The Bondage Number of a graph G can be much greater than $\Delta(G)$

Ulrich Teschner Lehrstuhl II für Mathematik RWTH Aachen

ABSTRACT. The bondage number b(G) of a nonempty graph G was first introduced by Fink, Jacobson, Kinch, and Roberts [3]. In their paper they conjectured that $b(G) \leq \Delta(G) + 1$ for a nonempty graph G. A counterexample for this conjecture was shown in [5]. Beyond it we show now that there doesn't exist an upper bound of the following form: $b(G) \leq \Delta(G) + c$ for any $c \in N$.

1 Introduction

Let G = (V, E) be a finite, undirected graph with neither loops nor multiple edges. For $u \in V(G)$ we denote by N(u) the neighborhood of u. More generally we define $N(U) = \bigcup_{u \in U} N(u)$ for a set $U \subseteq V$ and $N[U] = N(U) \cup U$. A set D of vertices in G is a dominating set if N[D] = V. A dominating set of minimum cardinality in G is called a minimum dominating set (MDS), and its cardinality is termed the domination number of G and denoted by $\gamma(G)$.

Fink, Jacobson, Kinch, and Roberts [3] defined the bondage number b(G) of a nonempty graph to be the minimum cardinality among all sets of edges X for which $\gamma(G-X) > \gamma(G)$ holds. Brigham, Chinn, and Dutton [2] defined a vertex v to be critical iff $\gamma(G-v) < \gamma(G)$ and G to be a vertex domination-critical graph (from now on called 'vc-graph') iff each vertex of G is critical.

For graph theory not presented here we follow [4].

From [1] we know that the bondage number of a graph G is bounded from above by $\Delta(G)$, when G is not a *vo*-graph. For *vo*-graphs it is more difficult to find upper bounds. *vo*-graphs in general are not even bounded from above by $\Delta + 1$ [5], which had been conjectured in [3]. In [6] we condensed some new results about the bondage number, among others new

sharp upper bounds like $b(G) \leq \lambda(G) + \Delta(G) - 1$, where $\lambda(G)$ is the edge-connectivity number of G. But all results which were found up to now depend on two graph-invariants, mostly including Δ , or appear to be trivial like $b(G) \leq 2\Delta(G) - 1$ which can be derived from the above result. The question whether there is an upper bound of the form $b(G) \leq \Delta(G) + c$ $(c \in N)$ is still open and will be solved in this paper by constructing an infinite class of graphs G_i for which the difference between $b(G_i)$ and $\Delta(G_i)$ can be arbitrarily large.

2 The main result

Definition: Let G_i : $= K_i \times K_i$ $(i \in N, i \ge 2)$ be the Cartesian product of two complete graphs of order i.

Observations:

- 1. $\gamma(G_i) = i$.
- 2. G_i is vertex domination-critical.
- 3. $\Delta(G_i) = 2(i-1)$.

Definition: Let v be a vertex of G_i . We call $A_i(v) := \langle N_{G_i}[v] \rangle$ an *i*-angle and the vertex v the center of the *i*-angle $A_i(v)$. Let X be a set of edges. We call an *i*-angle with center v damaged iff $N_{G_i}[v] \neq N_{G_i-X}[v]$.

Observations: The form of an *i*-angle depends only on *i* and never on the chosen vertex v. G_i contains $i^2 = |V(G_i)|$ different *i*-angles. By removing one edge x out of G_i we damage two different *i*-angles. To damage all *i*-angles of G_i , we have to remove at least $\lceil \frac{i^2}{2} \rceil$ edges. We remark that

$$\lceil \frac{i^2}{2} \rceil > 3(i-1) \text{ for } i \ge 5 \tag{1}$$

Lemma 2.1. Let $G_i = K_i \times K_i$ $(i \ge 2)$, and let X be a set of edges with |X| < 3(i-1), such that $\gamma(G_i - X) > \gamma(G_i)$. Then $G_i - X$ has an undamaged i-angle for $i \ge 3$.

Proof:

i) Let $X: = \{k_1, \ldots, k_5\}$ be a set of edges such that $\gamma(G_3 - X) > 3 = \gamma(G_3)$.

Assume that $G_3 - X$ has no undamaged 3-angle anymore. Then each vertex of G_3 must be incident to an edge of X. Hence exactly one vertex v is incident to two edges of X because we have 5 edges in X but only 9 vertices in G_3 . In any case the resulting graph $G_3 - X$ has either three 'parallel' vertical $K_{1,2}$'s or three 'parallel'

horizontal $K_{1,2}$'s which are enough to see that $\gamma(G_3 - X) \leq 3$ which is a contradiction.

Thus we know that $G_3 - X$ must have an undamaged 3-angle.

ii) Let $X:=\{k_1,\ldots,k_8\}$ be a set of edges such that $\gamma(G_4-X)>4=\gamma(G_4)$. Assume that G_4-X has no undamaged 4-angle anymore. Then each vertex of G_4 must be incident to an edge of X, hence X is a perfect matching of G_4 , which means each vertex of G_4 is incident to exactly one edge in X. Let D consist of the four vertices of one of the 'main diagonals' of G_4 . Then each vertex of G_4 is either in D or adjacent to two vertices of D. Hence each vertex of G_4-X is either in D or adjacent to at least one vertex of D, which means, $D \in MDS(G_4-X)$, but since |D|=4 we have a contradiction.

Thus we know that $G_4 - X$ must have an undamaged 4-angle.

iii) From (1) we know that $\lceil \frac{i^2}{2} \rceil > 3(i-1)$ for $i \ge 5$. Hence there must be an undamaged *i*-angle, such that the proof is complete.

Theorem 2.2. If $G_i = K_i \times K_i$ then $b(G_i) = 3(i-1)$ for $i \geq 2$.

Proof: We will prove the theorem by the method of induction. Since $b(G_2) = b(C_4) = 3$ the induction hypothesis is true for i = 2. Lemma 2.7 of [6] says that

$$b(G) \le \min\{\deg u + \deg v - t + 1; u \text{ and } v \text{ belong to the same } K_t \subseteq G\}$$
(2)

Thus we conclude that $b(G_i) \leq 2(i-1) + 2(i-1) - i + 1 = 3(i-1)$. It remains to show that $b(G_i) \geq 3(i-1)$.

Induction step: In the following we show that

$$b(G_i) < 3(i-1) \Longrightarrow b(G_{i-1}) < 3(i-2) \tag{3}$$

holds for $i \geq 3$. This will violate the induction hypothesis and provide the necessary contradiction.

Let $X := \{k_1, \ldots, k_t\}$, t < 3(i-1) be a set of edges such that $\gamma(G_i - X) > i = \gamma(G_i)$. Now remove N[v] from $G_i - X$, where v is the center of an undamaged *i*-angle. There must be such a vertex v by Lemma 2.1.

Let
$$H_{i-1}$$
: = $\langle G_i - X - N[v] \rangle$. Then $H_{i-1} \subseteq G_{i-1} = G_i - N[v]$.

 $\gamma(H_{i-1}) > i-1 = \gamma(G_{i-1})$ (assume that $\gamma(H_{i-1}) \leq i-1$; then we conclude that $\gamma(G_i - X) \leq i$, which is a contradiction). That means that

$$b(G_{i-1}) \leq |Y| \text{ with } Y \colon = X \cap E(G_{i-1})$$

So we must ask: How many edges of X don't belong to Y?

Let k: = |X - Y|. If $k \ge 3$ the proof of (3) is finished, because then we have $b(G_{i-1}) \le |X| - k < 3(i-1) - 3 = 3(i-2)$. It remains to show that

$$k \ge 3 \tag{4}$$

Let x_1, \ldots, x_{i-1} be the 'vertical' neighbors of v and y_1, \ldots, y_{i-1} be the 'horizontal' neighbors of v (see Figure 1).

Figure 1: The graph G_i

Assume that none of the 'horizontal' edges incident to x_1, \ldots, x_{i-1} belongs to X. Then $\{x_1, \ldots, x_{i-1}, v\}$ is a MDS $(G_i - X)$ which is a contradiction to $\gamma(G_i - X) > i$. Analogously one of the 'vertical' edges incident to y_1, \ldots, y_{i-1} must belong to X. Hence we know that $k \geq 2$. Call these two edges z_1 and z_2 .

Assumption: No further edge incident to a neighbor of v belongs to X. That means especially that no edge of $\langle N[v] \rangle$ belongs to X.

If the assumption were not true there would be a third edge of X not belonging to Y and (4) would be shown.

Case 1: z_1 and z_2 are not adjacent.

W.l.o.g. let $z_1 = x_1w_1$ and $z_2 = y_1w_2$, where $w_1, w_2 \in V(H_{i-1})$, $w_1 \neq w_2$ (see Figure 1). Let $x_j \in N(w_2)$. Then $\{y_1, \ldots, y_{i-1}, x_j\}$ is a MDS $(G_i - X)$ which is a contradiction. Hence our assumption is wrong, we have a third edge and (4) is shown.

Case 2: z_1 and z_2 are adjacent (w.l.o.g. $z_1 = x_1 w$, $z_2 = y_1 w$)

Case 2.1: w is not isolated in $G_i - X$, say w.l.o.g., w has the 'vertical' neighbor u in $G_i - X$. Let $x_j \in N(u)$, $j \neq 1$. Because of our assumption x_j is the center of an undamaged *i*-angle, but x_j and w have a common neighbor, namely u.

Now let H'_{i-1} : $= \langle G_i - X - N[x_j] \rangle$. Then $H'_{i-1} \subseteq G'_{i-1} = G_i - N[x_j]$. Analogously

$$b(G'_{i-1}) \le |Y'| \text{ with } Y' : = X \cap E(G'_{i-1})$$

Let k' := |X - Y'|. It remains to show that $k' \ge 3$. Analogously to the original proof we easily get $k' \ge 2$ with edges z'_1 and z'_2 . But $z'_1 = z_1 = x_1 w$ whereas z'_2 can't be incident to w because the new center x_j and w have the common neighbor u. z'_2 can't be incident to x_1 as well because the *i*-angle with center x_j is undamaged. Hence z'_1 and z'_2 are not adjacent and we get a contradiction analogous to case 1.

Case 2.2: w is isolated in $G_i - X$.

Then we know already 2(i-1) edges of X, namely the edges incident to w (call them E_w). Let \tilde{H}_i : $= G_i - E_w$. Then $\gamma(\tilde{H}_i) = i$ is immediate. It remains to show that $b(\tilde{H}_i) \geq i-1$ to get a contradiction to (3), which will be done separately in the following lemma:

Lemma 2.3. $b(\tilde{H}_i) \geq i - 1$.

Proof: We use the same idea as in the proof of the main theorem. The truth of the lemma for i = 2 and i = 3 is obvious.

Induction step: In the following we show that

$$b(\tilde{H}_i) < i - 1 \Longrightarrow b(\tilde{H}_{i-1}) < i - 2 \tag{5}$$

holds for $i \ge 4$. This will violate the induction hypothesis and provide the necessary contradiction.

Let \tilde{X} : = $\{l_1, \ldots, l_s\}$, s < i-1 be a set of edges such that $\gamma(\tilde{H}_i - \tilde{X}) > i = \gamma(\tilde{H}_i)$. Now remove a vertex \tilde{v} with its neighborhood out of $\tilde{H}_i - \tilde{X}$, where \tilde{v} is the center of an undamaged *i*-angle. Since $\lceil \frac{(i-1)^2}{2} \rceil$ edges had to be removed to damage all *i*-angles in \tilde{H}_i , there must be such a vertex \tilde{v} for $i \geq 4$.

Let
$$I_{i-1}$$
: = $\langle \tilde{H}_i - \tilde{X} - N[\tilde{v}] \rangle$. Then $I_{i-1} \subseteq \tilde{H}_{i-1} = \tilde{H}_i - N[\tilde{v}]$.

 $\gamma(I_{i-1}) > i-1 = \gamma(\tilde{H}_{i-1})$ (assume that $\gamma(I_{i-1}) \leq i-1$, then again we conclude that $\gamma(\tilde{H}_i - \tilde{X}) \leq i$, which is a contradiction). That means that

$$b(\tilde{H}_{i-1}) \leq |\tilde{Y}| \text{ with } \tilde{Y} \colon = \tilde{X} \cap E(\tilde{H}_{i-1})$$

So we ask again: How many edges of \tilde{X} don't belong to \tilde{Y} ?

If \tilde{k} : $= |\tilde{X} - \tilde{Y}| \ge 1$ we are done because then we have shown the truth of (5).

Let again x_1, \ldots, x_{i-1} be the 'vertical' neighbors of \tilde{v} and y_1, \ldots, y_{i-1} be the 'horizontal' neighbors of \tilde{v} (see Figure 2).

Figure 2: The graph \tilde{H}_i

Assume that none of the edges incident to x_1, \ldots, x_{i-1} and none of the edges incident to y_1, \ldots, y_{i-1} belong to \tilde{X} . Otherwise we would have $\tilde{k} \geq 1$ and would be done.

W.l.o.g. let l_1 be an edge of \tilde{X} with arbitrary position in \tilde{H}_i . Let $l_1 = w_1w_2$ and let x_{j1} and x_{j2} be the 'x-neighbors' of w_1 and w_2 (where $x_{j1} = x_{j2}$ is possible). If $j_1 = 1$ we take the 'y-neighbors' y_{j3} and y_{j4} of w_1 and w_2 (where $y_{j3} = y_{j4}$ is possible). If $j_1 = 1$, j_3 , $j_4 \ge 2$ since the isolated vertex w is the common neighbor of x_1 and y_1 .

Now let $I'_{i-1} := \langle \tilde{H}_i - \tilde{X} - N[x_{j1}] \rangle \subseteq \tilde{H}'_{i-1} = \tilde{H}_i - N[x_{j1}]$ (resp. y_{j3} instead of x_{j1} if $j_1 = 1$). The *i*-angle with center x_{j1} was undamaged (assumption). And with the same argument as in case 2.1 of the main theorem we get a new $\tilde{Y}' := \{l_j; 1 \leq j \leq s, l_j \in E(\tilde{H}'_{i-1})\}$ and $\tilde{k}' := \{l_j; 1 \leq j \leq s, l_j \in E(\tilde{H}'_{i-1})\}$

$ \tilde{X} - \tilde{Y}' \ge 1$ because $l_1 \notin \tilde{Y}'$. Hence we have shown (5), and the lemma is proved.
The proof of the lemma was the missing link in the main proof, so the proof of the theorem is complete.
Corollary 2.4. There is no upper bound of the form $b(G) \leq \Delta(G) + c$ $c \in N$.
Proof: Take the class G_i of graphs. $b(G_i) - \Delta(G_i) = i - 1$. Let c be an arbitrary natural number. Then for the graph G_{c+2} we have $b(G_{c+2}) = \Delta(G_{c+2}) + c + 1 > \Delta(G_{c+2}) + c$.

Acknowledgement

I am grateful to professor L. Volkmann for his valuable suggestions and to the referee for his well-reasoned comments.

References

- [1] D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alteration sets in graphs, *Discrete Math.* 47(1983), 153-161.
- [2] R.C. Brigham, P. Chinn and R.D. Dutton, Vertex domination-critical graphs, *Networks* 18(1988), 173–179.
- [3] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph, *Discrete Math.* 86(1990), 47-57.
- [4] F. Harary, Graph Theory, (Addison-Wesley, Reading, 1969).
- [5] U. Teschner, A counterexample to a conjecture on the bondage number of a graph, *Discrete Math.* 122(1993), 393–395.
- [6] U. Teschner, New results about the bondage number of a graph, submitted.