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ABSTRACT. The bondage number b(G) of a nonempty graph
G was first introduced by Fink, Jacobson, Kinch, and Roberts
[3]- In their paper they conjectured that b(G) < A(G)+1 for a
nonempty graph G. A counterexample for this conjecture was
shown in [5]. Beyond it we show now that there doesn’t exist
an upper bound of the following form: 5(G) < A(G) + ¢ for any
ceN.

1 Imtroduction

Let G = (V, E) be a finite, undirected graph with neither loops nor multiple
edges. For u € V(G) we denote by N(u) the neighborhood of u. More
generally we define N(U) = Uyeu N(u) foraset U C V and N[U] = N(U)u
U. A set D of vertices in G is a dominating set if N [D] =V. A dominating
set of minimum cardinality in G is called a minimum dominating set (MDS),
and its cardinality is termed the domination number of G and denoted by
7(G).

Fink, Jacobson, Kinch, and Roberts [3] defined the bondage number
b(G) of a nonempty graph to be the minimum cardinality among all sets of
edges X for which 4(G — X) > v(G) holds. Brigham, Chinn, and Dutton
[2] defined a vertex v to be critical iff 7(G —v) < v(G) and G to be a vertex
domination-critical graph (from now on called ‘vc-graph’) iff each vertex of
G is critical.

For graph theory not presented here we follow [4].

From [1] we know that the bondage number of a graph G is bounded
from above by A(G), when G is not a vo-graph. For vc-graphs it is more
difficult to find upper bounds. vc-graphs in general are not even bounded
from above by A +1 [5], which had been conjectured in [3]. In [6] we
condensed some new results about the bondage number, among others new
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sharp upper bounds like b(G) < M(G) + A(G) — 1, where A(G) is the edge-
connectivity number of G. But all results which were found up to now
depend on two graph-invariants, mostly including A, or appear to be trivial
like 5(G) < 2A(G) — 1 which can be derived from the above result. The
question whether there is an upper bound of the form b(G) < A(G) +¢
(c € N) is still open and will be solved in this paper by constructing an
infinite class of graphs G for which the difference between b(G;) and A(G;)
can be arbitrarily large.

2 The main result

Definition: Let G;: = K; x K; (i € N,i > 2) be the Cartesian product
of two complete graphs of order i.

Observations:

1. 'y(G‘) =1.
2. G; is vertex domination-critical.
3. A(Gy)=2(i-1).

Definition: Let v be a vertex of G;. We call A;(v): = (Ng,[v]) an i-angle
and the vertex v the center of the i-angle A;(v). Let X be a set of edges.
We call an i-angle with center v damaged iff Ng,[v] # Ng,-x[v].
Observations: The form of an i-angle depends only on { and never on the
chosen vertex v. G; contains i2 = |V(G;)| different i-angles. By removing
one edge = out of G; we damage two different i-angles. To damage all
i-angles of Gy, we have to remove at least [-'7:-] edges. We remark that

I'%] >3(—1)fori>5 (1)

Lemma 2.1. Let G; = K; x K; (i 2 2), and let X be a set of edges
with | X| < 3(i — 1), such that ¥(G; — X) > 4(G;). Then G; — X has an
undamaged i-angle for i > 3.

Proof;

i) Let X: = {ki,...,ks} be a set of edges such that y(Gs — X) >3 =
7(Gs). A
Assume that Gz — X has no undamaged 3-angle anymore. Then
each vertex of Gz must be incident to an edge of X. Hence exactly
one vertex v is incident to two edges of X because we have 5 edges
in X but only 9 vertices in G3. In any case the resulting graph
G3 — X has either three ‘parallel’ vertical K 2’s or three ‘parallel’
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horizontal K 2's which are enough to see that y(Gs — X) < 3 which
is a contradiction. .

Thus we know that Gs — X must have an undamaged 3-angle.

ii) Let X: = {ky,...,ks} be a set of edges such that y(Gy — X) >4 =
v(Gs). Assume that G4 — X has no undamaged 4-angle anymore.
Then each vertex of G4 must be incident to an edge of X, hence X is
a perfect matching of G4, which means each vertex of G4 is incident
to exactly one edge in X. Let D consist of the four vertices of one
of the ‘main diagonals’ of G4. Then each vertex of G4 is either in
D or adjacent to two vertices of D. Hence each vertex of G4 — X
is either in D or adjacent to at least one vertex of D, which means,
D € MDS(G4 — X)), but since |D| = 4 we have a contradiction.

Thus we know that G; — X must have an undamaged 4-angle.

iii) From (1) we know that f!;] > 3(s — 1) for i > 5. Hence there must
be an undamaged s-angle, such that the proof is complete.

(]
Theorem 2.2. If G; = K; x K; then b(G;) = 3(i — 1) for i > 2.

Proof: We will prove the theorem by the method of induction.
Since b(G2) = b(Cy4) = 3 the induction hypothesis is true for i = 2.
Lemma 2.7 of [6] says that

b(G) < min{degu + degv — ¢ + 1; u and v belong to the same K, C G}
(2

Thus we conclude that b(G;) < 2(i-1)+2(:i-1)—i+1=3@G3-1). It
remains to show that b(G;) > 3(i — 1).

Induction step: In the following we show that
b(G;) <3(i-1) = b(G;—1) < 3(i —2) (3)

holds for ¢ > 3. This will violate the induction hypothesis and provide the
necessary contradiction.

Let X: = {ky,..., k}, t < 3(i—1) be a set of edges such that y(G;—X) >
i = 9(G;). Now remove N[v] from G; — X, where v is the center of an
undamaged i-angle. There must be such a vertex v by Lemma 2.1.

Let Hi_y: =(Gy— X — N[v]). Then H;_, CG;_, =G; - N[v).

Y(Hi-1) > i — 1 = ¥(G;_1) (assume that y(H;—;) < § — 1; then we
conclude that ¢(G; — X) < 4, which is a contradiction). That means that

b(G;-1) < IYI withY: =Xn E(Gi—1)
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So we must ask: How many edges of X don’t belong to Y'?
Let k: = |X —=Y|. If k > 3 the proof of (3) is finished, because then we
have b(Gi-1) < |X| -k < 3(i — 1) — 3 = 3(i — 2). It remains to show that

k>3 4)

Let z1,...,Zi—1 be the ‘vertical’ neighbors of v and y,...,%-1 be the
‘horizontal’ neighbors of v (see Figure 1).

Figure 1: The graph G;

Assume that none of the ‘horizontal’ edges incident to zy,...,z;—1 be-
longs to X. Then {z1,...,zi-1,v} is 8 MDS(G; — X) which is a contradic-
tion to 7(G; — X) > i. Analogously one of the ‘vertical’ edges incident to
¥1,...,%-1 must belong to X. Hence we know that k > 2. Call these two
edges z; and 2s.

Assumption: No further edge incident to a neighbor of v belongs to X.
That means especially that no edge of (N[v]) belongs to X.

If the assumption were not true there would be a third edge of X not

belonging to Y and (4) would be shown.

Case 1: z; and 22 are not adjacent.
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W.Lo.g. let 2; = zyw; and 2, = y w2, where wy, w; € V(Hi-1), w1 # wy
(see Figure 1). Let z; € N(wg). Then {y,,.. ,y,_l,a:,} is a MDS(G; — X)
which is a contradiction. Hence our assumption is wrong, we have a third
edge and (4) is shown.

Case 2: z and 22 are adjacent (w.l.o.g. z; = z 1w, 22 = yw)

Case 2.1: w is not isolated in Gy — X, say w.l.o.g., w has the ‘vertical’
neighbor u in G; — X. Let z; € N(u), j # 1. Because of our assumption
z;j is the center of an undamaged i-angle, but z; and w have a common
neighbor, namely u.

Now let H{_;: = (Gy{ — X — N[z;]). Then H{_, C G|_, = G; — N|[z;].

Analogously

(Gi_;) <|Y’'|withY’: =X nE(G,_,)
1

Let ¥': =|X —Y’|. It remains to show that k' > 3. Analogously to the
original proof we easily get &’ > 2 with edges 2} and z5. But 2} = 2; = yw
whereas z; can’t be incident to w because the new center z; and w have the
common neighbor u. 2 can’t be incident to zl as well because the i-angle
with center z; is undamaged. Hence 2] and z} are not adjacent and we get
a contradiction analogous to case 1.

Case 2.2: w is isolated in G; — X.

Then we know already 2(i — 1) edges of X, namely the edges incident to

w (call them E,;). Let H, = G; — E,,. Then ~(H;) = i is immediate. It
remains to show that b(H;) > i —1 to get a contradiction to (3), which will
be done separately in the following lemma:

Lemma 2.3. b(H;) >i-1.

Proof: We use the same idea as in the proof of the main theorem. The
truth of the lemma for i = 2 and i = 3 is obvious.

Induction step: In the following we show that
b(H;) <i—1=>b(H;_;)<i-2 (5)

holds for ¢ > 4. This will violate the induction hypothesis and provide the
necwsary contradiction.

Let X: ={l;,...,l,},8<i—-1 beasetofedgessuchthat'y(H‘ -X)>
i= ‘y(H;) Now remove a vertex # with its neighborhood out of H; — X,

where # is the center of an undamaged i-angle. Since [ -(‘—!9—] edges had to

be removed to damage all i-angles in H;, there must be such a vertex & for
i>4.

Let [;_,: = (I?. -X- N[g]). Then L, C ilg_l = I?( - N[ﬁ]
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Y1) >i-1= 'y(_fk._;) (assume that y(J;_;) < i — 1, then again we
conclude that y(H; — X) < i, which is a contradiction). That means that

b(H;_y) < |¥| with ¥: = X n E(H;_,)

So we ask again: How many edges of X don’t belong to v?

If k: =|X — ¥| > 1 we are done because then we have shown the truth
of (5).

Let again z,,...,z;—; be the ‘vertical’ neighbors of ¥ and g3, ...,%-1 be
the ‘horizontal’ neighbors of ¥ (see Figure 2).

Figure 2: The graph H;

Assume that none of the edges incident to zj,...,z;—1 and none of the
edges incident to yy, ..., %1 belong to X. Otherwise we would have k > 1
and would be done.

W.lo.g. let l; be an edge of X with arbitrary position in H;. Let l; =
wyws and let z;; and z;; be the ‘z-neighbors’ of w; and wy (where z;, = z;2
is possible). If j; = 1 we take the ‘y-neighbors’ ;3 and y;4 of w; and w;
(where y;3 = yj4 is possible). If j; =1, js, j4 2 2 since the isolated vertex
w is the common neighbor of z;, and y;.

Now let I{’—l: = (il. -X- N[zﬂ]) - I?i’—l = g; - N[x,-l] (resp. Yjs
instead of zj; if j1 = 1) . The i-angle with center z;1 was undamaged
(assumption). And with the same argument as in case 2.1 of the main
theorem we get a new Y’: = {l;;1 < j < 8,l; € E(H{_,)} and ¥': =
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|X — ¥’] > 1 because I; ¢ ¥’. Hence we have shown (5), and the lemma is

proved. ()
The proof of the lemma was the missing link in the main proof, so the
proof of the theorem is complete. a

Corollary 2.4. There is no upper bound of the form b(G) < A(G) + ¢,
c€N.

Proof: Take the class G; of graphs. b(G;) —~ A(G;) = i—1. Let c be an
arbitrary natural number. Then for the graph G2 we have b(G.43) =
A(Gey2) +c+1> A(Goy2) +c a
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