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ABSTRACT. It is shown that if ¢ > 1 and u > 5, then the known
necessary condition for the existence of a skew Room frame of
type t*, is also sufficient with the possible exception of (u, t)
where u =5 and ¢ € {11,13,17,19, 23, 29,31,41,43}.

1 Introduction

Let S be a finite set, let co be a “special” symbol not in S, and let H be a
set of subsets of S. As defined in [20] a holey Room square (briefly HRS)
having hole set H is an |S| x |S| array F, indexed by S, which satisfies the
following properties:

(1) every cell of F either is empty or contains an unordered pair of sym-
bols of SU {co}.

(2) every symbol of S U {co} occurs at most once in any row or column
of F, and every unordered pair of symbols occurs in at most one cell
of F.

(3) the subarrays H x H are empty, for every H € H (the subarrays are
referred to as holes).

(4) symbol s € S occurs in row or column ¢ if and only if (s, ) € (S x
S)\Unen(H x H); and symbol oo occurs in row or column ¢ if and
only ift € S\ UygenH.

(5) the pair {s,t} occurs in F if and only if (s, ¢) € (Sx SN\Unen(HxH);
the pair {oo,t} occurs in F if and only if t € S\ UgenH.
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The order of F is |S|. Note that co does not occur in any cell of F if

If H = 0, then an HRS(H) is called a Room square of side |S|. Also, if
H = {H}, then an HRS(H) is called an (|5, |H|)-IRS. Here IRS stands for
“incomplete Room square”

If H = {S1,...,5n} is a partition of S, then an HRS(H) is called a Room
frame. The type of F is defined to be the multiset {|S;|: 1 <7 < n}. We
usually use an “exponential” notation to describe types: a type t]t5% ... t.*
denotes u; occurrences of ¢;, 1 <1 < k. As is usually done in the literature,
we shall refer to a Room frame as a frame.

If H= {S1,...,5n, H}, where {S},...,8,} is a partition of S, then an
HRS(H) is called an incomplete frame or an I-frame. the type of the I-
frame is defined to be the multiset {(|Si|,|S: N H|): 1 < i < n} We may
also use an “exponential” notation to describe types of I-frames: a type
(t1,71)* (t2,m2)¥2 ... (tx, Tk )** denotes u; occurrences of (¢;,7:), 1 <i < k.

A holey Room square F' having hole set H is called skew if, given any
pair of cells (s, ¢) and (¢, s) in (S x S)Unen (H x H), precisely one is empty.
Similarly we have the concepts of skew frame and skew I-frame. A skew
frame of type T will be denoted by SF(T) and skew I-frame of type T by
SIF(T). .

Skew Room frames have bee very useful in the constructions of various
combinatorial designs (see [7], [11]) such as nested m-cycle systems [12],
almost resolvable cycle decompositions [9], Graph decompositions [13] and
weakly 3-chromatic linear spaces [14].

It is easily seen that a skew frame of type 1™ is equivalent to a skew
Room square of side n. The following result is presented in [18].

Theorem 1.1. There exists a skew Room sguare of side n if and only if n
is an odd positive integer, n % 3 or 5.

For the existence of SF(t*), ¢t > 1, an open problem is presented by Dinitz
and Stinson in [7].

Open Problem ([7, open problem 15]): Determine necessary and suf-
ficient conditions for the existence of a skew frame of type t* (¢ > 1) In the
case t = 2, prove that there exists a skew frame of type 2* for all « > 5. In
particular, prove that a skew frame of type 26 exists.

For the necessary conditions, the following results can be found in [6],
[17].

Theorem 1.2. There does not exist a (skew) frame of type t* if any of
the following conditions holds:

(i) u=2o0r3,



(ii) u=4andt =2,
(iii) u=5and t =1,
(iv) u is even and ¢ is odd.

Other than type 1%, the only class of skew frames of type t% to be inves-
tigated are those of type 2. The following existence result is shown in [15]
and [12].

Theorem 1.3. Let u > 5, u % 6, 22, 23, 24, 26, 27, 28, 30, 34, or 38. Then
there is a skew Room frame of type 2%.

Some small frames are also known which we collect in the following
lemma.

Lemma 1.4. Skew Room frames exis{ for the following types:
(1) [16] 44, 45,
(2) [12] 41, 4™,
(3) [8] %,
@ [ 7.

In this paper, we shall first describe constructions for skew frames, both
direct and recursive, in Sections 2 and 3 respectively. In Section 4, we
delete the possible exceptions in Theorem 1.3 and then give an affirmative
answer to the latter part of the Open Problem. In Section 5, we give an
affirmative answer to the first part of the Open Problem when u > 6. For
u = 5 a similar answer is presented in Section 6 leaving nine undecided
types ¢°. The main result of this paper can be summarized in the following
theorem.

Theorem 1.5. Let t > 1 and u > 5. A skew Room frame of type t* does
not exist if u is even and t is ddd. Otherwise, a skew Room frame of type t*
always exists except possibly whenu = 5 and t € {11,13,17,19, 23,29, 31,41,
43}.

2 Direct constructions

The basic direct construction for frames is the “starter-adder” construction
and its modifications (see [5], [16]). Let G be an abelian group, written
additively, and let H be a subgroup of G. denote g = |G|, h = |H| and
suppose that g — h is even. A frame starter in G\ H is a set of unordered
pairs

8§ ={{st:}:1<i < (9 - h)/2}

satisfying
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(1) Uici<g-ny2({si} U {t:}) =G\ H, and
(2) Urgig(g-ny2{*(st —t:)} =G\ H.
An adder for S is an injection A: S — G\ H, such that
Urcig(o-ny2({si +ai} U {ti + a:}) = G\ H,
where a; = A(s;i,t:), 1 <i<(g—h)/2. An adder A is skew if, further,
Uicig(g-ny2({ai} U {-a:i}) = G\ H.

‘We have the following construction for skew frames.

Theorem 2.1 [16, Lemma 3.1]. Suppose there exist a frame starter S
in G\ H, and a skew adder A for S. Then there is a skew frame of type
h9/%, where g = |G| and h = |H]|.

As above, let G be an abelian group of order g and let H be a subgroup
of order h, where g — h is even. A 2k-intransitive frame starterin G\ H is
defined to be a triple (S,C,R), where

S={{si,t:}:1<i<(9-h)/2-2k}U{{ui}: 1 <i <2k},
C={{pi@u}:1<i<k}
and

R={{phq}:1<i<k}
satisfying
(1) {sipu{t:pu{w}u{p}u{a}=G\H,
(2) {£(s: — )}V {*(pi — ¢:)} U {£(p; — )} =G\ H, and

(3) all p; — ¢; and p; — ¢ have even orders in G.
An adder for (S,C,R) is an injection A: S — G\ H, satisfying
(4) {si+a}U{ti +ai}U{ui +b:}U{p},q} =G\ H

where

a; =A(Si,ti),1 < i < (9—h)/2—2k,
bi = A(u;i),1 <1 < 2k.

An adder is skew if further

(6) {a}u{-a}u{b}u{-b}=G\H,
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and for each ¢, 1 < i <k, t}}ere exists a § > 1 such that p; — ¢; has order
29m and p] — ¢} has order 27m’, where m and m’ are odd.

The following result is known.

Theorem 2.2 [16, Lemma 3.4]. If there is a 2k-intransitive frame starter
and a skew adder in G\ H, where g = |G| and h = |H|, then there is a
skew frame of type h9/h(2k)!.

3 Recursive constructions

In this section, we describe recursive constructions for skew frames. We
need some design-theoretic terminology. For those not mentioned in this
paper we refer the reader to [2].

A pairwise balanced design (v, K)-PBD is a pair (X, .A) where X is a v-set
(of points) and A is a set of subsets of X (called blocks), each of cardinality
at least two, such that every unordered pair of points is contained in a
unique block and that for every block A4, |A| € K.

A holey group divisible design (briefly HGDD) is a quadruple (X, G, H, A)
where X is a finite set of elements (called points), G is a set of disjoint
subsets of X (called groups) whose union is X, H is a set of some subsets
of X (called holes), and A is a set of subsets of X (called blocks) such that
any two points from same group or same hole are contained in no blocks,
any two points from different groups and different holes are contained in a
unique block.

If H =0, then an HGDD is the usual group divisible design (GDD) The
type of the GDD is defined to be the multiset {|G|: G € G}. If H = {H},
then an HGDD is usually called an incomplete GDD, denoted by IGDD.
The type of the IGDD is the multiset {|G|,|GN H|: G € G}. A transversal
design (or TD(k, t)) is a GDD with group type t* and all blocks having size
k.

Let S be a set and let H be a set of disjoint subsets of S. A holey Latin
square having hole set H is an |S| x |S| array, L, indexed by S, which
satisfies the following properties:

(1) every cell of L either is empty or contains a symbol of S.
(2) every symbol of S occurs at most once in any row or column of L.

(3) the subarrays H x H are empty, for every H € H (these subarrays
are referred to as holes).

(4) symbol s € S occurs in row or column ¢ if and only if (s,t) € (S x
S)\Unen(H x H).
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Two holey Latin squares on symbol set S and hole set H, say L, and Lo,
are said to be orthogonal if their superposition yields every ordered pair in
(S x S)\Unen(H x H). We shall use the notation IMOLS(s, h,, ..., hs) to
denote a pair of orthogonal holey Latin squares on symbol set S and hole
set H= {H,...,H,}, where s=|S| and h; = |H;| for 1 <i < n.

If H = @, then a holey Latin square is the usual Latin square. It is
well known that the existence of a TD(k,t) is equivalent to that of k — 2
mutually orthogonal Latin sdquares (MOLS) of order t. For a list of lower
bounds on the number of MOLS for all orders up to 10000, we refer the
reader to Brouwer [3] and [4].

The following two constructions for skew frames can be found in [16].

Theorem 3.1 (Inflation Construction). Suppose there is a skew Room
frame of type t1t3? ... t;*, and suppose also that m # 2 or 6. Then there
exists a skew Room frame of type (mt;)* (mita)¥2 ... (mig)¥x.

Theorem 3.2 (FFC). Let (X, G, A) be a GDD, and let w: X — Zt U {0}
(we say that w is a weighting). For every A € A, suppose there is a
skew frame of type {w(z): z € A}. Then there is a skew frame of type
{Zzecw(z): G € G}.

Denote SF; = {n: there exists a skew frame of type t"}. Then we have
the following corollary to Theorem 3.2, which means that the set SF; is
PBD-closed.

Lemma 3.3. Suppose there is an (n,SF;)-PBD. Then n € SF,.

Proof: The hypothesized PBD can be thought of as a GDD in which every
group has size 1. Give every point weight ¢ and apply Theorem 3.2.

Suppose F is a Room frame with hole set {S,..., S}, where S = US;.
A complete transversal is a set T of |S] filled cells in F such that every
symbol is contained in exactly two cells of T'. If the pairs in the cells of
T are ordered so that every symbol occurs once as a first coordinate and
once as a second coordinate in a cell of T, then T is said to be an ordered
transversal. Note that any transversal can be ordered, since the union of all
the edges in a transversal forms a disjoint union of cycles. If these cycles are
arbitrarily oriented, then the direction of each edge provides an ordering
for the transversal. A complete ordered transversal will be referred to as a
CO transversal.

Suppose L; and Lo are IMOLS(m + u;u) on symbol set S and hole set
‘H = {H}, where m is an even positive integer. A holey row (or column) of
L, or Ly is one that meets the hole. A holey row (or column), T, is said to
be partitionable if the superposition of row (or column) T of L; and L3 can
be partitioned into two subsets T; and T3 of m /2 cells, so that every symbol
of S\ H is contained in one cell in each of T} and T2. An IMOLS(m +u;u)
is said to be partitionable if every holey row and column is partitionable.
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We use the notation IMOLS(m + u;u) to denote IMOLS(m + u;u) that
are transpose of each other.
Example 3.4 There is a partitionable ISOLS(4+4-1;1). It is shown in Table
1.

W = |

DO | o] =) o
=l B S A

e M| eof
| | ] v M

Table 1. Apartitionable ISOLS(4+1;1)

In [20], there is a construction to obtain frames from a frame having
disjoint CO transversals. To obtain skew Room frames it suffices to start
with a skew frame and replace the partitionable IMOLS(m + wu;;u;) by
partitionable ISOLS(m + u;;u;). We state the modified construction as
follows.

Theorem 3.5. Suppose there is a skew Room frame of type t9 having l
disjoint CO transversals. For 1 < i <1, let u; > 0 be an integer. Let m
be an even positive integer, m # 2 or 6. Suppose there exist partitionable
ISOLS(m+ w;;u;), for 1 < i < l. Then there is a skew Room frame of type
(mt)?(2u)?, where u = Tu;.

Theorem 3.6 (Filling in holes). Suppose there is a skew I-frame of type
{(si, hi): 1 < i < n}. If there is a skew frame of type {h;: 1 < i < n}, then
there ia a skew frame of type {s;: 1 <i < n}.

Proof: Suppose F is the skew I-frame based on a set S having hole set
{S1,...,Sn, H}, where |S;| = s; and |S; N H| = h; for 1 < i < n. Suppose
Fy; is a skew frame based on H having hole set {S;nH: 1 < i < n}. Define
an |S| x |S| array F'(s,t) as follows:

F(s,t), if (s,t) €(Sx S)\ (H x H),

Fet) = {FH(S, t), if(s,t) e Hx H.

It is easy to see that F” is a skew frame of type {s;: 1 <i < n}.

The known Construction 2.2 in [8] can be generalized to obtain skew
frames. It suffices to replace frame and I-frames by skew onces. We state
the modified construction as follows.

Theorem 3.7. Suppose there isa TD(k+1,t) and lete; > 0,1 <i<t. If
there is a skew I-frame of type (m + e;, €;)* for any i,1 < i < t, then there
is a skew I-frame of type (mt + e, e)*, where e = Te;. Further, if there is a
skew frame of type e*, then there ia a skew frame of type (mt + e)*.
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4 Skew frames of type 2"
In this section we shall construct skew frames of types left in Theorom 1.3.

Lemma 4.1. There exists a skew frame of type 2.

Proof: Take G = Z;p and H = {0,5}. Construct a 2-intransitive starter
as follows:

S= {{1:3}v {21 6}} U {Ss 9},
C=1{4,7},
R = {8,9}.

A skew adder is as follows:
a1 =3,a;=1, A(8) =4 and A(9) =2.
Applying Theorem 2.2 yields an SF(2%).

Lemma 4.2. There exists a skew frame of type 222,

Proof: G = Z33, H = {0,16}. Take

S = {{2,6},{5,13}, {11,23}} U {14,18,20,25, 3, 31,27, 30, 21, 15, 26, 22},
C = {{9,19}, {10, 24}, {1,12},{4,7},{8,17}, {28,29}},
R = {{23,25}, {30, 24}, {31, 26}, {4, 29}, {15, 28}, {16, 21} }.

and the skew adder:

ay = 31, ag = 30, as = 29, A(14) = 28, A(18) = 27, A(20) = 26,

A(25) = 25, A(3) = 24, A(31) = 23, A(27) = 22, A(30) = 21,

A(21) = 20, A(15) = 19, A(26) = 18, A(22) = 17.

We obtain a skew frame of type 21€12!. Filling in the hole of size 12 with
a skew frame of type 2¢ gives an SF(222).

Lemma 4.3. There exists a skew frame of type 2%3.

Proof: We need only to give a skew frame of type 21810! by starter-adder
techniques. Let G = Z36 and let H = {0,18}. Take

S = {{2,4}, {6,10}, {5, 13}, {11,23}, {14, 30}, {21, 35}, {15, 32} }
U {26,7,22,9,17, 24,29, 31, 33, 3},

C = {{8, 34}, {12,25}, {1, 16}, {19, 28}, {20, 27} },

R = {{33,27}, {30, 31}, {32, 29}, {21, 26}, {13, 24} }.
and the skew adder:
a; = 35, ap = 34, a3z = 33, a4 = 32, a5 = 31, ag = 29, ay = 27, A(26) = 30,
A(7) = 28, A(22) = 26, A(9) = 25, A(17) = 24, A(24) = 23, A(29) = 22,
A(31) =21, A(33) =20, A(3) =19.
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Lemma 4.4. There exists a skew frame of type 227,

Proof: A skew frame of type 22014! is shown below.

G = Z4, H = {0, 20},
S = {{6,10}, {5,13}, _{11,.23}, {14, 30}, {12, 34}}
U {2,19, 21, 36, 32, 37, 35, 24, 28, 9, 7, 15, 33, 3},

C = {{22,16},{27,1}, {38, 31}, {18, 29}, {26, 17}, {4, 39}, {8, 25}},

R = {{39,29}, {35, 37}, {32, 33}, {16, 3}, {30, 5}, {18, 21}, {36,17}}.
The skew adder is as follows:
a; =39—1,1< ¢ <5, and A(2) = 39, A(19) = 33, A(21) = 32, A(36) = 31,
A(32) = 30, A(37) =29, A(35) = 28, A(24) = 27, A(28) = 26, A(9) = 25,
A(7) = 24, A(15) = 23, A(33) = 22, A(3) =21.

Lemma 4.5. There exists a skew frame of type 228,

Proof: A skew frame of type 22212! is shown below

G = Z44,H = {0,22},
S = {{2,6}, {4,12}, {7,19}, {11, 27}, {18, 38}, {1,35}, {3, 21},
{26,40}, {24,43}} U {29, 31,42, 34, 5,9, 14, 20, 17, 25, 28, 8},
C = {{15,13}, {36, 33}, {30,23}, {32,41}, {10, 37}, {16,39}},
R={{11,17},{27,28}, {36,41}, {26, 37}, {25,12}, {24, 9}}.
The skew adder is as follows
i =44-4,1<i<9, A(29) = 34, A(31) = 33, A(42) = 32, A(34) = 31,
A(5) = 30, A(9) = 29, A(14) = 28, A(20) = 27, A(17) = 26, A(25) = 25,
A(28) =24, A(B) = 23.

Lemma 4.6. There exists a skew frame of type 2841,
Proof: Take G = Zy¢, H = {0, 8}, and let
S = {{6,4},{11,15}, {7, 1}}u {5,12,2, 13},
C = {{10, 3}, {9, 14}},
R ={{15,2}, {10,11}}.

The skew adder is as follows:

a1 =15, a3 = 14, a3 = 13, A(5) =12, A(12) =11, A(2) = 10, A(13) =9.
We are now in a position to state the main result of this section.

Theorem 4.7. There exists a skew frame of type 2% for all u > 5.

Proof: By Theorem 1.3 and the above lemmas, we need only to show the
existence for u = 24, 26, 30, 34, and 38.
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Start with a skew frame of type 4* from Lemma 1.4(1) and apply Theorem
3.1 with m = 3, we get a skew frame of type 124, Filling in the size 12
holes with an SF(28) produces an SF(224).

Take a block in a (31,6,1)-BIBD and delete one or five points from the
block, we know that 26,30 € B({5,6}). Take a block in a TD(8,7) and
delete all points from the last three groups but keep those points in the
block. We have 38 € B({5,6,7,8}). By Lemma 3.3 we obtain an SF(2*)
for u = 26, 30 and 38.

For a skew frame of type 234 we apply Theorem 3.1 with m =4 and an
initial skew frame of type 4% to get a skew frame of type 16%. Filling in
the holes but one with a skew frame of type 284! shown in Lemma 4.6, we
have a skew frame of type 22420, Further filling in the size 20 hole with
an SF(219), we obtain an SF(23%).

~ This completes the proof.

5 Skew frames of type t¥, t > 1, u > 6

In this section we shall investigate the existence of a skew frame of type t*
fort>1andu > 6.

Lemma 5.1. There exists a skew frame of type (2h)*, u > 5, h# 2 or 6.
Proof: By Theorem 4.7 an SF(2*) exists for u > 5. Apply Theorem 3.1.
Theorem 5.2. There exists a skew frame of type t*, u odd > 7.

Proof: For any odd positive integer u > 7, by Thoorem 1.1, there exists a
skew frame of type 1*. Apply Theorem 3.1 with any positive integer m # 2
or 6, we get a skew frame of type t*. Skew frames of type 2* and 6" can
be obtained by taking h = 1,3 in Lemma 5.1 respectively. The proof is
complete.

If u is an even integer and u > 6, by Theorem 1.2, ¢ must also be even for
the existence of a skew frame of type t*. From Lemma 5.1 what we need
to discuss is the type 4* and 12%. Denote

Ky = {4,5,6,7,8,9,10,11,12,14,15,18,19, 23}.

We shall apply Lemma 3.3.

Lemma 5.3. There exists a skew frame of type 45.

Proof: Take G = Zy4, H = {0,6,12,18}. Construct a starter as follows

S= {{1: 2}v {3a 5}1 {4’ 8}; {7: 16}’ {9) 19}, {10: 21}1
(11,14}, {18, 20}, {15,23}, {17, 22}}.
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A skew adder is as follows:

ag=1l,a=2,a3=9,a3=4,a5 =19, ag =11, a7 = 8, ag = 3, ag = 10,
aig = 17.

Apply Theorem 2.1, the desired result is obtained.

Lemma 5.4. There exists a skew frame of type 48.

Proof: Take G = Z3; and H = {0, 8,16,24}. Construct a starter as follows

S = {{11,22}, {12,18}, {183, 20}, {15, 25}, {17, 26}, {1, 6}, {2, 30},
{3,5}, {4, 21}, {7, 10}, {9, 23}, {14, 27}, {19, 31}, {28, 29} }.

A skew adder is as follows:

a1=ll,az=7,a3=23, a4=l3, a5=3,a5=20,a.7=15, a3=2,
ag =10, a1p = 5, a1y = 18, a13 =28, a13 = 31, a4 = 6.

Apply Theorem 2.1, a skew frame of type 42 is obtained.

Lemma 5.5. There exists a skew frame of type 41°.

Proof: Take G = Z4 and H = {0,10,20,30}. Construct a starter as
follows

S = {{14,15}, {16,28}, {17, 35}, {18,39}, {19, 33}, {22, 37},
{13,21}, {9, 15}, {1, 6}, {2, 38}, {3,4}, {5, 12}, {7, 23},
{8,31}, {11, 24}, {26, 29}, {27, 36}, {32, 34} }.

A skew adder is as follows:

a1 =14, a2 =18, a3 =21, a4 =13, a5 =8, ag = 7, a7 = 11, ag = 28,
ag = 16, a0 = 17, a); = 41 a12 = 9) a13 = 2, ayy = 53 a5 = 341 alg = 37)
a7 = 15, aig = 1.

Apply Theorem 2.1, a skew frame of type 410 is obtained.

Lemma 5.6. There exists a skew frame of type 418,

Proof: Take G = Z;7 and H = {0}. Construct a starter as follows
S ={{1,2},{3,5}, {4,10}, {6,13}, {7, 11}, {8, 16}, {9, 14}, {12, 15} }.

A skew adder is as follows:
ar=1,a3=5,a3=3,a4=9,a5=7,a6 =13, a7 =2, ag = 11.

By Theorem 2.1, we obtain a skew frame of type 117, It is easy to see that
the skew frame has two disjoint CO transversals T} = {(1 +%,2 + ) mod
17]0 < i < 16} and T; = {(3 + 4,5 + i) mod 17]0 < ¢ < 16}. Since there
is a partitionable ISOLS(4+1;1) in Example 3.4, by Theorem 3.5, we get a
skew frame of type 418,

Theorem 5.7. There exists a skew frame of type 4%, u > 4
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Proof: Since {u > 4: u is an integer } = B(K}) (see [2]), by Lemma 3.3
one needs only to construct an SF(4*) for u € K4. Theorem 5.2 takes care
of all odd u > 7 in Ky4. The values u = 4,5,12, 14, are provided by Lemma
1.4. The remaining four values u = 6,8, 10,18 are shown in Lemmas 5.3 -
5.6.

Corollary 5.8. There exists a skew frame of type 12%, u 2 4.

Proof: Apply Inflation Construction with an SF(4*) and MOLS(3).
We conclude this section with the following theorem.

Theorem 5.9. Let t > 1 and u > 6. A skew frame of type t* exists if,
and only if, t(u — 1) = 0 mod 2.

Proof: The second assertion comes from Theorem 1.2 and the first from
Theorem 5.2 for u odd and from Lemma 5.1, Theorem 5.7 and Corollary
5.8 for u even.

6 Skew frames of type 5, t > 1

Lemma 6.1. There exists a skew frame of type (2h)° for all h > 1.
Proof: The conclusion comes from Lemma 5.1, Theorem 5.7 and Corollary
5.8.

By Lemma 6.1 we need only to investigate the existence of skew frames
of type 3 for odd ¢ > 1. We shall mainly use Theorom 3.7. For “input”
designs we have the following.

Lemma 6.2. There exists an SF(t°) for t = 3,5,7.

Proof: An SF(5°) is constructed by Theoreem 2.1. Take G = Zp5 and
H = {0,5,10,15,20}. The starter is

S = {{1,2},{3,6}, {4,22}, {7,.21}, {8,16},{9,13}, {11, 24},
{12,18),{14,23}, {17,19}}

The skew adder is as follows:
a1 =1,a; =8, a3 =22 a4 =16, a5 = 13, ag = 4, a7 = 23, ag = 6,
ag = 18, ajp = 14.
The other two skew frames come from Lemma 1.4.
Lemma 6.3. If there is an SF(t*), then there exists a skew I-frame of type
(ht,t)*, h# 2 or 6.

Proof: Apply Theorem 3.1 with an initial SF(¢*) and MOLS(k). We obtain
an SF((ht)*) with a subdesign SF(t*). Removing the subdesign produces
a skew I-frame of type (ht,t)*.
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Lemma 6.4. There exists an SIF((v,t)®) for (v,t) = (8,2), (9,3), (14,2)
and (15,3).

Proof: Apply Lemma 6.3 with an SF(t°) for ¢t = 2,3 and MOLS(k) for
h=4,31,5.

Lemma 6.5. If there is a TD(6,v) and there exists a skew frame of type
(3a + 2b)5, where 0 < a+ b < v, then there exists a skew frame of type
(6v + 3a + 2b)5 or type (12v + 3a + 2b)°.

Proof: Takek =5, m=6o0r12,e;=--- =€, =3, €441 =+ = €g4p = 2,
and @.4p41 = -+ = €y = 0 in Theorem 3.7. The required skew I-frames
come from Lemma 6.4.

For the existence of a TD(6,v) we have from [19] the following

Lemma 6.6. There exists a TD(6,v) if v > 5, v # 6,10,14,18,22,26, 30,34
or 42.

Theorem 6.7. An SF(t®) exists if t odd > 261.

Proof: For any ¢ odd > 261 there is an integer » > 43 such that ¢ = 6v+r,
where 7 = 3, 5, or 7. By Lemma 6.6 we may apply Lemma 6.5 with a = 1
and b € {0,1,2}.

Lemma 6.8. An SF(%) exists if 45 <t < 259 and t is odd.

Proof: A similar proof as in Theorem 6.7 will leave the intervals 6v + 3 <
t < 6v+ 7 for v =10,14,18,22,26,30,34,42. Let v/ = v/2. By Lemma 6.6
there is a TD(6,v’). Therefore, these intervals can be done by applying
Lemma 6.5 and writing 6v + r = 12v' + r, where r = 3,5,7.

Theorem 6.9. A skew frame of type t° existsif t > 1 and t ¢ {11,13,17,19,
23,29, 31,41,43}.

Proof: Combine Lemma 6.1, Theorem 6.7 and Lemma 6.8, we need only
to consider the values of odd ¢ < 43. All but one are multiples of 3, 5, or 7,
which can be taken care of by Inflation Construction. The remaining value
t = 37 can be done by writing 37 =6 - 54 7 and applying Lemma 6.5.

7 Concludlng remarks

Combining Sections 4, 5, and 6 we have obtained our main result shown
in Theorem 1.5. For ¢ > 1 and u > 5 ,we have solved the existence of
skew Room frames of type t*, leaving nine undecided cases. The only
remaining class is the types ¢4, ¢ even. Using an SF(4*) in Lemma 1.4 and
the Inflation Construction one obtains an SF(¢4) for ¢ = 0 (mod 4) leaving
two undecided cases ¢t = 8, 24. For ¢t = 2 (mod 4) and ¢ > 1, other than
the nonexistence of an SF(2*) nothing is known in this class.
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For the existence of frames of type t* without the skew property, an
almost complete solution has recently been obtained in [8] and [21], leaving
only one possible exception of type 14%.
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