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ABSTRACT. Let G be a 2-connected graph of order n with the
connectivity & and the independence number a. In this paper,
we show that if for each independent set S with |S| = k+1,
there are u,v € S such that satisfying one of the following
conditions:

(a) d(u) +d(v) 2 n; or [N(w)NN(v)| > o; or
INW)UN@)| 2 n—-k;

(b) for any z € {u,v}, ¥y € V(G) and d(z,y) = 2, it implies
that max{d(z),d(y)} = n/2,

then G is hamiltonian. This result reveals the internal relations
among several well-known sufficient conditions: (1) it shows
that it does not need to consider all pair of nonadjacent or
distance two vertices in G; (2) it makes known that for the
different pair of vertices in G, it permits to satisfy the different
conditions.

1 Introduction

This paper uses terms and notations of [2]. Throughout this paper G =
(V, E) denotes an undirected connected simple graph of order n (> 3) with
the connectivity x(G) = k and the independence number a(G) = a. Let
L C V(G), F C G and v be any vertex in G. Define N.(V) = {uju € L
and uv € (G)} and N (F) = UyerNL(V). If no ambiguity can arise, we
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write F instead of V(F) etc. . The addition of subscript is taken modulo
t.

So far, there are many sufficient conditions for the existence of Hamilton
graphs such as:

C1: For every pair of nonadjacent vertices u and v, d(u) + d(v) > n (Ore
1960 [7)).

C2: For k > 2 and any u, v € V with d(u,v) = 2, max{d(u),d(v)} > n/2
(Fan 1984 [4]).

C3: a < & (Chvital & Erdés 1972 [3)).

C4: For every pair of nonadjacent vertices » and v, |[N(u) N N(v)| >
(2n — 1)/3 (Fandree et al. 1989 [5]).

C5: For every pair of nonadjacent vertices » and v, [N(u) N N(v)| > «
(Song & Qin 1991 (8]).

C6: The condition of the Theorem of this paper.

The relation of these conditions is described in Figure 1.

Figure 1

In this paper, the principal purpose is to reveal the internal relations
among them. For this reason, we lead to an idea of “or”, and turn to check
nonadjacent vertices satisfying the condition as less as possible. In fact, in
our result, it is enough to check a pair of vertices satisfying one of several
conditions for each k+ 1 independent set in G. We think that this train of
thought and the idea of “or” are very useful for the research of Hamilton
problem.
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2 Main Results

Theorem. Let G be a 2-connected simple graph of order n with the
connectivity k and the independence number . If for any independent set
S with |S| = k+ 1, we have

(8) 3t < k such that VX C S with |X| =, [N(X)| 2 min{£2-0+1 _s)
or

(b) 3u,v in S with d(u) + d(v) > n or
(c) 3u,v in S with [IN(u)NN(v)| 2 aor
(d) 3u,v in S with |[N(u)UN(v)|>n—kor

(e) 3u,v in S such that Vz € {u,v} and Yy € V, d(z,y) = 2 implies
max{d(z),d(y)} > n/2,

then G is hamiltonian.

By the Theorem, it is easy to deduce a lot of new sufficient conditions of
hamiltonian problem. And as corollaries, many well-known results, follow
naturally.

Corollary 1. Let G be a connected simple graph. If for any independent
set S with |S| = k+ 1, there is a t < k such that for each t subset X in S,

IN(X)| > min {K”t—;ll)ﬂ,n - 6}, then G is hamiltonian.

Comparing Corollary 1 with the Theorem in (7], first it permits to take
different t for different S in Corollary 1. And then note that K“t—:_ll)“"—l >

n—6, when ¢t > 2 and for a sufficient large §. Hence the latter is improved
by the former.

Corollary 2. Let G be a 2-connected simple graph. If for any independent
set S with |S| = k + 1, there are u,v € S satisfying one of the following
conditions:

(a) d(u)+d(v) > nor [INw)NN@)| > aor |[INw)UN(@)| >n—k;

(b) forany z € {u,v} andy € V(G), d(z,y) = 2 implies max{d(z),d(y)} >
n/2, then G is hamiltonian.

This Corollary shows that it doesn’t need to check every pair of nonad-
Jjacent or distance two vertices in G satisfying a same specific condition as
traditional known results. It is enough to check only one pair of vertices for
each k+1 independent set S, and it permits different pair of vertices in the
different k + 1 independent set satisfying a different specific condition. So
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those traditional known results are substantially generalized by Corollary
2.

Now, we use the following example to illustrate Corollary 2. Let G,
denote K, — {uv,vw, wu}, G, denote GV {z}, and let G’, G” be graphs of
order . and G3 denote G’V G”\M, where M is a perfect matching between
V(G’) and V(G") (see Figure 2).
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Figure 3

Clearly, any one of the conditions from C1 to C5 doesn’t justify that
G is hamiltonian, but G satisfies the condition of Corollary 2. In fact
k(G) = k=2, o(G) = a = 5. Any S, which contains at least two vertices
of {u,v,w}, contains two vertices z and y with [N(z)NN(y)| 2 a. If S
contains at most one of {u,v,w}, then it contains vertices | and m, where {
and m are in the different sets K,,/2_s. Since d(l) = d(m) =n-11 > 3, the
condition “for any z € {I,m} and y € V(G), it implies max{d(z), d(v)} >
n/2, if d(z,y) = 2" follows. So by Corollary 2, G is hamiltonian.

Corollary 2.1. Let G be a 2-connected simple graph with connectivity k
and independence number a. If for each independent set S with |S| = k+1,
there are u,v € S satisfying the following conditions:

d(u) +d(@) >nor |[Nu)NN(@)|2aor |[Nu)UN(@)|>2n—-k
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then G is hamiltonian.

Corollary 2.1.1. Let G be a 2-connected simple graph with connectivity
k. If for each independent set S with |S| = k + 1, there are u,v € S such
that d(u) + d(v) > n, then G is hamiltonian.

Clearly, Dirac’s Theorem and Ore’s Theorem is a corollary of the Corol-
lary.
Corollary 2.1.2. Let G be a 2-connected simple graph with independence

number a. If for each independent set S with |S| = k+1, there are u,v € §
such that |N(u) N N(v)| > a, then G is hamiltonian.

Corollary 2.1.3. Let G be a 2-connected simple graph with connectivity
k. If for each independent set S with |S| = k + 1, there are u,v € S such
that |[N(u) U N(v)| = n — k, then G is hamiltonian.

Corollary 2.2. Let G be a 2-connected simple graph with connectivity
k. If for each independent set S with |S| = k + 1, there are u,v € S
such that for any z € {u,v} and y € V(G), d(z,y) = 2 implies that
max{d(z),d(y)} > n/2, then G is hamiltonian.

Clearly, Fan’s result 4] is generalized by Corollary 2.2.

Corollary 2.3. Let G be a 2-connected simple graph with independence
number a. If for each pair of u,v with d(u,v) = 2, max{d(u), d(v)} > n/2
or |[N(u) N N(v)| > a, then G is hamiltonian.

Corollary 3. Let G be a 2-connected simple graph. If for each pair
of nonadjacent vertices u,v,d(u) + d(v) > n or |[N(u) N N(v)| > @ or
|N(u) U N(v)| > min{22=L n — 6}, then G is hamiltonian.

Corollary 3.1. Let G be a 2-connected simple graph. If for each pair
of nonadjacent vertices u, v, |N(u) U N(v)| > min{2%=L,n — 6}, then G is
hamiltonian.

Theorem 2 in [5] is generalized by this Corollary.
Corollary 4 [3]. If a < k, then G is hamiltonian.

Proof: By the definition of a and a < k, there is no independent set S
with |[S] = k+1 in G. Hence the condition of the Theorem is automatically
satisfied. So G is hamiltonian. a

3 The proof of the Theorem
First of all, we prove the following Lemma.

Lemma. Let G be a nonhamiltonian graph, and let C = vyv,...v4v; be a
longest cycle containing a specific vertex set A in G. Let B be a component
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of G-V(C),
Nc(B) = {viy,Vigy -+ Vi 1 N~ = {01, %ia—14+ « 1 Vin—1 }1
N = {vi, 41, V410 o s Vi1 }
and let w be any vertex in B, then
() N— U {w} and N+ U {w} are independent sets; and
(b) For any u,v € N~ U {w} or N* U {w},
d(u) +d(v) < n,|[Nw)NN(v)| < aand |[IN(u)UN(v)| <n-—k.
Proof:

(a) Clearly, w and any vertex in N~ are nonadjacent. If there are
vi,—1,%,—1 € N~ and v;,_1v;,—1 € E(G), then there is a cycle:

Vi, -1V, 1Y, -2 .. .'l).'.PBv."‘!),'¢+1 oo s Vi, -1

containing A, which is longer than C, where Pg is a path in B and the
end vertices of Pp are adjacent to v;,, v;, respectively, a contradiction.
Hence N~ U{w} is an independent set in G. Similarly, so is N*U{w}.

(b) Ifit is not true, there are u,v € N~U{w} or NtU{w}, say N~ U{w},
such that d(u) + d(v) 2 nor [N(u)NN(v)| 2 a or [N(u) UN(v)| >
n — k. Clearly, N(u) N N(v) C V(C), since C is a longest cycle in G.
In the following we always assume that N(u) N N(v) C V(C).

Case 1: d(u) +d(v) 2 n.

If u = wor v = w, say u = w, then v = vj;, thus vj4, € Ng(B). Let
P = vjy;...w be a path with V(P)NV(C) = {v;;,} in G. If there is
v; € V(C) such that v;v;, wvi;1 € E(G), then there is a cycle containing A
in G as follows: vjvivi_1...vj42Pvi4+1%i42...v;, which is longer than C,
this is a contradiction. So d¢(v;) + dg(w) < h. Hence d(u) +d(v) <n, a
contradiction.

If u,v € N—, let u = v;, v = vj; with i < j. Thus, by the definition of
N, there is a path P’ from vi41 to vj41 via B. If there is vp € V/(C) such
that v;vp,v;9p41 € E(G) and j < p < 1, thus there is a cycle containing A
in G as follows:

’
ViVpVUp—1... '(Ij+2p Vi42...VjUp41Vp42...Y§

which is longer than C. If there is v, € V(C) such that v;v,, v;95-1 € E(G)
and i < p < j, thus there is a cycle containing A in G as follows:

']
ViVpUpi1 ... VUjUp—1VUp~2... Vix2 P Wj42. .. 75
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which is longer than C. So dc(v;) + dc(v;) < h. Hence d(u) + d(v) < n, a
contradiction.
Case 2: [IN(u)NN(@)| 2 a

If w € {u, v}, then N(u) N N(v) C Nc(B). Hence

IN-U {w}| = |Ne(B)| +1 2 [N(@) N N@)| +1 > a+1.

By (a), this is a contradiction.
Ifu,v € N7, let u = v;, v = v; with i < j and take paths P and P’ as
in case 1. Let
N(u) N N(v) = {vr), ¥y, ..., 0r, }.

By the hypothesis of this case, p > a. Let § = {vp, 41, Urgt15+ -+, Urp 41}
Clearly w a the vertex v, 1 of S are nonadjacent, otherwise there is a cycle
containing A as follows:

VjVrVUrp—1 - - Vj+2PVr 1 10r, 2. .. ¥j,

which is longer than C, a contradiction. If there are v,,v, € S with s < ¢
such that v;,v, € E(G), three subcases must be considered: (1) i < s <
g<75; (2 i<s<g<i;(3)i<s<j<gq<i. Forall of subcases, there
are cycles containing A as follows:

ViVq—1Yq—-2...YsVgVg+1 ... VjVUs—1Vs-2... v.-+2P'v_,~+2vj+3 .o Uiy

ViVs—-1VY5~-2 ... vj+2P'v,-+2v.-+3 +e UjUq—1Vq—2 .. . UsUqUq+1 - . - Ui
and

ViVq-1Yg—-2- .. vj+2P'v,-+zv,-+3 «eeUs—1VjV51...UsVUqVUq+1 - . . Ui,

respectively. All of these cycles are longer than C, a contradiction. Hence
S U {w} is an independent set in G. Note that |[SU{w}| =p+12> a+1.
This is a contradiction.

Case 3: [IN(u)UN(v)| > n —k.

By (a), N~ U {w} is an independent set. Note that [N~ U {w}| =
[Ne(B)]+1=m+1 and m > k. So it is impossible for this case.

Up to now, three subcases as above are not true. So the proof of (b) is
completed. (]

Now we turn on to prove the Theorem.

Let A = {u|u € V(G) and dg(u) > 3} and E' = {zy|z,y € A,zy &
E(G)}. Let H = G + F', then H[A] is complete. By Lemma 4.4.2 in [2],
H is Hamiltonian iff G is Hamiltonian. If H is not a Hamilton graph, let
B be a component of H — V(C), where C is a longest cycle containing A
in H. let C =v,v3...vv; and

NC(B) = {'U.'“ Viggeo ,‘U,'m}

103



where 1) < i < +-- < iy, m 2 k, since G is k-connected. Let w and v;, be
adjacent in H, where w € B. And let N~ = {v;,_1,%,-1,...,%,-1} and
S = N~ U {w}. Hence by (a) of the Lemma, S is a k+ 1 independent set
in H, thus S is also an independent set in G.

Case 1: There is t < k such that for any ¢ subset X C S,

t("__l)_'*"_l,n_s(c)},

[Ne(X)| 2 mm{ T

Clearly, we also have [Ny(X)| > nﬁn{i(",—:}l)*—l,n - 6(H)}. If for any

t subset X C S, [Ny(X)| 2 5("—‘—-_‘_11)*‘—1, then using an analogous proof of
the Theorem of [6], we can get a ¢ subset X in S such that |[Ny(X,)| <
ﬁ“t—’;ll)-ﬂ, a contradiction; If for any ¢ subset X C S, |[Ny(X)| = n — 6(H).
Note that m + |B| > 8(H), consider subset Xo C N~ with |X| =¢. By
(a) of the Lemma, we have [Ny(X2)|] < n—-|N"|-|Bl|<n-m-|B|, a
contradiction.

Case 2: There are u,v € S such that d(u)+d(v) > nor INu)NN(v)| > &
or Nu)UN(@@)| >2n—-k.

It is clear by (b) of the Lemma.

Case 3: For any z € {u,v} and y € V(G), d(z,y) = 2 implies max{d(z),
d(y)} = n/2.

Since G C H and V(G) = V(H), from the choice of C, dg(b) < n/2 if
be B. We consider z € {u,v}. Ifz € A, thendg(z) > n/2. lfz ¢ A
and x = v;;; € N~, thus there is a b € B such that dy(z,b) = 2. Clearly
bu;; € E(G). Since z = v;;_1 &, A, vi;—19;; € E(G). Thus dg(z,b) = 2.
Hence dg(z) > n/2. This is a contradiction. So, if u,v € N~, then
dg(u) + dg(v) 2 n. By (b) of the Lemma, this is a contradiction. Hence,
in the following, we always assumeu € N~" andv=w € B.

If v;, 1 ¢ A, then v;,_1v;, € E(G) and dg(w,v;,~1) = 2. By the condi-
tion (b) of the Theorem, we have dg(v;,-1) > %, a contradiction. Hence
v,—-1 € A, ie. dc(‘v.',._l) > -'21

If u 7 v;;, -1, then dg(u) + dg(vi, —1) > n. By (b) of the Lemma, this is a
contradiction. So it must be u = v;, ;. Let w’ and v;,; be adjacent in H,
where w’ € B, and let S’ = N~ U {w'}. Without loss of generality, we can
assume that S and S’ have same property. Using an analogous discussion
as above mentioned, we have d¢(vi,—1) > n/2. Hence

de(viy—1) + de(vi,—1) 2 n.

Again by (b) of the Lemma, this is a contradiction.

Combining cases 1, 2 and 3, we have that H is hamiltonian. Hence G is
hamiltonian. The proof is completed. a
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Note: Using an analogous condition and method of proof of the Theorem,
we can get an analogous theorem about Hamilton-connected graphs.
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