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ABSTRACT. In this note we complete the table of Ramsey num-
bers for K3 versus the family of all (p,g)-graphs for p < 8.

Moreover, some results are obtained for the general case.

1 Introduction
If p and ¢ are natural numbers with ¢ < (’2’) the set Ramsey number

r(Ks, (p,q)) is defined to be the smallest natural number n such that in
every 2-coloring of the edges of the complete graph K,, (with green and red)
there is a green K3 or a red (p, ¢)-graph, i. e. a graph with p vertices and
q edges. The values of r(K3, (p, q)) for p < 7 are given in [2] (see Table 1).
Moreover, the values are known for 8 <p < 9incase of (§) -1 < ¢ < (5)

(see [3], [6] and [7], note that (K3, (p, (§) — 1)) = r(K3, K, — €) and
r(Ks, (p, (8))) = r(Ks, Ky)). In this note, r(Ks, (p, q)) will be evaluated
when ¢ is not too large relative to p, and the still missing values for p = 8

will be determined. More general set Ramsey numbers are discussed in [l

and [4].
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Table 1. r(K3, (p,q)) forp < 8

Some specialized notation will be used here. A 2-coloring of K,, is called
a (K3, (p,q))-coloring, if it contains neither a green K3 nor a red (p,q)-
graph. We use V to denote the vertex set of K,, and define G, and R,,
for all v € V, to be the sets of green and red neighbors of v. The number
of green edges incident to v is denoted by g(v), and g(S,T) denotes the
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number of green edges between two disjoint vertex sets S and T'. If S
consists of a single vertex w, we write g(w, T).

2 General results
An immediate consequence of Turén’s theorem ([8]) is

Theorem 1.

"Katps) =pforp2tandas (D) - @)

The next theorem gives a lower bound for r(Kjg, (p,q)) in case of ¢ >
(2) — |»%/4). This bound is sharp if ¢ is close to (5) — [p*/4).
Theorem 2. Let p > 2 and let s be an integer such that 1 < s < |p/2].
Put c, = (8) — |p?/4]. Then the following assertions hold.

(i) If pisodd and cp + (8 —1)8+ 1 < g < cp + 8(s+ 1) then
T(Ks, (pv Q)) 2?-{-28. (2)

Equality in (2) holds for p > 5, s < max{1, /p —19/4 — 1/2}.
(i) If p is even and ¢, + (s —1)2 +1 < g < cp + 82 then

r(Ks,{p,q)) 2p+2s-1. 3)
Equality in (3) holds for p < 4, s = 1 and for p > 6, s < max{2, /p — 5}.

Proof: First we will verify inequalities (2) and (3). Consider the 2-coloring
of K| (p-1)/2)+2s consisting of two disjoint red K| L(p—1)/2]+s with all edges
between them green. It contains no green Ks. Moreover, in every p-
subgraph (i.e. subgraph with p vertices) there are at most ¢, + (s — 1)s
red edges for p odd and at most c, + (s — 1) for p even. This yields the
required inequalities.

To complete the proof of (i) we have to show that equality holds in (2) in
certain cases. Suppose that equality does not hold for some p, s and ¢ with
podd, p>5, s <max{l,{/p—-19/4-1/2} and g, + (s -1)s+1< ¢ <
cp +8(s+1). Then there exists a r(Ks, (p, g))-coloring x of Kp2,. Denote
the vertex set of Kp42, by V and put k = |p?/4] — s(s + 1) + 1. Note
that in x every p-subgraph must have at least k green edges. Let H; be
a red complete subgraph with maximum number of vertices in x. Denote
the vertex set of H; by V; and put ! = |Vj|. Then I £ p — 2, because
otherwise H; would yield a red (p, g)-graph. Furthermore, p+2s > 7 and
r(K3, K3) = 6 imply that | > 3. Note that G, induces a red complete
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subgraph for every v € V. Thus, g(v) <1 for every v € V. Let H» be the
subgraph induced by Vo = V' \ V;. One of the following three cases must
occur.
Case I: All edges in Hj are red. Consequently p + 25 -1 = V3| <, and
this yields I > (p + 1)/2 + s. But then, the p-subgraph induced by V; and
p — l vertices from V; has at most ((p+1)/2+s)((p—1)/2—-38) =k -1
green edges, a contradiction.
Case II: All green edges in Hs are incident to a common vertex u. Then
Hj — u is a red complete graph and contains at most ! vertices. In case
ofl > (p+1)/2 + s we get a contradiction similar as above. It remains
that { = (p —1)/2 + s. Consequently |V2| = (p+1)/2+ s < p—1. By
the maximality of V), there exists a vertex w € G, N V;. We obtain that
9({u, w}, V2\u) < (p—1)/2+ s, as otherwise a green K3 would occur. But
then the p-subgraph induced by V2, w and (p — 3)/2 — s other vertices from
V1 has at most ((p —3)/2 —s)l+ (p—1)/2+ s+1 < k — 1 green edges.
Case III: There are at least two independent green edges {u1,w;} and
{u2, w2} in Hy. Then g({w;, w;},V;) < land we can assume that 9(u, V) <
1/2. Moreover, there are at most four green edges between uy, ug, w; and
wz, and at most two between any three of them. Note that p > 7 for
I <p-3sincel > 3. If I < p — 4, take a p-subgraph induced by V;, ug,
u2, wy, w2 and p — ! — 4 other vertices from V5. It would contain at most
p~l-+2+4=(p-2-D+4<((p-1)/2)(p-3)/2) +4< k-1
green edges. It remains that | = p—3 or { = p — 2. But then we get a
contradiction from the p-subgraphs induced by V;, u;, u2 and w; or by V;,
u; and w;.

Thus, each of the cases I to III leads to a contradiction and the proof of
(i) is complete. The proof of (ii) can be completed similarly. a

Table 1 shows that for small p the bounds for s where equality in (2) or
(3) holds can be improved. It seems that with more careful methods this
might be possible in general. The following theorems improve the bounds
for r(Ks, (p, q)) given in Theorem 2 for special g close to (£).

Theorem 3. For p even, p > 4,
P 5
r(Ka o, (P) -p+3) 2 2p 4. @

Proof: Take five disjoint K,/»_, denoted by Hjy,...,Hgs. Join, for i =
1,...,5, the vertices from H; by green edges to the vertices from Hiy1 (mod 5)
and any two other vertices by a red edge. The resultant coloring of Ksp/2-5
contains no green K3 and every subgraph with p vertices has at most
(2) —p+ 2 red edges. Thus, inequality (4) is established. O
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Theorem 4. Let s be a positive integer and p > s+ 6. Then
r(Ks, (p, (g) —8))>4p—4s-3. (5)

Proof: In [7] it was shown that (5) holds for s = 1. Note that a (p, (3) —s)-
graph contains a (p—s+1, (P~+')—1)-subgraph. Consequently r(Ks, (p, (§)
-8)) > r(Ks,(p—s+1,(P 3 -1)) 24(p-5s+1)-Tifp—s+127
and inequality (5) is proved. a

8 The values of r(Ks, (8,9))

The values of r( K3, (8, g)) given in Table 1 can be deduced from Theorems
1 and 2 for ¢ < 16. For 27 < ¢ < 28 they were determined in [6] and [7]
by computer methods. Furthermore, the value for ¢ = 27 was obtained in
[5] without using a computer. For the remaining case 17 < ¢ < 26 it can
be seen from Theorems 2 to 4 and from the coloring in Figure 1 that the
values in Table 1 are lower bounds for r(Ks, (8,q)). To prove equality it
suffices to establish them as upper bounds for ¢ = 21, 22, 24, 25 and 26.
This will be carried out in the following lemmas.

Figure 1. The green subgraph of a (K, (8, 25))-coloring of K7

Lemma 1. Let p > 3 and q > |p/2|. Let x be a 2-coloring of Ky
containing a red (p — 1, ¢ — |p/2))-graph but no green Ks. Then x contains
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a red (p, q)-graph if
() p-3<n<%-2q< (";1) or

() n>2-1,¢< (”;l)+[gj.

Proof: Let V] be the vertex set of a red (p — 1, ¢ — |p/2))-graph in x. If
Va = V1 \ V contains a vertex u with g(u,V;) < |(p — 1)/2], a red (p, g)-
graph occurs for ¢ < (P;!) + |p/2). Otherwise, any two vertices in Vz have
a common green neighbor in V;. This leads to a red K,,_p41 induced by
Va. If then n > 2p — 1 we have a red K, containing a red (p,q)-graph
for ¢ < (). Forn = 2p—2, a red K,_; is induced by V2. This yields
a red (p, q)-graph for ¢ < (’;1). It remains that n = 2p — 3. If then a
red K;_; is induced by V;, we obtain a red (p, q)-graph for ¢ < (73') as
before. Otherwise there is at least one green edge between vertices u; and
uz in V;. But then u; and u; together with V5 yield a red (p, g)-graph for
9 (%2))- 0
Lemma 2. r(Ks, (8,21)) < 13, r(K3, (8,22)) < 15.

Proof: Using that (K3, (7,17)) = 13 and r(Kj, (7,18)) = 14 (see Table
1) Lemma 2 follows from Lemma 1. a

Lemma 3. A (K3, (8, g))-coloring x of K, has the following properties.

(P,) For n > 15, there is no red K7 — e in x if ¢ = 24 and no red Ky if
24 < q<25.

(P2) If W is the vertex set of a red K; in x with2 <1< 7, w e W and
U C Gy such that |U| =9 -1, then g(U,W \ {w} >29 —gq.

Proof: (P;) is an immediate consequence of Lemma 1. Taking into account
that G, induces a red complete graph the proof of (P;) is straightforward. O

Some further notation will be used in the following lemmas. If x is a
given 2-coloring of K., the green subgraph is denoted by G. We define A
to be the maximum degree in G and always use u to denote a vertex of
degree A in G. The green and red neighbors of u are, respectively, denoted
byl,...,Aand A+1,...,n-1,

Lemma 4. r(Ks3, (8,24)) < 16.

Proof: Suppose that we have a (Kj, (8,24))-coloring x of Ki6. Then x
must have properties (P;) and (Pz) from Lemma 3. (P,) implies the further
property
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(Ps) If W is the vertex set of a red K in x, then g(v, W) > 2 for every
v € V. Equality holds for at most two vertices.

Moreover, (P;) yields A < 6. We distinguish the following three cases
depending on the value of A.

Case I: A < 4. Suppose first that there is a red (7,19)-graph in x with
vertex set W;. Let Wa be a set of eight vertices in V'\ W;. Then either W,
yields a red (8,24)-graph or there exists v € W; with g(v, W2 \ {v}) > 2.
But then g(v, W;) < 2 because of A < 4, and W) together with v yields
a red (8,24)-graph. Now suppose that a red K¢ with vertex set W would
occur. Then (Ps) implies that g(W,V \ W) > 28 in contradiction with
A < 4. Thus, in case of A < 4 we obtain the additional property

(Ps) There is neither a red (7, 19)-graph nor a red Kg in x.

Now consider a vertex u incident to A green edges. Then r(K3,Kg) =9
guarantees a red K in R, yielding a red K5 (with vertex set U) together
with u. (P) implies that g(v,U) > 1 for every v € V \ U with equality for
at most two vertices. A vertex v with g(v,U) > 3 implies g(U,V \U) > 20
in contradiction with A < 4. The case of g(v,U) <2 for every v € V\U
remains. This gives g(U,V \ U) = 20 and g(w) = 4 for every w € U. But
‘then (P,) is violated.

Case II: A = 5. Let V; be the set of vertices v € R, with g(v,Gy) = i.
Then

3 ilVil = 9(Gu, Ru) < 20. (6)

>1

First suppose that Vo # 0. Then G, U {v} where v € Vp induces a red
Ke. (Ps) forces g(Ry \ {v},Gy U {v}) > 25. This yields g(v) = 5 and
Gy U {u} induces a second red Kg. Because of (P;), there exist vertices
wy, wp € Ry N R, with g(w;, G,) > 3. But then the conditions K3 ¢ G and
A =5 imply a red (8, 24)-graph in G, U {v, wy, w2}. Thus, it remains that
Vo =9 and

Y Vil = |Ru| = 10. (7)

21

Moreover, |V2| > 3, as otherwise (6) and (7) would yield that (P,) is violated
for a vertex in Gy.

First let |Vj] = 3. Then we obtain from (6) and (7) that [V2| > 4
and g(Vj U V2,G,) = 11. We can assume that g(1,V1 U V) > 3. Let
Vi = {6,7,8}. Without loss of generality, the edges {6,8} and {7,8} are
green and {6,7} red. (P;) and K3 ¢ G imply that g(1,V1) < 1. Suppose
that g(1,V2) > 3. Then, since K3 ¢ G, either G, \ {1} together with 8 and
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three vertices in Gy NV; leads to a red (8, 24)-graph or Gy, together with 6,
7 and one vertex in Gy N V5. It remains that g(1,V;) =1 and g(1,V3) = 2.
If g(1, R,) = 3 we get g(Gu, Ry) < 20. Otherwise, g(1, Ry) = 4, and then
(P2) forces that V; # @ for some ¢ > 4. In both cases (6) and (7) imply
[V2| > 5. Then g(V;UV,,G,) > 13, and there must be a vertex v # 1 in G,
with g(v, V1 UV3) > 3. As above we get g(v,V1) = 1, and we can assume
that {1,6} is green. But then K3 ¢ G leads to a red (8, 24)-graph among
the vertices 2,...,8 and the two vertices in G; N Va.

It remains that [V3| > 4. Let 6,7,8,9 € V;. Without loss of generality,
the edges {6,7} and {8,9} are red and the other edges between these four
vertices must be green. Since A = 5 implies g(Gy, {10,...15} < 16 there is
a vertex v in {10, ...15} with g(v, Gy) < 2. But then the subgraph induced
be v and {1,...,9} contains a red (8,24)-graph if a green Kg is avoided.
Case III: A = 6. Then (Ps) implies g(Gy,R,) > 25 and we can as-
sume that g(1) = 6. Let G; = {u,11,...,15}. By (Ps), we can as-
sume that g(7,G; \ {u}) > 3 and ¢(8,G; \ {u}) > 3. Then the edge
{7,8} must be red. The interdiction of a red (8,24)—graph implies that
9(7,Gu) 2 3 or 9(8,Gy) > 3, say g(7,Gy) > 3. We can assume that
Gr = {4,5,6,11,12,13}. The K7 induced by {u,7,...,10,14,15} must
contain a green edge {v, w}. Then g({v,w}, {4,5,6}) < 3. We can assume
that the edges {v,4} and {v, 5} are red, and, because of (P,), that {v,11}
and {v,3} are green. Using K3 ¢ G and (P,) the edge {3,11} has to be
red, {3,12} and {3, 13} must be green, {v,12} and {v, 13} red, {v, 6} green,
{v,14} or {v, 15} green, say {v, 14} green, {14, 6} and {14, 3} red. But then
G7 U {3, 14} yields a red (8, 24)-graph. 0

Lemma 5. r(Kjs, (8,25)) < 18.

Proof: Suppose that we have a (K3, (8, 25))-coloring x of Kjs. Then x
must have properties (P;) and (P;) from Lemma 3. (P,) and (P,) imply

(Ps) IfW is the vertex set of a red K, then g(v, W) > 1 for every v € V\W
with equality for at most one vertex, and g(v, W) < 2 for at most six
veV\W.

Using the fact that a subgraph induced by six vertices contains a red Ks
in x (since r(K3, K3) = 6) we obtain

(Pe) If U is the vertex set of a red K5, then g(v,U) < 1 for at most five
veV\U.

Moreover, (P;) implies A < 6. We distinguish three cases depending on A.

Case I: A < 4. Since r(Kj3, Kg) = 18 there must be a red K in x. Let W
be its vertex set. Then (Ps) implies that g(V \ W, W) > 29 contradicting
A<L4.
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Case II: A = 5. Then g(v,G,) > 1 for every v € R, as otherwise (Ps)
would contradict A = 5. By (Ps) we obtain 19 < g(Gy,Ry) < A(A-1) =
20. But then (P;) must be violated for at least one vertex in Gy.
Case III: A = 6. Then (Ps) can be used to prove the x has the additional
property

(P7) If g(v) = 6 and U C R, such that |U| = 6, then g(U,G,) = 12.

This together with (Ps) implies that g(Gy, Ry) > 27 if g(v) = 6. Thus, we
obtain

(Ps) If g(v) = 6 then there are at least three vertices w € G,, with g(w) = 6.

Now consider a vertex u with g(u) = 6. By (Ps), we can assume that
g(l) =g(2) =6. Let W; = G1 NGz, Wa = R1 N Ry, W3 = G, UGz and
k = |Wy|. Then 1 < k < 6 and g(W,, W2) < 4k. Without loss of generality
Gi\{u} = {13,...,17} and Gz \ {u} = {17,16,...19-k}U{12,11,..., 7+
k}. We distinguish six subbases depending on the value of k.

IIL.1: k = 1. Then (P;5) implies that g(7,G,) > 1. Moreover, there must
be at least three green edges from 7 to each of the two red subgraphs K7 —e
induced by G; U {2} and G, U {1}. This contradicts g(7) <6.

II1.2: k = 4. Then g({11,12}, {13,14}) = 4 and all other edges in the
subgraph induced by W3 must be red. (Ps) and Kz ¢ G imply that
g(v,W1) > 1 for every v € W, Since g(W;,W2) < 4k, one of the fol-
lowing two cases must occur.

(i) g(w,W;) =1 for some w € Wa. Then g(w,G;) =1 or g(w,G2) =1,
say g(w, G1) = 1, and g(w, {11, 12}) = 2. Moreover, g(v, W;) =1 for
at most one v € W \ {w}, and there must be vy,...,v5 € W2\ {w}
with g(v;, W;) < 2. Since g(13,G3) = g(14,G3) = 2, (Ps) implies
that g(v;, G2) > 3 for some v;. But then g(v, {11,12}) > 1 for this
v; and G U {v;, w} yields a red (8, 25)-graph if K3 ¢ G.

(i) g(v,W)) = 2 for every v € Wz. Then {7,...,10} induces a red
Ki. Applying (P2) to u (in G; and G2) and (P5) to G; and G2
we obtain that (without loss of generality) g(z,{11,12}) > 1 for
z = 3,4,7,8 and g(y,{13,14}) > 1 for y = 5,6,9,10. Moreover,
9({7,8},{11,12}) > 3 and g({9,10},{13,14}) > 3. We can as-
sume that g(7, {11,12}) = ¢(10,{13,14}) = 2. Then ¢(7,{3,4}) =
9(10, {5,6}) = 0 since K3 ¢ G, and ¢(7, {5,6}) = g(10, {3,4}) = 2 as
otherwise a red (8, 25)-graph would occur. Since A = 6 we obtain that
9({13,14},{3,....,6}) > 3. Consequently g({a, b}, {3,...,6}) > 1 for
every two vertices a,b € {15,16,17}. Thus, we can assume that
9(7,{16,17}) = g(10,{15,16}) = 2. But then a red (8, 25)-graph is
induced by G7 U {10, u}.
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IIL.3: k = 5. (P;) implies that {12,13} is green, and W3 induces a red
K7 — e. Then g(w,W3) > 3 and g(w, W;) > 2 for every w € W,. Since
9(W1, W) < 20 there are wy,...,wr € Wy with g(w;, W;) = 2. We can
assume that g(13, {wy,...,ws}) = 4. Then Gi13 U {2} induces a second
red Ky —e. Since g(12) < 6, there is some v € Wy \ {w),..., w4} such
that {v, 12} is red. The interdiction of a red (8,25)-graph and a green K3
implies that g(v, {wy,...,ws}), 9(v,W;) > 3. But then G, U {12} induces
a red K7 contradicting (P;).

II1.4: k = 6. (Ps) and (P;) applied to G, yield g(v) = 6 for every v € G,
and g(w, G;) < 3 for every w € Wa. Moreover, g({3,...,6},G1\ {u}) > 6
because of (P;). This implies that g(v, {3,...,6}) > 2 for some v € G \
{u}, say for v = 17. If none of the preceding cases is to occur (with u
and 17 instead of 1 and 2), then Gy = Gj7 and, as above, g(v,G,) <
3 for every v € Ry N Ry7. This implies g(v,{3,...,6}) = 1 for every
v € G\ {u,17}, since (P;) forces g({3,...,6},G1 \ {4, 17}) > 4. We
obtain that g(v,{7,...,12}) = 3 for every v € G, \ {y,17} and g(G; \
{,17},{7,...,12}) = 12. But then (P;) implies a contradiction to (P;)
for one vertex in Gy \ {u, 17}.

IIL5: k = 2. Since g(2, G1) = g(1,G1) = 2 we obtain that g(v, G), g(v, G2)
2> 2 for every v € Wa. We distinguish two cases:

(i) g(v,{13,...,16}) < 1org(v,{9,...,12}) < 1 for every v € W,. Then
9(17,{7,8}) = 2 and, if none of the preceding cases is to occur (for
u and 17 instead of 1 and 2), g(17, {3,...,6}) < 1. But then (P,) is
violated for u and G, or Gs,.

(i) g(w,{13,...,16}) > 2 and g(w, {9,...,12}) > 2 for some w € Wa.
We may assume that 11,12,15,16 € G, and that a red Kjg is induced
by these four vertices together with » and 17. Then g({11, 12}, {13.14})
= g({9,10}, {15,16}) = 4. If g(17) = 6, a situation equivalent to
k > 4 occurs. If g(15) = ¢g(16) = 6 and a situation equivalent to
k > 4 is avoided, {1,3,4,5,6,9,10} must induce a red K7 if K3 ¢
G. This contradicts (P;). We obtain that g({15,16,17,u}, Ws) <
12 and similarly g({11,12,17,u},W2) < 12. It can be shown that
9(v, {15,16,17,u}) < 1 or g(v, {11,12,17,u}) <1 for some v € W, is
impossible. This implies that g(v, {15, 16,17, u}) = g(v, {11,12,17,u})
= 2for all v € Wa. Then g(17,{3,...,6}) > 3 would yield a red K7 in-
duced by {11,12, 15, 16} and three green neighbors of 17 in {3, ..., 6},
contradicting (P;). Thus, we can assume that 3,4 € R;7. But this
leads to a red (8, 25)-graph induced by {2,3,4,13,...,17}.

III.6: k = 3. We can assume that a situation equivalent to one of the
preceding cases with k # 3 does not occur. Then ) must have the property
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(Pp) If z € V such that g(z) = 6 then |Gz N Gy| = 3 for any two vertices
z,y € G, with g(z)= g(y) =6.

As for (Pg) there are two vertices in G, \ {u} and two in G2\ {u} each one
incident to six green edges. This leads to one of the following three cases:

(i) g(16) = g(17) = 6. Then (Bp) is violated for at least two of the
vertices u, 16 and 17.

@ii) g(11) = g(12) = g(13) = g(14) = 6. Then (P,) implies that the K7
induced by {11,12,13,14,16,17,u} must contain a green edge. We
can assume that {12, 13} is green. By (Pp) we obtain that 14,15 € G12
and 10,11 € G;3. But then (P;) is violated for 13 and 14 or for 2 and
14,

(iii) g(13) = g(16) = 6, g(17) < 5. Since |G16 N Gyu| = 3, we may assume
that Gy = {1,2,6,7,8, 9}. Moreover, |G1s NG| = |G1s NG| =3.
Then 6 ¢ G;3 would imply a red K7 induced by 1, 2, 6 and the
four vertices in {3, 4, 5,7, 8,9}NG3 contradicting (P;). Thus, we can
assume that .Gy3 = {1,3,6,9,10,11}. As for (Pg) (applied to G2),
there must be a vertex in {10,11,12} incident to six green edges,
and, as for the vertex 13, it must be joined green to 6. This implies
9(10), g(11) < 5, g(12) = 6, and {12,6} has to be green. By (F),
g(6) < 5. Now (Ps) applied to Gi3 yields g(3) = g(9) = 6, and
(Py) implies that G3 = {u,7,8,12,13,17}, Go = {4,5,12,13,16,17}
and G2 = {2;3,6,9,14,15}. If a red (8,25)-graph is avoided in the
subgraphs: induced by {1,...,9} and {10,...,17,u} then the edges
{4,8}, {5,7}, {10,15} and {11, 14} must be green. Moreover, |Rg N
{10,11,14,15}| > 3. We can assume that 10,11,14 € Rs. But then
one of the vertices 10, 11 and 14 yields a red (8,25)-graph together
with seven suitable vertices in {1,...,9}.

a
Lemma 8. r(Kj, (8,26)) <21.

Proof: Suppose that we have a (K3, (8,26))-coloring x of K2;. It is easy
to see that x must have two further properties besides (Pz).

(Pyo) If W is the vertex set of a red K7 then g(v,W) > 3 for every v €
V\W.

(Py1) If U is the vertex set of a red K¢ then g(v,U) < 1 for at most two
ue V\W.

Since A > 8 would imply a red K3 containing a red (8, 26)-graph we obtain

that A < 7. Thus, one of the following four cases must occur.
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Case I: A < 4. Since r(K3, Kg) = 18, x must contain a red Kg. Let U be
its vertex set. But then (P;;) and A < 4 would imply 26 < g(U, V\U) < 24.
Case II: A = 5. Then there is no red K7 in x because of (Py) and we
obtain that g(v,G,) > 1 for every v € R, by (P;;). Let V; be the set of
vertices v in Ry such that g(v,G,) = i. If |Vj| > 10, we would obtain that:
g9(w, V1) > 3 for some w € Gy, and this would lead to a red K. It remains
that |V1] = 10, V2 = R, \ V; and g(w, R,) = 4 for every w € G,, since
A =5 implies g(Gy, R,) < 20. But then (P,) is violated for G,,.

Case III: A = 7. Because of (Pio), 9(Gu,V \ Gy) > 46. Thus, we can
assume that g(1) = g(2) = 7. Let k = |G; N G3|. We obtain that k < 6 as
otherwise (Pyo) would imply g(G,, V\G)) 2 50, contradicting A = 7. Then
(Pyo) applied to 2 and G and to v € G2\G; and G yields 3 < k < 4. Since
9(G1NG2, R1NRy) < 5k, there exists v € RyN Ry so that g(v,G1NG2) < 1
if k = 3 and g(v,G1 N G2) < 2 if k = 4. But then, by (Pyo), v is joined
green to a vertex w € G2 \ Gy, to two vertices from G, \ G; if k = 3 and to
one vertex from G, \ G; if k = 4. Thus, g(w, G;) < 2 contradicting (Pjo).

Case IV: A = 6. As an immediate consequence of (P;9) we obtain the
property

(P12) If U is the vertex set of a red K¢ and g(v,U) > 4 for some v € V\U,
then g(v,U) > 1 for every ve V\ U.

Next we will prove

(P13) If 2,9,z € V, g(z) = 6 and g(y,Gz) = 9(2,Gz) = 2, then (Gy L
G.)NG:|23.

Assume the contrary. Then (G, U G;) N G;) = {v1,v2}. Denote the four
other vertices in Gz by vs,...,vs. Let A = {v3,...,v6} and let B =
V\(G: U {z,y,2}). Note that A = 6 implies that g(A, B) < 20 and
9(G=z, B) < 26. Consider the two red Kg induced by G- and AU {z,y}.
(P12) implies that g(w, A) > 1 for every w € B with equality for at most
four vertices because of (P;;). Since g(A4,B) < 20 there must be four
vertices w;,...,w; in B such that g(w;, A) = 1 and eight vertices w € B
with g(w, A) = 2. Moreover, g(v;) =6 for i = 3,...,6. We can assume that
9(w1,Gz) = g(w2,G;) = 1 and g(ws, AU {y,2}) = g(ws, AU {g,2}) = 1.
Then the edge {w), w2} must be green and, without loss of generality, also
{w1,vs5} and {w,,ve}. Moreover, we can assume that {w,,y} and {ws, 2}
are green because of (Py;). This implies that {w,, z} is red. Similarly it can
be shown that g(ws, G:) = g(ws, Gz) = 2. Since g(B, Gz) < 26, there are
at most four w € B such that g(w,Gz) > 3. This together with (P;) and
g(vs) = g(ve) = 6 implies that v; is joined green to three vertices ws, ws,
wy, where vg is joined green to two of them, say to ws and wg. But then
{vSv V4, ¥, 2, Wy, Ws, We, w’f} leads to a red (8! 26)—g'raph if K3 ¢ G. Thus:
(Py3) is proved.
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Now consider a vertex u with g(u) = 6. Then g(w,G.) > 1 for every
w € R, because of (P;2). Let m be the number of vertices w € R, such
that g(w’ Gu) =1 By (Pll): 0<m<2 USing (P2) and (PIS)s it can
be shown that in case of m = 2 the edges between G, and R, must be
colored (up to isomorphism) as described by the matrix M; in Figure 2,
where {i, j} is green iff there is a “1” in the ith row and (j — 6)th column.
Similarly, in case of m = 1, the edges between G, and R, must be colored
as described by the matrix M3 in Figure 2.

(1 01000000010 1 1)
01 0100UO0UO0O0OTUO0TGO0T1T1T1
M| 00001 110001010
11 0001100110100 0
001 00101010100
\0 0000O0O1011010 1)
(11000000000011\
01111100U0TU0TUO0TUG0TU O0O
M| 0010001 1100010
21 o0 010010011010
000 010071010101
\0 000010010110 1)
Figure 2.

We distinguish three cases depending on the value of m.

(i) m = 2. Consider the red K¢ induced by Gs. Then g(9,Gs) 2 1
by (Pi2), i.e. g(9,{13,15}) > 1. First let g(9,Gs) =1 and let z €
{13,15} such that {z,9} is green. Then g(w, Gg) > 2 for every w €
Rg \ {9} (otherwise, we would obtain the same situation for G¢ as
for Gy, and x must be joined green to three of the four vertices w €
Rg with g(w,Gs) = 3, contradicting g(2,Gs) = g(5,Ge) = 3 and
9({2,5}, {13,15}) = 0). This together with 9(Gs \ {z},Re) <.25
and g(2,Gs \ {z}) = 9(5,Gs \ {z}) = 3 implies that there are two
vertices w € Rg \ {9} such that g(w,Gs \ {z}) = 1 and the edges
{w, z} are green, contradicting (P;). We still have to consider that
9(9,{13,15}) = 2. Similarly it can be proved that ¢(9,G2) = 2, i.e.
9(9, {8,10}) = 2. But then g(9, G3) = 1 since g(9) < 6 and we obtain
a contradiction as above.

(ii) m = 1. First suppose that g(7, {9,...,12}) < 2. Then we can assume
that the edges {7,9} and {7,10} are red. But this leads to a red
(8,26)-graphin {3,...,10} if a green K3 is avoided. Now suppose that
9(7,{9,...,12}) = 4. Then one of the edges {7,13} and {7,18}, say
{7,13}, must be red since g(7) < 6. This yields a red K¢ induced by
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{2,5,6,7,13,19}. Moreover, g(7) < 6 implies that g(7,{14,16}) =0
or g(7,{15,17}) = 0. Again we obtain a red (8, 26)-graph if K3 ¢

. G. It remains that g(7,{9,...,12}) = 3. We can assume that the
edge {7,9} is red. Then G7 = {1,10,11,12,13,18} and g(u,G?) =
9(9, G7) = 1. But this yields a situation equivalent to the preceding
case (i).

(iii) m = 0. It is easy to see that in this case we can assume the property
(P1s) 9(w,G;) > 2 for every z € V with g(z) = 6 and every w € R.

Thus, g(Gu, R.) = 28 and, without loss of generality, g(:) = 6 for
i=1...,4. Let k = |GiNG3|. By (P4),2 <k < 6. We
can assume that G; = {16,...,20,u} and G; = {4,20,19,...,22 —
k} U {15,14,...,10 + k}. If k > 5 we obtain that g(Gy, R;) > 31
by (Py4), contradicting A = 6. If k = 4, then K3 ¢ G forces
that g({14,15}, {18,19,20,u}) = 0. Moreover, (Py4) implies that
9({14,15}, {16,17}) = 4, contradicting (Py3). In case of k = 2 we
obtain that g(w, {20,u}) = 0 for some w € {3,...,12} and, by (P4),
that g(w, {16,...,19}) > 2 and g(w,{12,...,15}) > 2. We can as-
sume that 12,13,16,17 € Gy. But then K3 ¢ G and (P,4) yield that
G12N Gy = G13aN Gy = {18,19}, contradicting (P;3). The remaining
case is k = 3. By symmetry, |Gs N G,| = |GsN G,| = 3. But then
(P14) implies that g(R;, G;) > 31, contradicting A = 6, and the proof
of Lemma 6 is complete.

0
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