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ABSTRACT. The class of t-sc graphs constitutes a new general-
ization of self-complementary graphs. Many ¢-sc graphs exhibit
a stable complementing permutation. In this paper, we prove a
sufficient condition for the existence of a stable complementing
permutation in a ¢-sc graph. We also construct several infinite
classes of t-sc graphs to show the stringency of our sufficient
condition.

1. Introduction and Definitions

The class of self-complementary graphs has been extensively studied by
many people, among others by C.R.J. Clapham [1], R.A. Gibbs [8], S.B. Rao
[11], G. Ringel [12] and H. Sachs [13]. Many problems have been solved for
this class of graphs, such as the hamiltonian problem and the characteri-
zation of potentially and forcibly self-complementary degree sequences (see
the references given in [11]). This interesting class has also been generalized
into the class of multipartite self-complementary graphs by T. Gangopad-
hyay and S.P. Rao Hebbare [5]. Several important notions such as path-
length and range of diameters have already been studied for the generalized
class (see [6], [7]).

In an earlier paper [4], we have presented a new generalization of self-
complementary graphs called the t-sc graphs. Various properties of this
class of graphs have been studied generalizing earlier results of Ringel [12]
and Sachs [13]. In particular, stable complementing permutations, a notion
associated with t-sc graphs have been extensively studied in [4]. In [3],
we have shown the existence of a canonical stable complementing permu-
tation for all ¢-sc graphs that have a stable complementing permutation
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generalizing an earlier result on self-complementary graphs (see Gibbs (8]).
In the present paper we provide a sufficient condition for the existence
of stable complementing permutations in a ¢-sc graph. We also show by
constructing infinite classes of t-sc graphs that our sufficient condition is
quite stringent.
Given an integer ¢, the t-tuple G = (G1,Ga, ..., G:) is called a t-sc graph
if there exists a complete graph G such that

i) each G; is a spanning subgraph of G,
ii) E(G) is the disjoint union of E(G:), E(G2), ..., E(G:),
ili) G1,Gy,...,G, are all isomorphic graphs.

Let (G, Ga,...,G;) be a t-sc graph. Let o; be an isomorphism from G;
to Gi41, 1 £i < t—1 and o, be an isomorphism from G, to G;. Then the
t-triple (01,02,...,0¢) is called a complementing permutation class (cpc)
for (G1,Ga,...,Gy).

Let 7 be a cycle of o;. We denote by || the length of «, i.e., the number
of vertices of G; contained in 7.

Clearly if t = 2 then G2 = G and G, is a self-complementary graph
in the usual sense. Also if (01,02) is a cpc for (G1, Gz) then o) is a com-
plementing permutation for the self-complementary graph G| in the usual
sense of the term.

Let (01,02,...,0¢) be a cpc for a t-sc graph. If o0y = 02 = --- =
oy = o (say) then o is called a stable complementing permutation (scp)
for (G1, Gz, Gg)

Figure 1.1 depicts a 5-sc graph on 5 points with (uzjugugusus) as an scp.
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up Uy U3 Yy ug U U, Uz Uy ug U Uy Uy u, ug
Gy Gy Gy
Uy Uy U3 Uy ug U Uy U3 oy, ug
G4 Gs

Figure 1.1

For other examples and infinite classes of connected t-sc graphs with
scp’s, please see [4].

It is not true that every t-sc graph G has an scp. Sections 3,4 and 5 of
this paper give infinite classes of ¢-sc graphs without any scp.
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In Section 2, we use the following lemma, proved in [4].

Lemma 1.1. Let (01,02,...,0:) be a cpc for at-sc graph (G, G, ...,G4).
Ifoy =09 =+ =041 = o (say), then o is an scp for (G1,Ga,...,G¢).

For all undefined terms we refer to Harary {10].

2. A Sufficient Condition for an SCP

In this section we present a sufficient condition for the existence of an scp
in a given ¢-sc graph. This is done in the following

Theorem 2.1. Let G = (G1,Ga,...,G;) bet-sc. Let o be an isomorphism
from G; to Giyy, for all 1,1 < i <t —2. If o® is the identity permutation,
forsomes#t—1,1<s8<2t—3, theno isan scp for G.

Proof: We first prove that ¢ is an isomorphism from G,—; to G;.

Let wv € E(G,—;). We shall show that o(u)o(v) € E(G:). Clearly,
a(u)o(v) € E(G;) for some i, 1 <1 < t. Suppose first 2 <i <t —1. Then
uwv € E(G;_;). Soi—1=1t —1, a contradiction.

Suppose next ¢ = 1. We then consider two ranges of s separately. Sup-
pose first 1 < 8 < ¢t — 2. Then o(u)o(v) € E(G,) which implies that
uwv = 0°(u)o?(v) = o°~(o(u))o® " (o(v)) € E(G14s—1) = E(G,), a con-
tradiction since s <t — 2 and uv € E(G;—).

Suppose next ¢t < s < 2¢t — 3. Then o(u)o(v) € E(G;) — o?(u)o?(v) €
E(G3) = -+ = 0* " 2(u)o*~t+2(v) € E(Cy—t42) (since s —t+2 <t —1).
But wv € E(Gi—1) = o7 (u)o™1)(v) € E(Gi-2) = o° (u)o*"}(v) €
E(Gi—2) = 0 2(u)o*%(v) € E(Gi-3) — -+ = o* tt2(u)o*~t2(v) €
E(G,). Hence s —t +2=1 — s =1t — 1, a contradiction.

Thus ¢ = 1 also leads to a contradiction. Hence i = ¢ and we have proved
that o(u)o(v) € E(G,).

Conversely let uv ¢ E(G;—1). We shall prove that o(u)o(v) ¢ E(Gy).
Suppose o(u)o(v) € E(G,). Let E* = {o(w)o(z) | wz € E(G¢—1)}. Then
by our earlier reasoning E* C E(G.). Also o(u)o(v) € E(G,) — E*. So
|E(G:)| > |E*| = |E(G:¢~1)|- This is a contradiction since G, is isomor-
phic to G,.

This proves that ¢ is an iosmorphism from G;_; to G; also. The theorem
now follows from Lemma 1.1.

Corollary 2.2. Let G = (G1,Ga,...,G;) bet-sc. Let o be an isomorphism
from G; to Gy, for all i, 1 < i <t—2. If every cycle of o is of the same
length s for some s #t—1,1< 3 <2t -3, then o is an scp for G.

Proof:. Clearly o® = identity for some 8 #t—1, 1 < s < 2t —3. The proofs
now follows from Theorem 2.1.
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Corollary 2.8. Let G = (G1,G2,Gs). If there is an isomorphism o from
G, to Gy such that all cycles of o have length 3 then o is an scp for G.

In Figure 2.1, we illustrate Theorem 2.1 for s = ¢t = 3. Here o =
(124)(365) is an scp for G = (G1, G2, Gs) since it is an isomorphism from
Gl to Gz.

u U2 u2 0 Uy
1 u =
0/\ “ 1 uy
3
l o U3 0 Uy
o 4 Ye, u,
u 4
U6 \/ 6
u
5 ug ug
G, G, 3
Figure 2.1

3. On the Stringency of the Sufficient Condition

In this section, for every odd ¢ > 7, we construct a ¢-sc graph without an
scp, thereby showing that in Theorem 2.1, the maximum value of i cannot
be reduced from ¢ — 2 in general. This in a way restricts the scope of any
improved version of the theorem. Our construction is as follows:
Construction 38.1: Let n > 3 and ¢t = 2n+1. Define § = (G,,Gy,...,G:)
where V(G;) = {u1,u2,...,u2a41} foralli,1 <i<¢and

{uiut"i'j|j=2)3a'“an}u{ui+lul'+2} ifl1<ig<t-2
E(Gi) = { {uznyj |1 <j<n-— 1} U {ugn41u2} ifi=t-1
{uznt195 | 3 <5 < n}U {ugnp1u, maup} ifi=t

where all u-subscripts are taken modulo (2n + 1).
Figure 3.1 illustrates the construction for n = 4.

For the rest of this section, G, G; will always be as in Construction 3.1.
Further, we shall denote by o the permutation (uju2...u;). We now prove
several properties of G.

Lemma 3.1. The permutation o is an isomorphism from G; to Gi41,
1<igt-3.
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Figure 3.1: An illustration of Construction 3.1 for n = 4.

Proof: Let 1 <i <t —3 and w,z € V(G;). Now

wz € E(G;) < either wr = u;u; 5 for some j,2<j<n

This proves the lemma.
Lemma 3.2. G;_2,G;_; and G, are isomorphic.

OF WZ = Ui41Ui42
& either o(w)o(x) = ui41ui4145 for some j,

2<j <noro(w)o(z) =uir1r1%ir142
#a(w)a(z:) € E(G.'.H)
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Proof: This follows since

2n-2
oe2=(1)2n-12n2n+1234...n-1) [[ ()
i=n
is an isormophism from G;_2 to G;_; and
2n—-1
gi1=@2n2m+121345...n) [] ()
i=n+1

is an isomorphism from G, to G;. Note that ;2 and o, are both well
defined since n > 3.

Lemma 3.8. The graph §G is t-sc.
Proof: Note that

t—2
U BG:) = {wimss 12<5 <n1 S S 6= 2HU {witigz [ 1K< -2}

i=1

. »
= (U{"i“i+j|1555t—2}) U{sipuie |1 <<t -2}
j=2

and

 E(Gi—1) UE(G:) = {te—1u—145 | 2 < 5 Sn} U {ueuey; |3 <j<n}U
{ueuy, veun, uiuz}

- (0 {wiuigj |t -1<i< t}) U {ueu1, uruz} .

j=2

So

t n
UJEG) = (U {uwm-llsiﬁt}) U{muipr |1Si<t}

=1 Jj=2

n t
= J fwmys 128t} = {wwina 115 <}
j=1 =1
t t—1
= fwus li+1<5 <itn}=J{wu li+1<i<t}
i=1 i=1
This proves that K is a disjoint union of the graphs G1,Gs,...,Gi. The
lemma now follows from Lemmas 3.1 and 3.2.

54



Theorem 3.4. The graph G is t-sc without any scp, although o is an
isomorphism from G; to G;41,1 <t <t -3.

Proof: By Lemmas 3.1 and 3.3, it is enough to prove that G has no scp.
Suppose 7 is an scp of G. We consider two cases:

Case 1: n > 4. Then vu; is the only point of degreen—1in G;,1 <i <t. So
m = (ujugug...u:). But then u,u; € E(G;) whereas n(u¢)w(u;) = ujup ¢
E(G,), a contradiction.

Case 2: n = 3. By Construction 3.1, either 7 = (ujuz...u7) and we get a
contradiction as in Case 1, or, 7(u4) = ug, m(u3) = u2, and then although
uguy € E(G3), m(uz)m(us) = upus ¢ E(G3), also a contradiction.

Thus, in each case, we obtain a contradiction, and hence, G has no scp.
This proves the theorem.

We conclude the section by constructing a 5-sc graph ¢ = (G, G2, G3, G4,
G5) which has no scp although there is an isomorphism o from G; to Gi41
for i =1, 2. This is given in Figure 3.2.

uy Uy u,
Q‘
A ‘,_S, olo
O o 35 o o o o]
u Ug
u2 3 u3 \14 us ul u4 05 ul “2
Gl (32 G3
U4 u2
u %L [o] o] O—l [+] o
2 Y U3 Ug Y Us Yj Uy
G 4 GS
Figure 3.2

The graph G = (G1,Gy,...,Gs) has no scp since if # was an scp for
G then by construction n(u4) = m(u;) = us a contradiction, even though
o = (ujupu3usug) is an isomorphism from G; to G4, i =1,2.

4. An Infinite Class of t-sc Graphs with no SCP-¢t Odd

In this section, for every odd integer ¢ > 3, we construct a graph with certain
properties, thereby showing that the range of s in Theorem 2.1 cannot be
extended to include certain values. This in a way restricts the scope of any
improved version of the theorem. Our construction is as follows:
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Construction 4.1: Let ¢t = 2n + 1. Define ¢ = (G1,G3,...,G;) where
V<Gi) = {ulv U2yeee 1"&—1:”} and

4

{uzn4i-19 U {tisjUntizj—1, Untiti¥2n+i—j—2|7=0,1,...,m—1}
ifn=2m+4+1land1<i<t-1

E(Gy)= {uzn+i-19} U {84 junti—j-1 1§ =0,1,...,m =1}

{untitsuonti-j—2 |3 =0,1,...,m -2}
ifn=2mand1<i<t-1

{ujunsi 3=1,2,...,n}ifi=t.

\

where all u-subscripts are taken modulo (2n).

For the rest of this section, G, G; will always be as in Construction
4.1. Further, we shall use the graph G! repeatedly, where G; = G; — v,
1<i<t-1. Also o’ will denote the permutation (ujup...u;_1) and o
the permutation (ujuz...u—1)(v).

Below, in Figures 4.1 and 4.2, we illustrate Construction 4.1 for ¢ = 7
and t = 9 respectively.

We say that an edge u,u, of Gj is an i-pairin G; if k, £ < ¢, and |k—¢| = i

(modt—-1),1<j<t 1<i<n

In order to prove that G has certain properties we make use of the notion
of ‘elegant numberings of a graph’. This is defined below.

A numbering N of a graph G, which has p points and ¢ edges is an
assignment of nonnegative integers to the points and edges of G so that
each point v receives a distinct number N(v) and each edge uv receives the
number N(uv) = |N(u) — N(v)|. Further N is called an elegant numbering
of G if the edges of G receive the numbers 1,2,...,q and the maximum
number assigned by N to a point of G is max(p, q). We call G elegant if G
has an elegant numbering.

The notion of elegant numbering is clearly a generalization of the notion
of graceful numbers (Golumb [9]). It is evident that if ¢ > p, then there
is no difference between an elegant numbering and a graceful numbering.
Thus in particular, all connected graphs are graceful if and only if they
are elegant. Further results on elegant numberings are presented in [2].
We now state a series of results that lead to Theorem 4.9, the main result
of this section. Except for Lemma 4.7, all others require straightforward
verifications and are thus stated without proof.
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Figure 4.1: An illustration of Construction 4.1 for ¢ = 7.

Theorem 4.2.

The numbering N defined by N(u;) = i for all i =

1,2,...,t —1, is an elegant numbering of G).

Lemma 4.3. Let1 < i < t—1. The graph G; consists of n+1 components,
n of which are K3’s and the (n+1)st component consists of the single point
Um+i if n = 2m+ 1 and consists of the single point upym4i—1 if n = 2m.
Further G, is also isomorphic to G,_,, and v is of degree zero in G,.

Corollary 4.4. The graph G; has exactly n edges, for all i,1 < i <t and
the graph G} has exactly n — 1 edges; for all i, 1 <i <t—1.

Lemma 4.5. o is an isomoprhism from G; to Gy, foralli,1 <i<t—2.
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Figure 4.2: An illustration of Construction 4.1 for ¢ = 9.

Corollary 4.8. o is an isomorphism from Gj to G}y, foralli,1 <i < t-2.

Lemma 4.7. Forall j, 1 < j < t—1, the edge set of G; consists of exactly
one edge incident with v and exactly one i-pair for eachi,1<i<n-—1.

Proof: Let 1 < j <t — 1. By Construction 4.1, each G; contains exactly
one edge incident with v, namely u2nij-1v. Thus we have to show that
E(GY) consists of exactly one i-pair for each i, 1 <i<n-1. Forj=1,
this follows since by Theorem 4.2, G} is elegant with N(ux) = k for all k,
1<k <t—1. By Corollary 4.6, ¢’ = (12...t —1) is an isomorphism from
G/, to G, for all j, 1 < j <t —2. Now suppose uxue is an i-pair in Gj.
Then a’zuk) = uks1 and o'(ug) = ugq1 Where subscripts are modulo ¢ — 1
and 50 o/(uk)o’(ue) is an i-pair in Gj;. It now follows by induction on j
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that E(GY) consists of exactly one i-pair for each 4, 1 < i <n -1, since by
Corollary 4.4, |E(G})| = n — 1. This proves the lemma.

Lemma 4.8. Let k,¢ < t. If for some i,1 <i<n-1,e isani-pair in
Gy and e; is an i-pair in Gy then e; # ea.

We are now ready to prove the main theorem of this section.

Theorem 4.9. Let G be as in Construction 4.1. Then G is t-sc without
any scp, although for each i, 1 < i <t -2, 0 = (ujug...u—1)(v) is an
isomorphism from G; to G;4,.

Proof: We prove the theorem through a series of claims stated below.

1. The graphs G,,Ga,...,G; are all isomorphic. This follows from
Lemma 4.3.

2. Gi and G¢ have no edge in common, 1 < k < £ < t. We prove number
2 in two cases.

Case 1: £=t. Clearly G; has no edge in common with Gy, since every
edge in G, is an n-pair and no edge is incident with v, whereas by
Lemma 4.7, an edge in G is either incident with v, or is an i-pair,
1<i<n-1,

Case 2: ¢ < t. Suppose e is an edge common to both Gx and G,.
Then if e is incident with v then by Construction 4.1, ugn4k—y =
Usnte—1 — k = ¢, a contradiction. So e is not incident with v. By
Lemma 4.7, e is an i-pair for some ¢, 1 < i < n —1, in both G, and
Gl. But then by Lemma 4.8, e # ¢, a contradiction. This proves 2.

3. Ui=1 Gi = K.. By Corollary 4.4, |E(G;)] =n for all i, 1 <i < t. By
2, it now follows that Uf= 1 Gi is a graph with ¢ points and nt = 1(52"—12
edges. This proves 3.

4. G has no scp.
If possible let o* be an scp. We consider the following two cases:

Case 1: n=2m+1. By Lemma 4.3, Um+i is the only point of degree
OinG;,1<i<t-1 and v is the only point of degree 0 in G;.
S0 0* = (Um+18m+2. .. Umv), & contradiction since ujun4y € E(G),
but 0*(u;)0* (unt1) = oups2 ¢ E(G;).

Case 2: n = 2m. By Lemma 4.3, Un4+m+i—1 iS the only point of
degree 0 in G;, 1 < i <t —1 and v is the only point of degree 0
in G. So 0* = (UntmUn+m+1-..Untm—17), & contradiction since
UlUn41 € E(Gg), but 0"(111)0‘(0,.4.1) = Uglpy2 & E(Gl).

Thus we get a contradiction in either case and hence 4 is proved.

59



From 1, 2, and 3 it follows that G is ¢-sc and 4 shows that G has no scp.
The theorem now follows from Lemma 4.5.

5. An Infinite Class of t-sc graphs with no SCP-¢ Even

In this section, for every even integer ¢ > 4, we construct a {-sc graph
with certain properties, therby showing that the range of s in Theorem
2.1 cannot be extended to include certain values. This in a way restricts
the scope of any improved version of the theorem. Our construction is as
follows:

Construction 5.1: Let n>2and ¢t =2n. Foralli, 1 <i<t-1,let G}
be the graph with V(G:) = {ul) U2,y suZt—2}a and
E(C}) = {witsit 5, ie—1%ite4i—1 | 5 =1,2,...,t =2}V {uwittive1 )
where all subscripts are taken modulo 2(¢t — 1).
Then define G = (G1,Ga,...,G;) where

V(Gt) = {ul’uZ) see :uZ(t—l)ivltv2}l 1<i<tand

E(G)) U {uiva—s;, wire—1v145,} if 1 i<t~ 1,
where §; = 1 for odd i and 6, = 0 for even i, all
u-subscripts being taken modulo 2(¢ — 1).
{u2e—1u2j, u2euzj—1 1i=12,...,t— 1}u{unve} ifi=t.

E(G,) =

\

We illustrate Construction 5.1 for ¢ = 6 in Figure 5.1.

For the rest of this section the symbols G, G;, u;,v1,v2 will be as in Con-
struction 5.1. Further, o will denote the permutation (uiug . .. ugq—2)) (v1v2)-

We now state without proof, a series of Lemmas that lead directly to
Theorem 5.5, the main result of this section.

Lemma 5.2. The permutation o is an isomorphism from G; to Gii1,
1<i<t-2.

Lemma 5.3. Let 7 be a function from V(G:—1) to V(G) defined by
(ug—1) =0 m(ug—2) = v2
m(uge-1) = u2e—2 m(uz) = uze-3

w(u;) = ug—1, forall i=12,...,t-2
“(ut+l') = U2i+2y for all i=0|l"“9t_3

Then = is an isomorphism from G,_; to G;.
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Figure 5.1: An illustration of Construction 5.1 for ¢ = 6.

Lemma 5.4. |Ui_,(E(GW))| = 2tc,.

Theorem 5.5. Let G = (G1,Ga,...,G;). Then G is t-sc and G has no scp
although o is an automorphism from Gi t0Gi41,1<i<t -2,

Proof: By Lemma 5.2 and Lemma 5.3, G1,G3, ..., G, are all isomorphic.
By Lemma 5.4, |U,=1(E(G¢))| = IE(K2t)| From Construction 5.1, it
follows that |E(Gg)| =2—-1foralli=1,2,...,t. Thus

1> BG)| =t(2t - 2) = | | J(EGW))I.
=1 =1

Hence E(G1), E(G3),.. ., E(G,) are disjoint and thus K3, is a disjoint union
of the graphs Gy, Gy, ...,G;. This proves that G is ¢-sc.
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Suppose now G has an scp w. Since ¢ > 4, clearly G, G2, Gs and G, are
all distinct. Now since # is an isomorphism from G, to G, and since v, is
of degree t in G; and wuy,u, are the only two vertices of degree t in Gy it
follows that either w(v1) = uy or w(v1) = ue.

We consider two cases accordingly:

Case 1: w(v;) = uy. So w(vz) = u. Now 7 is an isomorphism from G; to
G,. Since uyugp1, woue € E(G2), it follows that v (Ueyr), var~Hug) €
E(G}). From Construction 5.1, it follows that 7= (ug41) = vy and 7~ (ug) =
u;. But = is also an isomorphism from G2 to G3. However, u.4 is adjacent
to both v; and u; in G2 whereas in Gs there is no point adjacent to both
#(v1) = uy and #(u;) = ue+1. This gives a contradiction in Case 1.
Case 2: w(v;) = 4. So m(vz) = u1. Now 7 is an isomorphism from G, to
Gs. Since ujuey1, upu; € E(G3), it follows that ver™ (ue41), v~ (ug) €
E(G,). From Construction 5.1, it now follows that 7~ (u¢+1) = u, and
#~}(uz) = u1. But 7 is also an isomorphism from G to Gs. However,
ue41 is adjacent to both v; and u; in Ga, whereas, in G3 there is no point
adjacent to both m(v;) = u, and w(u;) = ua. This gives a contradiction in
Case 2.

Thus in either case we reach a contradiction and this proves that the t-sc
graph G has no scp. The theorem now follows from Lemma 5.2

6. Conclusion

The examples in Sections 4 and 5 show that the range of s in Theorem 2.1
cannot be extended to include the values ¢ — 1 and 2(¢ — 1) in general. We
have also shown in Section 3 that the maximum value of ¢ in Theorem 2.1
cannot be reduced from ¢ — 2 in general. These restrictions limit the scope
of any improved version of Theorem 2.1.
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