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Abstract. Let G be a graph of order p such that both G and G have no isolated
vertices. Let y, and ¥, denote respectively the total domination number of

G and G. In this paper we obtain a characterization of all graphs for which
@)Y+ Y= p+ 1 and (ii)y,+ ¥,= p.

1. Introduction

By a graph we mean a finite, undirccted graph without loops or multiple
edges. Terms not defined bere are uscd in the sensc of Harary [2).

Let G = (V E) be a (p,q) graph without isolated vertices. Aset SC Vis
called a total dominating sct if every vertex in V is adjacent to some vertex of S.
The total domination numbery, of G is the minimum cardinality taken over all

minimal total dominating scts in G. The total domination number of the
complement G of G is denoted by ;.

We denote by P, and C, respectively the path and cycle on 2 vertices.
If G is any connected graph and m is any positive integer, then mG stands for

the graph with m components, each isomorphicto G. Also G + x denotes the
graph obtaincd by adding an cdge x to G.

In [1] Cockayne ct al have established the following,

Theorem 1.1 [1]. If G has p vertices, no isolates and A< p—~ 1, then
Yo+ Yo S p+ 2 with equality i and only if G or G is mK;.

In_this paper we obtain a_ characterization of all graphs for which
Y+ Y= p+ land (i) v, + ¥, = p.
We nced the following theorems.

Theorem 1.2 [1]. I G is connectedand A< p-1, then y,s p- A.
Theorem 1.3 [1] For a graph G without isolated vertices,y, = p if and only if
G= sz.
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2. Main results

Theorem 2.1 Let G be a graph of order p such that G and G have no isolated
vertices. Then Y+ Y;= p+ 1 if and only if G or G is isomorphic to
P3U mK;,C3UmK; or Cs,mz 1.

Proof: Obviously y,+ Y, = p+ 1 forall graphs stated in the theorem.

Conversely let G be any graph for which y, + Y= p+ 1. If Gis discon-
nected, then y;= 2 so thaty,= p - 1. Hence exactly onc component of Gis

of order three and all the remaining components are of order two so that G is
isomorphic to P3UmK; or C3U mK, m=z 1. Now suppose that G and G

are connected. If diam(G)= 3, theny;= 2 and by Theorem 1.2, y,s p- 2
sothat y,+ ¥; s p. Hence diam(G) = diam(G) = 2. It follows from Theorcm
12that y,+ Y,s p+ 1- A+ dandhence A= 8 so that G is regularof degree

r,say. ThenT is regularof degree 7= p— 1~ r. We claim that r < Lp72}.
Suppose rz | p/2 ]+ 1 sothat F< {p/2 |~ 1.1t follows from Theorem
1.2, that v, = [ p/2] and sincediam (G)= 2, yys 1+ rs | p/2] so that

Yi+ Tis p, which is a contradiction. Hencers | p/2 }. Inasimilar way it

can be shown that < [ p/2 ). If p is odd, equality follows in both cases
and if p is even, equality follows in onc of the inequalitics and hence we may
assume without loss of gencrality that r= | p/2 ]. We now claim that r= 2.
Suppose r = 3. Letu be any vertex of G. Let T be a spanning tree of G with
degr()=r; N@)= {up,uz, ... Juyand V-N{u]= {v1,v2,...,Vm}.
Since r= | p/2], ms r. Alsoif m< r, then degr (1;) = 1 forsome i and
N[u]- {u;} isatotal dominating setso that r, s r. Thus y, + Y, s p. Hence
m=r and p=2r+ 1. Now if i is not adjacent to v; in T for all
i= 1,2, ...,r, then deg r (1;) = 1. Also if u; is adjacent to v; and vk inT
wherels j< ks i, thendegr (im) = 1 forsome m and hencey, < r. Hence
it follows that each u; is adjacent to exactly one vj in T and without loss of
generality, we may assume that u; is adjacent to v; in T for all
i=1,2, ... , r. Now if v; is adjacent to u; for some j= i in G, then
N[u]- {u} is atotal dominating set . If v; is adjacent to v; and v inG,
then (N [u ] - {1;, w})U {v;} is a total dominating sct . Thus y,< r and

Y+ Y;s p. Hence r=2 sothat p= 5 and G = Cs. [ |
Theorem 2.2 Let G be a graph of order p such that G and G have no isolated
vertices. Then y,+ Y= p if and only if G or G is isomorphic to
2P3 U mK;, 2C3 U mKy, P3U C3 U mKy, P4U mKy, PsU mK;,
PsUmK, , CeUmKy, mz20; Ky UmKy Cs UmK,y ,
(C4+ x)U mKy, K13U mKy, (Ki3+ x) U mKz, Cs U mKy,mz 1 or
any one of the graphs given in figure 1.

Proof: It can be casily verificd that for all graphs stated in the theorem ,
Ye+ Y= P

Conversely, let G be any graph for which v, + Y= P
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Fig. 1

Case (i) G is disconnected.
Then y, = 2 sothat y,= p - 2. Hence two components of G have three

vertices and the remaining componcnts have two vertices or one component of
G has four or five or six vertices and the remaining componcnts have two
vertices. If two components of G have three vertices cach, tlien G is isomorphic
02P3 UmK;,2C3 UmKyor Py U C3 U mKy, m 2 0. Ifone com-
poncnt of G has four or five or six vertices, then G is isomorphic to one of the
graphs '4 V) sz, P4 V) sz , C4 U mK_v_ , K1_3U ng,
Kiz+ x) U mKy, (C4+ x) U mKy, Cs U mKy, PsU mK,, Cg U mK,
or PgU mK;, mz 1.

Case (ii) G and G are connected and diam (G) 2 3.

Then Y, = 2 sothat y,= p- 2. Since y,;s p- A, it follows that
A= 2and hence G is isomorphic to Py, Ps, Pg or Cg.

Case (iii) G and G are connected and diam (G) = diam (G) = 2.

Then ¥;< 1+ 8= 14+ p-1-A=p- A Also y,sp-A and
hence As | p/2]. Similarlly A< | p/2 ] and benee we may assume that
A= | p/2|. Furtherit follows thatA = dor A= 8+ 1. We now claim that p
iseven. Supposep= 2m+ 1. Then A= &= A= §= m. Letu be any vertex
of G. Let T be a spanning tree of G such that degy (u) = m. Let N (u) =

{ug uz, .oy} and V- Nfu)= (v, vy, ., v,}. Hencew; s adjacent
o u; foralli=1,2,...m. If v; is adjacent to uj, j= i, then y s m.
Otherwise all the v;’s are mutually adjacent so that y, = 3. Hence y,< m or
Ye= 3. Similarly y,;s m or y;= 3. Ifly,s m and y;s m, theny, + 7,< p.
Ifyr= Y= 3,theny, + Y= 6 = p sincepisodd.If y,s m and J;= 3, then
Ye= 2and hencep = Ssothat G= Csandinthiscase y, + y;= 6 = p. Hence

piscven. Let p= 2m. We now claimthat A= 8+ 1. Supposc A= 8= m.
Let T be a spanning tree of G such that degr(u) = m. Let N (u) =

{ug ,uz, . yUn} and V- Nfu}= {v;,vs,...v,_ (}. Atlcast one
vertex of N (u), say up, is a pendant vertex in T. If two vertices of N (u ) are
pendant  vertices in T, then ysA-1 S0 that
Ye+ Yt< A- 1+ (p- A)= p- 1, which is a contradiction. Hence we may
assume that «; is adjacenttov; for all i= 1,2, .......,m - 1. Since v; bas
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degree m in G, vi must be adjacent to some U, j= 1. Hence
N[u)- {un, u} is a total dominating set so that y,< m - 1 Furber
Y:< m sothaty,+ y,< p, whichisa contradiction. Hence A= 8 + 1. Now

let u be any vertex of degree 8. Let N(u)= {uy,u2, e tim - 1} and
V- N{u]= {vi,v2, e , Vm}. We may assumc that v; is adjacent to #; for
all i=1,2,.... ,m~- 1and v, isadjacent to uy.

We now claim that 0 = 2.

Suppose 8 = 4. If vy is adjacent to some ;, i= 2, then N [u ] - {1z}
is a total dominating set of cardinality 8. Otherwise v; is adjacent to at least
three vertices v;,v; and vi. Ifv;,v; and v arc different from vy and vy,
then (V[u]- {ui, uj, m})U {v2} is a total dominating sct. |If
v;= vy or v,, and v;, v arc diffcrent from vy and v, , then
(N u]- {4, w})U {v2} is a total dominating set. If vi= vi and vj = vm,
then (N [t ] - {u1,u}) U {v2} is a total dominating set. Thus in all cases
Y¢S 8 sothat y,+ Y; < p, which is a contradiction.

Suppose &= 3. Then A= 4 so thatp= 8. If vy is adjacent to some
u;,i= 2 then N[u]- {uz} is a total dominating set of cardinality 8, which
is a contradiction. Hence v; is adjacent to two of the vertices of {vy, v3, va}.
Similarly vz is adjacent to two of the vertices of {v{, v2, v4}. Further v,
cannot be adjacent to both v; and v4. Similarly v3 cannot be adjacent to both
vy and v4. Hence deg(vy) = deg(v3)= 3 and we may assume that vy is
adjacent to vy 5 vy is adjacent to vq and v is adjacent to v3. Now vy and
v4 cannot both be adjacent to up or uj. Without loss of gencrality, we may
assume that vy is adjacent to u; and vy is adjacent to u3. Now {u, ua, us}

is a total dominating set of cardinality 8, which is a contradiction. Hence
6= 2,A=3,p=6 and y,= 7, = 3. Letubeavertex of degree 3 and let

N(@u)= {uy, up, uz}. Let S= V- Niu]= {v, v2}. If S is independent,
then v and v, arc adjacent to some «; so that {u, u;} is atotal dominating
set, which is a contradiction. Hence vy and v, arc adjacent and without loss
of generality we may assume that viu;vau; € E(G) . Clearly
g = 7or 8. When g = 7, G isisomorphic to Gy or G2 and when g= 8,G is
isomorphic to G or G2. | |
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A Semigroup Operation Using Powers Of Two

M.C Soper, PFTN
PFTN Research and Techauthor
11 Ouseley
New Marston, OX3 0JS
UK.

ABSTRACT. A new numerical monoid based on the arithmetic
function related to powers of 2 called ‘delta’, is used first to
define a noncommutative monoid on the odd integers with five
submonoids, all infinite: the associativity of the structure is
used to define a relationship between the delta functions of two
arbitrary odd numbers.

Introduction

This note describes a very interesting monoid on odd integers greater than
3 and which contains at least three infinite submonoids.

Detailed Definitions

Define §(z) = 2* where 2% < r < 2%+1,

Let 7(N) be N—§(N): let the semigroup operation be m(z, y) = 16(z)(y—
3) + z, for odd integers z,y > 1: this awkward definition hides some sur-
prises since in fact there is unexpectedly an identity .

The Main Work

Theorem. Let S be the set of odd numbers greater than one; then (S, m)
is a monoid which is not commutative.

Proof: 3 has the role of identity in this system (this can easily be checked),
the more significant part of the proof is associativity: first we require two
lemmas:

Lemma 1. m(5,z) = 2z — 1 and m(7,y) =2y + 1:
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Proof:

8(5) = 4 thus m(5,z) = (4/2)(z —3) +5=2zx -1
6(7) =4 thus m(7,y) = (4/2)(y - 3)+7=2y+1

Lemma 2. Letn be odd and n > 3, then applying the functions z| — 2z—1
and y| — 2y + 1 to 5, and seven generates all odd numbers.

Proof: The Lemma is true for 5,7,9,11,13,15; let c be the smallest exception
to the Lemma: then either ¢ = 2n — 1 where n is odd or ¢ = 2n + 1 where
n is odd, thus from this contradiction on the inductive argument we can
therefore generate all odd numbers greater than unity by the action of
m(5,z) and m(7,y) on the set {3,5,7}, this concludes the proof of our
lemma.

Uniqueness is evident for the same reasoning clearly.
Remark: Following a suggestion of the referee, instead of writing m(r,u) =
v, m(s,v) = z let us for convenience write r*u = v, s xv = z S0 that
s * (r *v) = z: putting r = s = 5 we obtain

5x(bxv)=2=5%(2w—-1)=2(2v-1)-1=4v-3

and (5+5)xv = (9)*v = (8/2)(v—3)+9 = 4v—3 50 that 5x(5+v) = (5%5)*v
similarly

(T*(7Txv))=22v+1)+1=4v+3
((7+7)*v)=15%v=(8/2)(v—-3)+15=4v+3
(5*7)*v)=(13)*v=(8/2)(v-3)+13=4v+1

(5% (7T*v))=5+2v+1)=(4/2)(v—-3+1)+5=4v+1
((7*5)*1)):(11)*v=(8/2)(1)—3)+11=4v—1=(7*(5*v))

Main Proof Continuation: All odd numbers except three and unity can
be replaced by equivalent unique strings of 5’s and 7’s, and the monoid
multiplication function by concatenation or juxtaposition of these strings.
This is proved when we can show that m(z,y) = z * y corresponds to the
concatenations of the strings for z and y. To prove this we will adopt quote
notation for the strings representing each odd number, thus 11 is written
“15' and 25 = ‘557°. Now we can start to use an inductive proof on the
length of the string representing the left variable in z * y. The start of
the induction is easy; let N be the number for which the correspondence
breaks down which has the shortest equivalent string. Then N xy = ¢
is the operation in question say; let N’ be the cdr(N) with the first 5
or seven missing, then N’ xy = ¢ does obey the correspondence and the
isomorphism works: then ‘6’ xy = ¢, or ‘7’ x y = ¢ which follows from

94



the remark, the meaning of the quote-notation and the initial hypothesis,
thus we have a contradiction and the inductive argument is established as
required. From this, since concatenation is associative, the associativity of
m is also established easily.

Thoughts Having established that this mapping is associative and has
identity, we have the fact that with the appendation of 3 as identity to the
structure we have a monoid. The next step is the discovery of congruences
and submonoids: the first fact is that our monoid (S, m) is generated en-
tirely by 5 and 7 with 3 which then lead us to determine what (5) and (7)
are . In fact

(3,5) consists of all numbers of the form 2™ + 1
(3,7) consists of all numbers of the form 2" — 1 (less unity) :

there is also the intriguing fact that multiples of 3 form a closed structure
so that (3n: n =1,2,3,4,...) is also a submonoid, whit has a non-trivial
intersection with the first two.

We have therefore respectively, submonoids A, B, C with F = ANC and
D = BN C: five submonoids all together .

The referee noted that m also has the left and right cancelletion property,
related to the abbreviation of strings; however the odd numbers do not
contain the inverse operations.

From this theorem we can deduce another though somewhat obscure
theorem.

Theorem. For any odd numbers z,y: §(y)/2 = 6((y—3)-6(z)/2+z)/6(z).

Proof: The definition of m and associativity leads to §((y — 3) - 6(z)/2 +
z)(z — 3) = 6((2 — 3) - 6(y)/2), putting = = 2 leads to the result.

Corollary. For any odd integers z,y: 6(z)-6(y) = 6((y—3)-6(z)/2+z) +
6((z - 3)-6(y) +v)

Proof: Swap z and y in the theorem and add the two results.

Future Material We can work on whether the same results apply for delta
defined in terms of powers of any odd prime, and whether there are anal-
ogous formulae for any prime above two. If not the we can split off the
behaviour of powers of 2 from other powers in this context; also the rep-
resentation of nunbers by these strings (rewritten in binary ) may produce
results, naturally.
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