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ABSTRACT. A polyhex graph is either a hexagonal system or a
coronoid system. A polyhex graph G is said to be k-coverable
if for any k mutually disjoint hexagons the subgraph obtained
from G by deleting all these k hexagons together with their
incident edges has at Ieast one perfect matching . In this paper
a constructive criterion is given to determine whether or not
a given polyhex graph is k-coverable. Furthermore, a simple
method is developed which allows us to determine whether or
not there exists a k-coverable polyhex graph with exactly h
hexagons. ’

1 Introduction

The terms “hexagonal system” and “coronoid system” are defined in the
usual way. A hexagonal system [1), also called hexagonal animal [2], is a
finite connected plane graph with no cut-vertices in which every interior
region is bounded by a regular hexagon of side length 1. A coronoid system
G [3] is a subgraph of a hexagonal system H which can be obtained from
H by deleting at least one interior vertex of H (i.e. vertex not lying on the
perimeter of H) together with its incident edge, and/or at least one interior
edge (i.e. edge not lying on the perimeter of H) such that each edge of G
belongs to at least one hexagon of G. The graph depicted in Figure 1a
is a coronoid system, the hexagonal system from which it is obtained is
shown in Figure 1b. While Figure 1c shows a graph which is not a coronoid
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system since it has three edges a, b, and ¢ that do not belong to any of its
hexagons.
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From the definitions of hexagonal system and coronoid system it is clear
that for a hexagonal system each interior region is bounded by a regular
hexagon of side length 1, while for a coronoid system there is at least one
interior region bounded by a polygon of more than six sides, this interior
region is said to be a hole. If a coronoid system has only one hole, it is
said to be a single coronoid system; otherwise, it is said to be a multiple
coronoid system. The coronoid system depicted in Figure la is a multiple
coronoid system.

A polyhex graph is either a hexagonal system or a coronoid system.

A perfect matching of a graph G is a set of disjoint edges such that each
vertex of G is exactly an end vertex of some edge of the set. Perfect match-
ings of polyhex graphs coincide with what are called Kekulé structures in
organic chemistry [4].

Let N = {s1,..., sk} be a set of k (a positive integer) mutually disjoint
hexagons of a polyhex graph G, G — N denote the subgraph of G obtained
from G by deleting all the hexagons of N together with their incident edges.
N is said to be a cover of G if G — N is an empty graph (i.e. the unique
graph without vertex and edge), or has at least one perfect matching. For
a given positive integer k a polyhex graph G is said to be k-coverable if
every set N of k (or fewer) mutually disjoint hexagons of G is a cover of G
or there are not k mutually disjoint hexagons in G.

By the definition of k-coverable polyhex graph the following propositions
are evident.

Proposition 1.1. Let G be a k-coverable polyhex graph for a given positive
integer k. Then G is also (k — u)-coverable, where u is a given positive
integer such that 1 <u <k-1.

Proposition 1.2. Let a(G) denote the maximum cardinality of the sets
of mutually disjoint hexagons of a polyhex graph G. Then G is k-coverable
for any given positive integer k > a(G).

A cover of a polyhex graph is just what is called generalized Clar formula
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of the corresponding benzenoid or coronoid hydrocarbon in aromatic sextet
theory [5,6]. The problem concerning coverability of polyhex graphs is an
interesting mathematical problem. Necessary and sufficient conditions for
a polyhex graph to be 1- and 2-coverable are known [7-10]. Criterions for
a benzenoid system and a single coronoid system to be k(> 3)-coverable
were reported in [9] and [10), respectively. Note that in ref. 10 the term
“coronoid system” actually refers to “single coronoid system”. Our work
will fill the gap: when a multiple coronoid system is k(> 3)-coverable.
Furthermore, a simple method is developed to determine whether or not
there exist a k-coverable polyhex graph with exactly h (a positive integer)
hexagons.

Figure 2. A k-coverable multiple coronoid system

2 k-Coverable Polyhex Graphs

First we need some more terminology. For a coronoid system the perimeter
of each hole is said to be an inner perimeter, while the perimeter of the
hexagonal system from which it is obtained is said to be the outer perime-
ter. Thus a single coronoid system has one outer perimeter and one inner
perimeter, a multiple coronoid system has more than one inner perimeter.

35



Both outer and inner perimeters are called perimeters. Let e be an edge of
a coronoid system G. If e does not lie on the perimeters of G, but two end
vertices of e lie on the perimeter of G, then e is said to be a chord of G. If
the two end vertices of e are simultaneously on the outer perimeter of G,
or on the same perimeter of a hole, ¢ is said to be of type I. Otherwise, e is
said to be of type II. The reader is referred to Figure 2 for an illustration.
For the coronoid system shown in Figure 2, e;, ez, €3 and e, are of type I,
and all the other chords are of type II.

The hexagonal systems depicted in Figure 3 are designated as a crown
and a T}, (n is an integer not less than two), respectively. For each T;, we
specify two edges on the perimeter to form an attachable set (see Figure 3).
Each crown has six edges on its perimeter with two end vertices of degree
two. They are divided into two attachable set each of which has three
non-parallel edges (see Figure 3). Similarly, for a single hexagon three non-
parallel and non-adjacent edges form an attachable set. Thus as a crown a
single hexagon has two attachable sets.

a T (n=2m)

a crown

A subgraph G’ of a polyhex graph G is said to be normal if it satisfies:

1. G’ is a crown, or a T}, (n is an integer not less than 2), or a single
hexagon;

2. ¢’ contains at least one and at most three chords of G such that these
chords form a subset of the attachable set of G;

3. deleting of these chords will separate G’ from G.

For example, the single coronoid system shown in Figure 4 has seven normal
subgraphs. Among them there are one crown, one single hexagon and five
T3’s.

It is not difficult to see that any two normal subgraphs have at most one
edge in common which is a chord of G. A polyhex graph G is said to have
a normal decomposition if G has normal subgraphs Gy, ..., G: such that
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each hexagon of G belongs to exactly one G;(i = 1,...,t). The coronoid
depicted in Figure 4 has a normal decomposition.

Figure 4

Note that when G itself is a T,,, or a crown, or a single hexagon, we also
say that G is a normal subgraph of itself. Hence a T, or a crown, or a
single hexagon has evidently a normal decomposition.

A hexagon of a polyehex graph is said to be external if it has at least one
edge on the perimeter (inner or outer); otherwise, it is said to be internal.

Lemma 2.1. Let G be a k-coverable polyhex graph for a given positive
integer k > 3. Then

(1) G cannot have three consecutive vertices on its perimeter such that
the first and the last ones are of degree three and the second one is
of degree two (see Figure 5(a)).

(2) G has no subgraph as shown in Figure 5(b).
(3) Any two internal hexagons of G are disjoint.

(4) The vertices on the perimeter of any crown which is a subgraph of G
are on the perimeter of G.

(5) G has no such external hexagon that has exactly two parallel edges
on the perimeter of G.

Proof:

(1) If there are three consecutive vertices v;, v and w3 on the perimeter
as shown in Figure 5(a), then {sy, 83} is not a cover of G, and G is not
2-coverable, contradicting that G is k-coverable for a given positive
integer k > 3.
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Figure 5

(2) If G has such a subgraph as shown in Figure 5(b) then {s,, s, s3} is
not a cover of G, again a contradiction.

(3) If G has two internal hexagons s, and s with an edge in common,
then G has a subgraph consisting of five hexagons s3, 32, 84, 85 and
s¢. (see Figure 5(c)) It is impossible by (2).

(4) By (2) there is no hexagon on the positions each of which has a star
(see Figure 5(d). Hence all the vertices of the crown must be on the
perimeter of G.

(5) Let s be an external hexagon with exactly two parallel edges on the
perimeter (see Figure 5(e)). We may further assume that s is upper-
most in the sense that s’ does not belong to G, or s’ does not have
the same property as s. By (2) neither of s; and s> belongs to G.
Again neither of s3 and 34, belongs to G by (1). If s’ does not belong
to G, {s} is not a cover of G, a contradiction. Hence s’ must be in G.
since s and sj form a cover of G, at least one of s5 and sg belongs
to G. If one of them is in G, then the other must also be in G (by
(1)). Then ¢’ is an external hexagon possessing the same property as
s, contradicting the selecting of s.

Let G’ be a subgraph of G. We use the symbol G — G’ to denote the
subgraph of G which is obtained from G by deleting all the vertices and
edges of G’ except those edges which are chords of G. For example, suppose
that G is the coronoid system depicted in Figure 4, G’ is the crown of G
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then G — G’ will be a disconnected graph consisting of two components as
shown in Figure 6.

Figure 6

Theorem 2.2. Let G be a k-coverable polyhex graph for a given positive
integer k > 3. Then G has a normal decomposition.

Proof: It suffices to prove that each hexagon s of G is contained in a normal
subgraph of G. We distinguish six cases according to how may vertices of
s lie on the perimeter of G.

Case 1 s has no vertex on the perimeter of G. This means that s is an
internal hexagon of G. Let the crown containing s as its center be G'.
By Lemma 2.1(4) all the vertices on the perimeter of G’ are also on the
perimeter of G. This implies that the intersection of G’ and G - G’, i.e.
(G -G"YNG' is a set consisting of some isolated edges on the perimeter of
G’. Now we prove that (G — G’) N G’ is a subset of an attachable set of
G'. First |(G — G') N G'| < 4, otherwise, a pair of ¢; and €] (1 < i < 3)
belongs to (G — G') N G’ (cf. Figure 3), which contradicts Lemma 2.1(2).
If (G — G’) N G’ contains both e; and €, for some 1 < 1, j < 3 ,then either
(G — G") NG’ contains a pair of e; and e} for some 1 < i < 3, or a pair of
e; and e, (where i +1 is taken modelo 3) or a pair of ¢; and €}, , (Where
i+ 2 is take modulo 3) for some 1 < i < 3. The first two cases contradict
Lemma 2.1(2) as mentioned above. For the last case the two hexagons in
G — G' containing e; and ], respectively together with s will not form
a cover of GG, which contradicts the fact that G is k-coverable for a given
positive integer k > 3. Therefore, (G —G’)NG’ is a subset of an attachable
set of the crown G’ containing s as its centre. Consequently, G’ is a normal
subgraph of G by the definition of normal subgraph.
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Case 2 s has exactly two vertices on the perimeter of G. It is clear that G
has a subgraph which is a T3 (see Figure 7) Let T;,, be the maximal subgraph
of G containing s in the sense that no other T,, which is a subgraph of G
and contains T,,. By Lemma 2.1(2) there is no hexagon of G on each
position with a star. There is no hexagon of G on the positions each of
which has a double star (Lemma 2.1(4)). Thus there is no hexagon of G on
position 1 (Lemma 2.1(1)). If there is a hexagon on position 2, there must
also be a hexagon on position 3 (Lemma 2.1(1)). But this contradicts the
maximality of T;,. Hence it is the only possibility that there is a hexagon
of G on position 3. This means that edge e is either on the perimeter of G
or a member of the attachable set of Ty,. The same is true of edge e’. Let
G' =Tn. If G #G', then (G-G')NG' = {e} or {e'} or {e,e'}. Itisa
subset of the attachable set of T,,. Consequently, G’ is a normal subgraph
of G.

Case 3 s has exactly three vertices on the perimeter of G. By Lemma
2.1(1) this is impossible.

Case 4 s has exactly four vertices on the perimeter of G. By Lemma 2.1(5)
these four vertices cannot appear on two parallel edges of s. We distinguish
two subcases.

Subcase 4.1 s has three consecutive edges on the perimeter of G (see
Figure 8.1). If s is not in G, neither s4 nor ss belongs to G (Lemma 2.1(1)
and (5)). Analogously, if s is not in G, neither of s¢ and s7 belongs to G.
Hence if neither of s; and s; is in G, s is contained in a Tp. Let G' = T.
If G # Ty, then (G — G') NG’ = {e} is a subset of the attachable set of
T». Therefore, G’ is a normal subgraph of G. If at least one of s; and s»
belongs to G, we may assume that s; is in G. By Lemma 2.1(1) one or
both of s> and s3 must belong to G. In the former case s* is a hexagon
with exactly two vertices on the perimeter of G. In the latter case s* is
an internal hexagon of G. By the conclusions of case 1 and case 2, s*, and
therefore s, is contained in a normal subgraph of G.

Subcase 4.2 s has two non-parallel and non-adjacent edges on the perime-
ter of G (see Figure 8.2). By Lemma 2.1(2) there is no hexagon of G on each
position with a star. There is no hexagon on each position with a double
star (Lemma 2.1(1)). If on neither of positions 1 and 2 there is a hexagon of
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G, then it is not difficult to see that s is contained in a normal subgraph of
G which is a 7. Now suppose that at least on one of the positions 1 and 2
there is a hexagon of G. Then &’ or s” will be a hexagon with exactly three
consecutive edges on the perimeter of G. By the conclusion of subcase 4.1,
s’ (or s”), and therefore s, is contained in a normal subgraph of G.

2) (©)]

Case 5 s has five vertices on the perimeter of G. If there is no hexagon of G
on position 1 (see Figure 8.3), then there is no hexagon on positions 2,3,4,
and 5. (Lemma 2.1(1) and (5)). This means that G is a benzenoid system
consisting of three hexagons and has no perfect matching, a contradiction.
Hence there must be a hexagon on position 1. Now s* is a hexagon with
at most four vertices on the perimeter of G. By the conclusions of cases 1
to 4, s*, and therefore s, is contained in a normal subgraph of G.

Case 6 s has six vertices on the perimeter of G. Then G consists of a single
hexagon. The conclusion holds.

When confined to hexagonal systems or single coronoid systems, we have
the following corollaries which can be regarded as the main results in [9]
and [10].

Corollary 2.3 [9]. Let G be a k-coverable benzenoid system without
chords for a given positive integer k > 3. Then G is a crown, or a Ty, or a
hexagon.

Corollary 2.4 [10]. Let G be a k-coverable single coronoid system without
chords of type I for a given positive integer k > 3. The chords of type II
are denoted by ey, ey, ..., e, such that the section of G between chords e;
and e;;) inclusive, designated by G(e;,ei+1), will not contain any other
chords of G except e; and e;11,i=1,2,...,t, where i+ 1 is taken modulo
t. Then G(e;,€i+1) is a normal subgraph of G for i =1,2,...,t.

For each k-coverable polyhex graph G we construct a plane graph G*:
the vertex set of G* is the set of normal subgraphs of G, two vertices of G*
are adjacent if and only if the corresponding normal subgraphs of G have
an edge in common. It is clear that G* is a tree when G is a k-coverable
hexagonal system, and G* is a cycle when G is a k-coverable single coronoid
without chords of type I. For a k-coverable single coronoid system G with
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some chords of type I, G* is a cycle with some pendent paths. When G is
a k-coverable multiple coronoid, G* is a plane graph with multiple cycles.

We have already known that a crown, a T, and a single hexagon are k-
coverable for a given positive integer k > 3. Furthermore, it is not difficult
to verify that the subgraph of a crown obtained by deleting some edge(s)
which belong to an attachable set of the crown is still k-coverable for a give
positive integer k > 3. The same is true of T;,. Based on this fact, we have
the following.

Theorem 2.5. Let G be a polyhex graph. If G has a normal decomposi-
tion. then G is k-coverable for a given positive integer k > 3.

As a direct consequence of Theorem 2.2 and 2.5 we get a criterion for a
polyhex graph to be k-coverable for a given positive integer k > 3.

Theorem 2.8. For a given positive integer k > 3 a polyhex graph G is
k-coverable if and only if G has a normal decomposition.

Remark: Let G be a 3-coverable polyhex graph. Taking k = 3 in the
above theorem, the necessity of the theorem ensures that G has a normal
decomposition. Then by the sufficiency of the above theorem for k =4, G
is also 4-coverable. In a similar way we come to the conclusion that if G is
3-coverable then G is k-coverable for all positive integer not less than 3. On
the other hand, by Proposition 1.1 G is also 1-coverable and 2-coverable.
Therefore, if G is 3-coverable then G is coverable for all positive integers
k=1,2,3,.... We make convention that in the following if we say that G
is k-coverable without pointing out the concrete value of k, it means that
k is taken all positive integers.

3 Realization Of k-Coverable Polyhex Graphs With H Hexagons

From previous section the constructive feature of k-coverable polyhex graphs
is clear. Now we concentrate ourselves to the problem: whether or not
there exists a k-coverable polyhex graph with exactly k (a positive integer)
hexagons.

As a common knowledge it is much easier to draw a polygon than a
polyhex graph. By setting up a correspondence between polyhex graphs
and polygons, we transfer the problem of determining whether or not there
is a k-coverable polyhex graph with k (a positive integer) hexagons to a
problem of drawing a polygon with some properties. From section 2 we
know that a k-coverable coronoid system with some chords of type I can
be separated into two parts: one is a k-coverable coronoid system without
chords of type I, and the other consists of some k-coverable hexagonal sys-
tems (cf. Figure 2). It is not difficult to see that for any positive integer
h there exists a k-coverable benzenoid system with h hexagons. For exam-
ple, a single zigzag chain (i.e. a cata-condensed hexagonal system with A
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normal subgraphs which are all single hexagons, cf. [11]) is a required one.
Furthermore, the answer is not unique. When h =2n (n 2 2), T, is a
k-coverable hexagonal system with h hexagons. When h =2n-+1 (n > 5),
the hexagonal system with two normal subgraphs, one being a T,,—3 and
the other being a crown; or one being a T,, and the other being a single
hexagon, is also a required k-coverable hexagonal system. In the following
we will confine ourselves to k-coverable coronoid systems without chords of
type 1, and start from single coronoid systems.

3.1 Realization Of k-Coverable Single Coronoid Systems

Let C be the hole of a k-coverable single coronoid system. Edges e, e3,...,
em be the chords of type II each of which has an end vertex v; (i =
1,2,...,m) on the perimeter of C such that vy, vs, . .., v appear clockwise.
We denote the normal subgraph between e; and e;;; (i+1 is taken modulo
m) by G(3,i+1) (i =1,2,...,m). It is easy to see that for G(i,i+1) = To,
there is a unique hexagon with three consecutive vertices of degree two on
the perimeter of C (cf. Figure 9, hexagon s is such one). We refer to this
hexagon as the characteristic hexagon of the corresponding T3,,. We con-
struct a polygon corresponding to G in this way: place a vertex in the centre
of characteristic hexagon of each normal subgraph G(j,5 + 1) = Ta; and
denote it by v}; connect v; and v}, vj and v;4, for each G(j,5 +1) = Ty,
connect v; and v;4; for G(i,i 4+ 1) = Ty,4, or a crown, or a hexagon. De-
note the resultant polygon by P(G). It is evident from the construction
that a T34 contributes a side to P(G) whose length is 3t +1 or 3t +2. In
the former case Ty;1 is said to be regular, in the latter case it is said to
be irregular. For a Ty, it contributes two consecutive sides to P(G), their
lengths are 2 and 3t -1, or 3t—1 and 2 (clockwise). Similarly, in the former
case T; is said to be regular, and in the latter case it is said to be irregular
(cf. Figure 9). For a single hexagon which is a normal subgraph of G, it
contributes a side of length 1 or 2 to P(G), and is said to be regular or
irregular. Similarly, a crown is said to be regular or irregular depending on
whether the length of the side contributed by it is 4 or 5. It is not difficult
to see that the inner angles of P(G) are 27/3, or 7, or 47/3; and the lengths
of sides of P(G) can be expressed as 3t —2, or 3t —1 (¢t > 1). A side with
length 3t — 2 is contributed by a regular T,, with odd n (a regular crown, a
regular single hexagon) .For a side with length 3¢ — 1 it may be contributed
by a T,, with even n, or an irregular T,, with odd » (an irregular crown,
an irregular single hexagon). In the former case the side is referred to as
E-type, and in the latter case as O-type. The relation between sides and
angles of P(G) can be described in detail as shown in Chart I.

A k-covrerable single coronoid system G and its corresponding polygon
P(G) are shown in Figure 9.
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Figure 9

Now suppose that P is a polygon satisfying the following rules.
(1) Any inner angle of P is 27/3, or m, or 4n/3.
(2) Let a be a side of P. Then |a| =1 (mod 3), or |a] =2 (mod 3).

(3) The sides with |a] = 2 (mod 3) is divided into two classes: one re-
ferred to as E-type, and the other as O-type.

(4) The relation between angles and sides is given in Chart L.
(5) A side of E-type is always a side of an angle of 47/3.

Anglc bl 3t—1
3t-2
lal E-type | O-type
312 2r /3 2n/ 3 R
E—typc 2r/3 4n/ 3 7
31
O-lypc n n 4r/3

Chart I (a and b denote two consecutive sides of P)

Note that the above rules are just those that are satisfied by P(G).

For each polygon P obeying above rules, we can construct a correspond-
ing k-coverable single coronoid system in the following way.
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(1) Let b be a side with [b] =1 (mod 3),i.e. [b| =3t —2. Ift =1, let b
correspond to a regular single hexagon; if ¢ = 2, let b correspond to a
regular crown or a regular Ty, (i.e. T3); if ¢ > 2, let it correspond
to a regular Ty,_;.

(2) Let two consecutive sides a; and a; of E-type together with the in-
ner angle between them correspond to a To,, where m = max{t,r},
la1] = 3t — 1, |az| = 3r — 1. (note the inner angle between a; and ay
must be 47/3 by Rules 4 and 5).

(3) Let c be a side of O-type. Then |c| = 3¢t—1. If¢t = 1, let ¢ correspond
to an irregular single hexagon; if ¢ = 2, let ¢ correspond to an irregular
crown or an irregular T5,_; (i.e: T3); if t > 2, let it correspond to an
irregular T5,..;.

Suppose that G is a k-coverable single coronoid system without chords of
type I. G has h hexagon and u normal subgraphs Gy, Gy, ...,Gy, G; has k;
hexagons (i = 1,2,...,u). Then (hy,h2,...,k,) is an integer partition of
h,and h; =1, 0or 7, or 4¢; (t; > 1), or 4¢; -2 (¢; > 2). Let the corresponding
polygon be P(G). The side length sequence of P(G) can be obtained from
(h1,ha,. .., hy) in this way: if h; = 4¢; (¢; > 1), substitute k; by 2¢ and
(3ti — 1)°, or (3ti —1)° and 2% if h; = 4t; — 2 (t; > 2), substitute h; by
(3t — 1)° or 3¢; — 2. It is evident that the resultant sequence has u +n
(h; = 4t;) numbers, where n(h; = 4t;) denotes the number of h;’s with
h; = 4t;; if h; =1, substitute it by 1 or 2; if k; = 7, substitute it by 4 or 5.
Note that a number with a superscript e indicates that the corresponding
side of P(G) is of E-type, while a number with a superscript o indicates
that the corresponding side is of O-type.

We are now in the position to describe our method to determine whether
or not there is a k-coverable single coronoid system without chords of type
I and with exactly h hexagons, and find out all such coronoid systems, if
any.

Step 1 Find out the set of integer partitions of A: .
{(hy, ha, .. h)|Zhi = h, hy =1,7,4¢, (t; 2 1), or 4¢; —2 t:i=22),u> 6}
(Note: the inequality u > 6 is obtained from inner angle sum rule of poly-
gons.)

Step 2 For each partition (hy, k2,...,h,) find out the set N of all cor-
responding number sequences.

Step 3 For each number sequence of N check whether or not there is
a polygon satisfying the rules in Chart I, and find out the corresponding
k-coverable single coronoid system, if any.
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3.2 Realization Of k-Coverable Multiple Coronoid Systems

As mentioned in section 2, each k-coverable polyhex graph G corresponds
to a plane graph G*: the vertex sat of G* is the set of normal subgraphs of
G, two vertices of G* are adjacent if and only if the corresponding normal
subgraphs of G have an edge in common. If G is a k-coverable multiple
coronoid system without chords of type I, G* is a plane graph with multiple
cycles. Hence the constructing of a k-coverable multiple coronoid system
can be regarded as a series of constructing of k-coverable single coronoid
systems. For example, constructing the multiple coronoid G depicted in
Figure 10 can be reduced to constructing of three single coronoid system
G1, G2, and G3. In the following we outline the method to determine
whether or not there exists a k-coverable multiple coronoid system with h
hexagons.

Gz G,
Figure 10

Suppose that (hy, k2, ..., k) is an integer partition of h with r > 2.

Step 1 Determine the set Z; of k-coverable single coronoid systems with
k, hexagons. If Z; = ¢, check another integer partition of h. If Z; # ¢, go
to next step.

Step 2 Take a k-coverable coronoid system from Z;. Denote the corre-
sponding partition by (h11, h12,...,h1u). If there exist ¢ and ¢ such that
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his,h1i4e € {1,7} (1 < i,i 4+t < u) go to next step. Otherwise, check
another k-coverable coronoid system in Z; until there is no one left in Z,
and stop.

Step 8 Find an integer partition of hy: (hgy,heg,...,hs,). Determine
the set Z> of k-coverable single coronoid system such that the correspond-
ing partition is (hllx hl?; ey hli: h2l$h22’ ey h2u; hli+¢) hli+t+1) seey hlu)-
If Z; = ¢, check another integer partition of k2. If Z; # ¢, go to next step.

Step 4 Take a k-coverable coronoid system from Z,. Rewrite the parti-
tion as (ho1, h2a, ..., hag). If there exist i and ¢ such that hg;, hoit. € {1, 7}
(1 £4,i+t < d) go to next step. Otherwise, check another k-coverable
coronoid system in Z, until there is no one left in Z5, and stop.

Step 5 Find an integer partition of hs: (ha, kg, ..., ha.). Determine the
set Z3 of k-coverable single coronoids with partition (h2y, h2s, ..., hai, hai,
has, ..., Rhae, hoits, h2¢+g+1, ceey hu). If so, go to next step. Otherwise,
check another integer partition of h3.

We need not to go further, that is enough. The remaining steps are just
repetition of steps 4 and 5 by replacing h;j by hj.;. In the following we
give an example as an illustration.

Suppose h = 77. (hy, k2, ha) = (22, 30,25) is an integer partition of .
In step 1 we find a k-coverable single coronoid system G; with h; = 22
hexagons (see Figure 10). In step 2 we denote the corresponding partition
ofGl by (hu,hlz, veey hl,lO) = (1, 7, 1, 1, 1, l, 1, l, 1, 7), and find: = 3, t=4
such that h; = hg = h;;, = hy = 1. In step 3 we give an integer partition for
ha = 30: (h21,haa, ..., h2,15) = (1,1,1,1,1,1,4,1,1,1,8,1,6,1,1), and find
a k-coverable single coronoid system Ga with partition (hy1, k12, k13, ko1, ko2,
e sh2,15t hl7r hlSs tht hl,lO) = (l: 71 l: 1: 1: 1) l’ 1) 1$4v 1, 11 1’ 81 116! 1) 1: 1:
1,1,7) (see Figure 10). In step 4 we rewrite the partition as (hzj, Ao, ...,
ha 22), and find ¢ = 15, ¢ = 7 such that hy; = hy 15 =1and hp iy = ha 22 =
7. In step 5 an integer partition is given for h3 = 25: (haj, haa, .. ., h3 14) =
(1,1,1,1,7,1,1,1,1,1,1,1,1,16) and find a k-coverable single coronoid sys-
tem G3 (see Figure 10) with partition (th, hoa, ..., h2'15, hay, hag, ..., h3,14,
h2,22) = (1’ 71 1: 1’ 1) 1: 1: 1’ 114' 1: 1; 1’8) l! 1: 1: 1’ 1s7s 1’ 1; 11 1’ 1) l) 11 1,6)-
Consequently, the union of G;, G2 and G, i.e. G (see Figure 10) is a
k-coverable multiple coronoid with h = 77 hexagons.
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