorem 2.8 f1(2) = f2(2) = 3.

In [3] it is shown that every 3—connected digraph D with o?(D) < 3
except the following digraphs D» is hamiltonian. Let Dy be obtained from
three disjoint symmetric complete digraphs K, K3 and K7 by choosing
distinct vertices z),z3,z3 of Ky, y1,¥2,y3 of K and 21,22, 23 of K7 and
adding the following arcs z1y1, Y221, T2Y2,Y3Z2, T3Ys, Y123, Y121, 2341, Y222,
z1y2, Y323, 22y3 to K, UK; UK}

Then we have;

Theorem 2.9 f5(3) = 4.
Theorem 2.10 g5(3) = 2.

Proof. Let D be a 2—connected digraph with a?(D) = 3 and H be the
digraph obtained from D adding a new vertex u joined by edges with all
vertices in D. We have a?(H) = a?(D) = 3 and H is 3— connected.
Since H is different from digraph D, then H contains a hamilton cycle C,
consequently C — {u} is a hamilton path of D. Then g2(3) < 2 and by
Theorem 2.2 we conclude that g2(3) = 2.
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3 Hamilton Connected Digraphs

This section is devoted to show the existence of ha and we stablish that
hg(l) = 1, 112(2) = 4 hold.

Theorem 3.1 For every natural m there ezists hy(m) and we have
ho(m) < 2™+ (m + 3)1 + 2.

Proof. Let D be a (fo(m 4 1) + 2)— connected digraph with a?(D) < m.
The existence of fz(m + 1) is ensured by Theorem 2.1. Let us considered
two vertices u,v in D. Let H be the digraph obtained from D as follows:
V(H) = V(D) — {u,v} + w with w a new vertex outside of D. E(H) it is
constitued by the arcs in E(D) which are not incident with vertices u,v
and arc zw belongs to E(H) if zv € E(D); arc wy belongs to E(H) if
uy € E(D).

We will show that H is f2(m + 1)— connected and a?(H) < m+ 1.

In fact, if z, y are vertices in H different from w, there are in D fo(m+
1)+2 internally disjoint paths from z to y. Hence there are at least fo(m+1)
internally disjoint paths in H.

If z = w then we consider in D fy(m + 1) internally disjoint paths
from u to y no incident to v and first arc uz; from every one these paths
is replaced by wz;. So we obtain in H fa(m + 1) internally disjoint paths
from w to y.

If y = w, we select in D fo(m + 1) internally disjoint paths from z to v
no incident to u and last arc y;v from every one of these paths is replaced
by yiw. So we obtain in H fa(m + 1) internally disjoint paths from z to w.

In this way we obtain in H fp(m + 1) internally disjoint paths from z
to y.

Now, we will see that a?(H) < m + 1.

Let S be a a?-stable set in H. If w ¢ S then S C V(D) is a a®>—stable
set in D then |S| < m. If w € S then S; = S — {w} is a a?— stable set in
D and |S)| < m, therefore |S| < m + 1.

Consequently, by definition of f(m + 1), H is hamiltonian. If C' is a
hamilton cycle in H and w;, we are vertices in C incident with w then,
since wyw is an arc in H then arc wyv is in D. In the same way we can see
that there exists the arc uws.

Hence uws LA wqv is a hamilton path in D from u to v.
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Consequently, we have shown that D is hamilton connected and
ha(m) < fo(m + 1) + 2 holds. Since fo(m + 1) < 2(m+D(m 4 3)! by
Theorem 2.1, we have hy(m) < 20m+)(m 4 3)! 4 2.

Theorem 3.2 hy(m) >m+1, m > 2.

Proof. Let D = K, , be the bipartite digraph with m > 2. We have that
D is m—connected and a?(D) = m. But an zy—hamilton path with z,y in
the same independent set in bipartition of D does not exist.

Theorem 3.3 hy(1) = 1.

Proof. Let D be a digraph with a?(D) = 1 then D is symmetric complete.
Hence D is hamilton connected.

Lemma 3.4 Let D be a sirongly connected digraph. Then any two vertices
of D are joined by a path of length at most 2al(D) — 1.

Since a! < &?, we can deduce the following result:

Corollary 3.5 Let D be a strongly connecled digraph. Then any lwo
verlices of D arc joined by a path of length at most 2a2(D) — 1.

Theorem 3.6 Let D be a k—connected digraph with o?>(D) < m. If T
ts any set of ¢ verlex disjoint paths of D of tolal length ai most t and
k > ha(m) +2(t + gm — m —q), then T is contained in a hamilton cycle of
D.

Proof. If ¢ = 1 then T = {z,z3,..,20}. It is clear that
H = D — {z3,...,24} is hz(m)—connected. By definition, there exists a
zyz1—hamilton path @ in H. Then z;25...2,@ is a hamilton cycle.

Suppose ¢ > 2. In this case we can inductively contruct a path that
cointains 7"

Let Py P,...P, the vertex disjoint paths in T

First Step. Let D, be the digraph D without the vertices of T
excepting the endvertex a; of P; and the initialvertex b, of P,, then D, is
of connectivity at least ho(m)+ (¢ — 1)(2m — 2) > ho(m). By Corollary 3.5
there exists a a1b;—path @Q; of length at most 2m — 1.
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Second Step. (¢ > 3). Let D, be the digraph D, without the vertices
of Q1 and adding the endvertex a; of P, and initialvertex b, of P3, then Dy
is of connectivity at least ha(m) + (¢ — 1)(2m — 2) — (2m — 2) = ho(m) =
(g — 2)(2m — 2) > hy(m). By Corollary 3.5 there exists a azbz—path Q3 of
length at most 2m ~ 1.

Suppose now that we are in (i-1)-Step. If ¢ > i + 1 the following Step
is:

i-ith. Step. Let D; the digraph D;_; without the vertices of Q;_,; and
adding the endvertex a; of P; and initialvertex b; of P;y;. Then D; is of
connectivity at least ha(m) — (¢ — i)(2m — 2) and since (¢ —¢) > 1 D; is
ha(m)—connected. Consequently there exists a a;b;—path @; of length at
most 2m — 1.

When i = ¢ — | we have the path P :

P1Q1P2Q2...Py_1Q4-1P,. Let bg the initial vertex of P, ag the endvertex
of P and D, the digraph D without vertices of P but safe by and a,. Since
[V(P)— {bo,agH =t + (¢ — 1)(2m — 1) + 1 — 2 the connectivity of D, is at
least ho(m)+2(t+gm—m—gq)—(t+(g—-1)(2m—1)—1) = ha(m)+t—¢
and since ¢ < ¢t then D, is hy(m)—connected. Therefore there exists an
agbp—hamilton path @ in Dy. The paths P and Q conform a hamilton cycle
in D that contains 7.

Corollary 3.7 For every pair of natural number m and t, there erists a
natural number ha(m,t) such that if D is a digraph hy(m,t)—connected and
a?(D) < m. Then every set of vertices disjoint paths T of total length at
least t can be exiended to a hamillon cycle in D.

Proof. In before theorem ¢ < f. If we have ¢ = t we obtain hp(m,t) <
ha(m) + 2m(t - 1).

The following lemmas and remarks will be used to proof Theorem 3.11:
Every 3—connected digraph with «?(D) = 2 is hamilton connected except
for all 3—connected digraphs member of three families D3, Dy, Ds. As a
corollary of this theorem we will show that hy(2) = 4.

Lemma 3.8 Let G be a graph such that a(G) = 2. Then we have one of
the following allernatives:

3.8.1 G s hamilion connecied,

3.8.2 G has a spanning subgraph consisting of two disjoint complete graphs
H, and H,.

278



3.8.3 G has a spanning subgraph consisting of two disjoint graphs one of
which is a complete graph Hy and the other, Hy, is a compleie graph with
at least three vertices and a missing edge (ay,by). Furthermore, there ezist
two independent edges (a1, az), (b1, b2) between H; to Hy and no edges from
Hy — {a;,b1} to Hy and every vertez of Hy is adjacent to a; or b;.

Proof. If k(G) > 3 then by Theorem 1.1 G is hamilton connected. Then
G has structure 3.8.1.

If k(G) = 0 and since a(G) = 2 then G consists of exactly two components
both of which have stability number one, hence G has structure 3.8.2. If
k(G) = 1, we may choose a vertex v such that G—{v} is disconnected. Since
a(G) = 2, G - {v} consists of exactly two
components H, and Hj both of which have stability number one, and
hence are complete. Moreover v is adjacent either to all vertices of H; or
to all vertices of Hy. Thus CI(G) = 2, and it can easly be seen that G
satisfies 3.8.2.

If k(G) = 2, there exists a separating set {p, q} of G. Since &(G) = 2,
G — {p,q} consists of exactly two components G; and G2 both of which
have stability number one. Moreover since a(G) = 2 we have either:

Case a. p and g are adjacents to all vertices of G (or to all vertices of G>).
Putting H; = G, U {p,q} and H2 = G, we have the following subcase: If
(P, 9) € E(G) then G has structure 3.8.2 and if (p, q) ¢ E(G) then, putting,
P = a1, ¢ = by, G has structure 3.8.3.

Case b. p is adjacent to all vertices of G; and q is adjacent to all vertices
of G2. Then putting, Hy = G, U {p} and H, = G2 U {¢}, G has structure
3.8.2.

Remark 3.9 Let D = (V, A, E) be a digraph such that G(D) = (V, A) has
structure 3.8.2. Let x,y € H,. If there ezist arcs zu; withz € Hy, up € Ho

H. H,-{z}
and i3ty withty € Hy—{uz},t) € Hi—{z,y}, then zu, 25 toty — Y
1s a zy—hamilton path.

Remark 3.10 Let D = (V, A, E) be a digrapk suck that G(D) = (V, A)
has structure 3.8.2. Let z,y € H,. If there erist arcs: uyuy with u; €
H, - {y,a:}, up € Hy and 3ty withts € Hy — {uz}, t € H, — {z,u;} then

Hl-{y:t\l} Ha R R .
z > ujuy > tat1y is an zy hamilton path.
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Lemma 3.11 Let D = (V, E, A) be a 3—connected digraph with o?(D) =
2. If G(D) = (V, E) has structure 3.8.2 of Lemma 3.8 then D is hamilton
connecled or isomorphic lo a digraph of the family Dy or the family D,.

Proof. Let z,y be two different vertices of D. We shall see that there
exists an zy—hamilton path except that D is isomorphic to a member of
families D3 or Dj.

Let € Hy, y € H. Since D — {z, y} is strongly connected there exists
an arc ¢3¢, from Hy — {z} # @ (if |H1| = 1 it is not necessary to eliminate
z from H,) to Hy — {y} # 0 (if |[Hz| = 1 it is not necessary to eliminate y

H H.
from H3). Hence the path z > tits %y y is a hamilton path.

If |[V(D)| < 6 and since d*(z) > 3, d~(z) > 3 we can apply Overbeck-
Larisch Theorem [9] in order to shown that D is hamilton connected. If
|Hi] = 1, we can apply the same theorem in order to show that D is
hamilton connected.

Now, let us considere |V(D)| > 5. Let z,y € H;.
If |Hy| = 2 there exist two arcs zuz, toy with uy # t2 (uz,t2 € Hy).
Hence
H; . .
Uz — toy is a hamilton path.
Now, we suppose that |H;| > 2.

Case a N(z)NHy = 0.

Let uyuz be an arc from H; — {y} to H,. Let tyt; be an arc with
t, € Hy — {u2},t; € Hy — {u1}. By Remark 3.10 D has a zy—hamilton
path.

Case b. N(z)NH, #0
"Subcase b.1. N*(z)NH; =0

Let us suppose there are no zy—hamilton paths. It is clear that |H;| >
4. Since D—{y} is 2—connected there exist two independent arcs from H; —
{y} to H,, saying uju; and ¢;¢;. Moreover, since there are no zy—hamilton
paths the following conditions are satisfied:

Condition 1. The only arcs from Hz to Hy — {z} are ust; and tu;.
Moreover if |H2| > 2 then arc vez exist with vp # t2, uz, v2 € Ha.

Condition 2. All arcs from Hy — {u1,;} to H have y as initial vertex.

Consequently we are in presence of a digraph member of the family
described below:

FAMILY D
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- Constitued by two complete graphs H; (|H;| > 4) and H; (|H2| > 2).

- There are four distinguished vertices #, y, u1,¢; € H; and two distinguished
vertices ug,ty € Ho.

- The only arcs from H; to Hy — {z} are uzt; and tyu,.

-All arcs from Hy—{u3,12} to Hy have z as ending vertex and if | Hz| > 2
there exists at least one arc from Hy — {uz,%5} to Hj, saying voz.

-All arcs from Hy — {uy,1} to H, have y as initial vertex and there
exists at least one arc from Hy — {u;,t1} to Hy, saying yws.

Subcase B.2 Nt(z)NHy =0
In this case we assume that there does not exist an zy—hamilton path.

Let zu; be an arc with u; € Hj. There exists an arc {5t; from Hy—{u}
to Hy — {z}. If t; # y, by Remark 3.5 there exists an zy—hamilton path.
Contradiction. Therefore:

Condition 1. Every arc from Hz — {uz2} to H, — {z} have y as ending
vertex and there exists the arc ¢py.

Let wyw, be arc from H; — {z} to Hy — {t;}. If w; # y, by Remark
3.10 D contains a zy—hamilton path. Contradiction. Therefore:

Condition 2. All arcs from Hy — {z} to Hy — {t;} have y as initial vertex.

Let 2122 be an arc from H; — {z,y} to Hs. So, 2z, = t5. There exists
an arc vou; from Hy — {t3} to Hy — {z1}. If v; = z, by Remark 3.9. D
contains an zy—hamilton path. Contradiction. Therefore:

Condition 3. All arcs from Hy — {t2} to Hy — {2z} has z as terminal
vertex.

Then, there exists an arc pap; from Ha—{t,} to H; —{z}. By Condition
3 1 = 71 and by Condition 1 p; = uz. Hence uyz; € E(D).

Consequently we are in presence of a digraph member of family described
below:

FAMILY D,
- It is 3—connected but not 4—connected.
- Constitue by two complete graphs Hy (|H1| > 3) and H, (|H2| > 2).

- There are three distinguished vertices z,y,2, € H;, and two
distinguished vertices uy,t; € Ho.

- Arcs zug, ta2y and z3t; are present.
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- All arcs from Hj — {uz} to Hy — {2} have y as ending vertex.
- All arcs from H; — {z} to Hz — {t2} have y as ending vertex.

- All arcs from Hy — {t2} to Hy — {21} have z as ending vertex.

Lemma 3.12 Let D = (V,E, A) be a 3—connected digraph with o*(D) =
2. If G(D) = (V, E) has structure 3.8.9 but not 3.8.2 of Lemma 3.8 then
D is hamilton connected or isomorphic 1o a digraph of the family Ds.

Proof. Let z,y two different vertices of D. We shall see that there exists
an zy—hamilton connected path except that D is isomorphic to a member
of families Ds.

We have the following cases:
Case a |H,| > 4.
Subcase a.1 z € H,, y € H,.
Subcase a.1.1 z ¢ {a;, b1}
Without loss of generality, we suppose that y # a,.

H H
Then z — a)az — y is a hamilton path.

Subcase a.1.2 z = a3, y # by (or z = b1, y # a2)

H
In this case z — b1by 25 y is a hamilton path.
Subcase a.1.3 T =a;, y = by (or z = by, y = a3).
Since D—{ay, b2} is strongly connected then there exists an arc ¢;¢; with

H H.
t1 € Hy — {a}, t2 € Hy — {b2}. Therefore the path z > tyt; — v.
is a hamilton path.

Subcase a.2 £ € Hy, y € H;.
Subcase a.2.1 y ¢ {a;,b1}.

We can suppose without loss of generality that z # a3, then

Hy H, .
z — aza; — y is a hamilton path.

Subcase a.2.2 y = a;, z # b2 (y = b1, = # a2).

. H3 \ H‘ \ . .
In this case z > baby *> y is a hamilton path.

Subcase a.2.3 y = a;, z = bs.
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Since D — {ay, b2} is strongly connected there exists {3t; € E(D) with

H H
ty € Hy — {a1}, t; € Ha — {b}, then the path z sy tat — yisa
hamilton path.

Subcase a.3 z,y € H;.
Subcase a.3.1 z,y ¢ {a1,b:}.

In this case we have that the following path:

H—{y,b\l} H; . .
z > ajap ?> bybyy is a hamilton path.

Subcase a.3.2z=a;,y# b (z=b;, y # a1).

H, ”I‘{’\} . 3
Then we have that za; > boby ?> y is a hamilton path.

Subcase a.3.3z=a;,y=b (z=b, y=a).

In this case, it is clear that the problem of finding an zy—hamilton
path it is not altered adding edge (z,y). Therefore the problem is reduced
to Lemma 3.11 when z,y € H;. In this lemma we showed that always
exists an zy—hamilton path, except for cases D3, Dy. Our original digraph
D cannot generate an element of family D3, or an element of family Dy
with [Ha| > 2. But it can generate one of family Dy with |H3| = 2 this
happens when D is a member of described below family Ds.

FAMILY Ds.

The description of family Ds is exactly the same as that of family Dy
with |H3| = 2 and edge (z, y) missing.

Subcase a.4 z,y € H,.

If |Ha| = 2 is trivial that there exists an zy—hamilton path.
We suppose that |H,| > 2.

Subcase a.4.1 z or y ¢ {az, b2}.

Without loss of generality, let us suppose that z ¢ {az, b2} then

H?_(bﬁr\y} H, N . .
z ? a:q > by bay is a hamilton path.

Subcase a.4.2 z = a3, y = bz (z = by, y = ap).

Let ¢ # a3, by be in H,. Since {ay,b1, ¢z} it is not a®—independent
then edges (cz,a;) or (cz, 1) exist. In both cases we interchange ¢, with z
or y and we are in subcase a.4.1.

Case b |H,| = 3, H; = {a1,by,c1}.
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Subcase b.1 |Ha| = 2.

We can apply Overbeck-Larisch Theorem [9], in order to conclude that
D is hamilton connected.

Subcase b.2 |Hy| = 3, |Hz| = {az,b2,¢2}.

There exist edges (a;,cz) or (b, c2). Suppose that (a1, cz) is an edge.
Then putting H} = HyU{a:}, H} = H1 —{c2} we have |H{| > 4 and must
be a(H}) = 2. Hence we are in case a.

Subcase b.3 |Hz| > 3 and we suppose there exists a pair of vertices
c2,d2 € Hy — {as, b2} such that ajc; ¢ E(D) and b1d; € E(D).

In this case there must exist edges (b1, cz) and (a1, d2).
Subcase b.3.1 z = a;, y € H,.

Without loss of genarality we can suppose that y # ca.

. . . Hy H;
In this case the zy—hamilton path is: z > bicy ? y.

Subcase b.3.2 x =a,, y = c;.

In this case the zy—hamilton path is: zaz i') babicy.

Subcase b.3.3 z =a;, y = b;.

Since D—{a,,b;} is strongly connected there exists edge c1¢2. If t2 # by
we have that z¢;t5 —HL) bob; is an zy—hamilton path.

H
If ty # ¢z then zcita — c2b2b, is an zy—hamilton path.

Subcase b.3.4 z € H, y = a;.

H
In this case z — babicia; is an zy—hamilton path.
Subcase b.3.5z € Hy, y =b;.

H
In this case = — asayc1by is an zy—hamilton path.
Subcase b.3.6 z € Hz, y = 1.

Since {z,a;,b1} is not a’—independent edges (z,a1) or (z,b1) exist.
Without loss of generality, let us suppose that (z,a;) exist. Then the
Ha—{z}
zy—hamilton path is zajaz = bobicy.

Subcase b.4

Let us suppose we don’t have the condition of b.3. Then for every c2 #
as, by, (a1, c2) is an edge. Then putting H = HoU{a1}, H; = Hi —{a1},
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we are in case a, because |H}| > 4 and there is only one edge missing from
H} and also H} ia a complete graph.

Theorem 3.13 Let D = (V, E, A) be a 3—connected digraph with «?(D) =
2. Then D is hamilton connecled or isomorphic to a digraph of the family’
D3, Dy or Ds.

Proof. Let G(D) = (V,E). It is clear that a(G(D)) = 2. If G(D) has
structure 3.8.1 of Lemma 3.8 then G(D) and D are hamilton
connected. If G(D) has structures 3.8.2 or 3.8.3 then by Lemma 3.11
and Lemma 3.12 D is hamilton connected except that D is isomorphic to
member of D3, D4 or Ds.

Corollary 3.14 hy(2) = 4.

Proof. By Theorem 3.13 every 3—connected digraph D is hamilton
connected except for all 3—connected isomorphic digraph members of the
family D3, D4 or Ds. Since these members are not 4—connected we can
conclude that h2(2) = 4.
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