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ABSTRACT. We consider the polytope P(s) of generalized tour-
nament matrices with score vector s. For the case that s has
integer entries, we find the extreme points of P(s) and discuss
the graph-theoretic structure of its 1-skeleton.

1 Introduction

A tournament of order n is a loop free directed graph on the vertices
{1,2,...,n} with the property that for any distinct vertices i and j, ei-
ther ¢ — j or j — %, but not both. A tournament matriz is the adjacency
matrix of a tournament, and it follows that T is a tournament matrix if
and only if it is a (0,1) matrix satisfying T + T! = J — I, where J is the
all ones matrix of the appropriate order. There is a wealth of literature on
tournaments (see [2], [16] and their lists of references), while tournament
matrices have been the subject of a number of recent papers (for example,
[7), [8], [9), [10), [11], [12), [13], [18])-

In [17], Moon and Pullman introduced the notion of a generalized tour-
nament matriz, that is an entrywise nonnegative matrix M satisfying M +
Mt = J —1. Evidently the set of all n x n generalized tournament matrices
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forms a convex polytope, and it was shown in [17] that the extreme points
of that polytope are the tournament matrices of order n. Thus M is a
generalized tournament matrjx if and only if it is a convex combination of
tournament matrices.

Given a generalized tournament matrix M, its score vector s is just the
vector of row sums of M - i.e. s = M1, where 1 is the all ones vector. In
some recent work, the score vector has been of some use in discussing spec-
tral properties of generalized tournament matrices, particularly in bounding
their spectral radii (see [12], [8] and [13]). If s is the score vector of some
generalized tournament matrix, it is clear that P(s), the set of all gener-
alized tournament matrices with score vector s, forms a convex polytope.
It is natural to wonder about the structure of such a polytope, and in this
paper we investigate that structure in the case that s is a score vector with
(necessarily nonnegative) integer entries. Specifically, we focus on the 1-
skeleton of P(s), which we denote by S(s). It is the (undirected) graph
whose vertices are the extreme points of P(s), with two vertices adjacent
in S(s) whenever they are on the same 1-face of P(s).

In Section 3 we show that for an integral score vector s, the extreme
points of P(s) are exactly the tournament matrices with score vector s,
and that two tournament matrices are adjacent in S(s) if and only if their
associated tournaments differ only in the orientation of a single (directed)
cycle. We show further that S(s) has two adjacent vertices with the same
degree, and in Section 4, we examine some of the special properties of (8r),
where §, = (1,1,2,3,4,...,n = 3,n — 2,n - 2)".

We remark that Brualdi and Li [4] have also looked at a certain graph
whose vertices are the tournament matrices with a common score vector
and its relationship with S(s) is discussed in Section 3. In a different direc-
tion, another polytope consisting of generalized tournament matrices - the
polytope of generalized transitive tournament matrices - has been studied
by Brualdi and Hwang [3] and Cruse [6] in connection with a problem posed
by Mirsky [14].

2 Preliminaries

Given an n X n nonnegative matrix M, we say that it is reducible if n > 1
and there is a permutation matrix P such that PMP* = ; g where
A and B are (nonvacuous) square matrices and 0 is the zero matrix of the
appropriate size. If n = 1, or no such permutation matrix P exists, we
say that M is irreducible, and it is well-known that M is irreducible if
and only if the directed graph associated with M is strongly connected.
In the case that M is a generalized tournament matrix with score vector

s, Moon and Pullman (17] have shown that M is reducible if and only if



there is a permutation matrix P such that PMP* = [_l\g;lMLz] where
M, and M, are generalized tournament matrices of smaller order, and J
is the all-ones matrix of the appropriate size. Moreover, P can be taken to
be a permutation matrix such that the entries of Ps are in nondecreasing
order. It follows that if M js any other matrix in P(s), then PMPt =
M| o0

J | M,
of the same orders as M; and M, respectively. Thus we see that if one
matrix in P(s) is irreducible, then they all are, while if one matrix in P(s)is
reducible, then all of the matrices in P(s) can be simultaneously permuted
into a common block triangular form, using a common permutation matrix.

Now suppose that M is a reducible generalized tournament matrix with

score vector 8. From our observations above, we may assume without

loss of generality that M has the form [ l\gl 1\22 ] and hence that any

where M; and M, are generalized tournament matrices

M in P(s) can be partitioned (using the same partitioning as for M) as

[ HJI 1\2 - Recall that T is an eztreme point of P(s) if and only if,
2

whenever we have T = 2§=1a,-T.- for matrices T},..., T in P(s) and non-

negative constants a;,..., o such that ££  o; = 1, then we must have

Ty = T for any i such that o; > 0. It now follows that if M is as above,
then M is an extreme point of P(s) if and only if M; is an extreme point of
P(s1) and M is an extreme point of P(s3), where s; and s are the score
vectors of M; and My, respectively.

Recall further that if T and T are extreme points of P(s), then they
are adjacent as vertices of S(s) if and only if for any 0 < ¢ < 1, we have
that if both ¢T + (1 - ¢t)T +X and tT + (1 — ¢)T - X are in P(s), then
X must be a scalar multiple of T — T. Consequently, if M and M above
are extreme points of P(s), then they are adjacent in S(s) if and only if
either M; and M are adjacent in S(s;) and M, = M,, or M, and M,
are adjacent in S(s;) and M; = M;. Thus S(s) is the Cartesian product
of the graphs S(s;) and S(s2), so that the problem of determining the
structure of S(s) is reduced to that of studying S(s;) and S(s2), both of
which involve matrices of lower order. In other words, the reducible case
<can always be discussed in terms of the irreducible case. For this reason we
will assume henceforth without loss of generality that our polytopes arise
from irreducible generalized tournament matrices of order 2 or more (the
1 x 1 zero matrix is the only generalized tournament matrix of order 1, and
is not especially interesting).

We note that for any nonnegative n-vector s, the following straight-
forward test determines whether or not s is the score vector of an irreducible
generalized tournament matrix:
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As we remarked above, Moon and Pullman [17] showed that any general-
ized tournament matrix can be written as a convex combination of tourna-
ment matrices. Theorem 1 has a similar flavor, showing in particular that
if s is a strong tournament score vector, then any generalized tournament
matrix with score vector s can be written as a combination of tournament
matrices with that score vector. Our next result determines adjacency in
S(s). '

Theorem 2. Let s be a strong tournament score vector and let T, and
T3 be two extreme points of P(s). Then T; and T are adjacent in S(s)
if and only if their associated tournaments differ only in the orientation of
a single simple directed cycle.

Proof: It suffices to show that T, and T are adjacent in S(s) if and only
if there are distinct indices 41, %3, .. ., ix such that T; — T = P — P¢, where
P is the (0,1) matrix with Pijizn =1for1 <3 <k-1, pyy =1, and all
other entries 0.

Suppose that T; — T2 = P —P* for such a P, and notice that the entries
of Ty and T, agree except in the positions where either P or Pt has a
nonzero entry: denote by L the set of positions where T; and T, do not
agree. We want to show that the set £ = {T; +¢(P* —P)|[0<t<1}isa
1-face of P(s). Fix a 0 < ¢ < 1, and suppose that both T, + ¢(P* — P)+M
and T +¢(P*—P)—M are in P(s). Note that M must be a skew-symmetric
matrix with all row and column sums equal to 0. Fix a position (%, j) which
is not in the set L. Then p;; = pj; = 0, and either the (3,5) or the (j, )
entry of T, is 0. Since both T; +¢(P* —P)+M and T, + t(P* - P) - M
are nonnegative, we see that one of m;; and m;; must be zero, and since M
is skew-symmetric, in fact both must be zero. Consequently, M can have
nonzero entries only in positions listed in L.

Suppose that m;,;, = a. From the facts that M1 = 0 and that M can
have nonzero entries only in positions listed in L, it follows that m;,;, = —a.
Further, since M is skew-symmetric, mq,i, = —a, which in turn yields that
Miyi; = . Continuing in this way, we see that M = (P — P*), and hence
that £ is a 1-face of P(s).

Now suppose that T; and T, are adjacent vertices of 8(s), so that £ =
{tT1+(1-¢)T2|0 < ¢t < 1} isa 1-face of P(s). Since T; — Ty is a (0,1,-1)
skew-symmetric matrix with all row and column sums equal to zero, we see
that any row or column of T; — T3 which contains a 1 must also contain a
—1. Let A = T, — T and suppose that a,, = 1 for some indices p and q.
Then ag4, = -1, so there is an index r such that @qr = 1, Similarly, there
is an index s such that a,, = 1. Continuing in this way, we find that there
are distinct indices %), 4y, ...,4; such that @i,,, =1forl <j<k-1,
and a;,;, = 1. Let P be the (0,1) matrix having ones in positions (25, %541),
1 < j < k-1 and in position (ix,1), and zeros elsewhere. It follows



that each nonzero entry of P — P* is equal to the corresponding entry
in A. In particular, Ty + T > P-Pf and T; + T, > P* - P, s0
that for sufficiently small & > 0, both (1/2)T1 + (1/2)T2 + e(P — P*) and
(1/2)T1+(1/2)T2—e(P—P*) are nonnegative, both have row sums given by
s, and hence both are in P(s). Since £ is a 1-face of P(s), e(P —P*) must be
a scalar multiple of T; —T?2, and hence P—P* is a scalar multiple of T —T5.
Since both are (0,1, —1) matrices, we see that either T; — T =P — Pt or
T, — Ty = Pt — P. In either case, the result now follows. [}

We remark that taken together, Theorems 1 and 2 provide a viewpoint
on the tournament matrices and their associated tournaments: each tour-
nament matrix T can be thought of as a vertex of S(T1), and the cycles
in the tournament associated with T are in 1 — 1 correspondence with the
vertices of S(T1) which are adjacent to T. In particular, the following
corollary is immediate. :

Corollary 2.1. Let s be a strong tournament score vector, and let T be
a tournament matrix with score vector s. The degree of T as a vertex of
S(s) is equal to the number of cycles in the tournament associated with T.

It has been shown (see [16]) that any strongly connected tournament on
n vertices contains at least (n — 1)(n — 2)/2 cycles. This observation yields
the following.

Corollary 2.2. Let s be a strong tournament score vector with n entries.
The degree of any vertex of S(s) is at least (n —1)(n — 2)/2.

In [4], Brualdi and Li consider a strong tournament score vector and de-
fine what they call the interchange graph, G(s), as follows: its vertices are
the tournament matrices with score vector s, and two vertices are adjacent
if and only if one can be obtained from the other by the reversal of the
orientation of the arcs on a single 3-cycle in the associated tournament.
While the intérchange graph was formulated without reference to the poly-
tope P(s), it is clear that the interchange graph G(s) is a spanning subgraph
of 8(s). In particular, Brualdi and Li’s result [4, Theorem 2.6] that G(s) is
2-connected leads immediately to the following:

Corollary 2.3. If s is a strong tournament score vector, then S(s) is
2-connected. :

Our last result of this section gives a little of the structure of P(s). To
prove it, we need the following fact.

Proposition 1. Suppose that T is a tournament and that two vertices of
T have the same outdegree. Then those two vertices are on a 3-cycle.

Proof: Without loss of generality, we will suppose that the two vertices
with common outdegree are 1 and 2, and that 1 — 2. If it were that case
that for every i such that 2 — i we also had 1 — 4, then the outdegree of 1



would exceed the outdegree of 2, contrary to the hypothesis. Hence there
is some vertex ¢; such that 2 — 4, and ¢; — 1,sothat 1 -2 — ¢, = 1is
a 3-cycle in T. a

Theorem 8. Suppose that s is a strong tournament score vector of order
n. Then there are two adjacent vertices in S(s) which have the same degree.

Proof: We begin by noting that since s is a strong tournament score vector,
there are at least two entries of s which are the same (this follows from the
fact that if an integral score vector were to have all distinct entries, those
entries would necessarily be 0, 1,...,n—1). So without loss of generality, we
may assume that the first two entries of s are equal. So if T is a tournament
matrix with score vector s, by Proposition 1, the vertices 1 and 2 in the
tournament corresponding to T are on a 3-cycle: again without loss of
generality, we will suppose that that 3-cycleis 1 - 2 - 3 — 1. It now
follows that by appropriate reordering of the rows and columns numbered
4 and above, T can be taken to have the following form:

L]
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where X is a tournament matrix of lower order, and where the other blocks,
some of which may be empty, are defined as

[ 1t 1! [ 0 ] [ 04
A=|T0¢ ,B=|"0¢ ,C= |1t D= |1 :
3xa 3xb 3xd

)
o

[ 1! 1‘F [ 0 A
E=| 1 ] JF= [ 1 ,G = 0! JH=|0,"|
3xe 3xf . 79 J3xg L 0“ 3xh

and Z' = J — Z* when Z is one of A,...,H. (Here 1, and Oy denote the
all ones and all zeros k-vectors, respectively.) Note that the submatrices
A, B, C and D correspond to places in T (away from the leading 3 x 3
principal submatrix) where rows 1 and 2 disagree.



We claim that there is a tournament matrix T in P(s) which has the

form
[0 1 Of | _|__ _'
00 1|E|F|G|H
100
T=|_ B ,
F X
G
-~ H -
where
1 1t (1) o
{8
1 0 1 0t

for some p, g, r and s (note that in T, rows 1 and 2 agree everywhere except
on the leading 3 x 3 principal submatrix). In order to prove the claim, we
will show that if one of a, b, ¢ and d is nonzero, then there is a tournament
matrix T € P(s) having the same 3 x 3 leading principal submatrix as T
does, the same trailing principal submatrix of order n — 3 as T does, but
where rows 1 and 2 of T agree in more positions than rows 1 and 2 of T
do. There are several cases to consider.

Case 1: b and ¢ both nonzero. If b < ¢, construct T from T by replacing

the submatrix

1 | o¢ 1 (14
L% el < S
BIC]= | 0L [T | by [BIC| = | Tt [OFT 12,
[ [ ¢ [2 t
1; | Oc 05 | 15 | Oc—s

~ ~1t
and [B'|C’] by J — [B|C] . If b > ¢, replace [B|C] by

. 1 |o:
[B|c] b
1, .| 0: [ 1c

. =1t
and [B/|C| by J — [B|c] .
Case 2: b=0and d > 0. Note that a = ¢+ d in this case. Construct T

from T by replacing

1

0y L

-~ d
[AD]= [0 [T5 | by [A|D] = 4 1t
ot |1 L [15]0%

10

|



T
and [A’]D’] by J — [AID] .
Case 3: b= d = 0. Note that a = c in this case, so in particular, a and ¢

can be assumed to be positive. The submatrix of T on rows and columns
1,2, 3, 4 and a + 4 is either

1 2 3 4 a+4 1 2 3 4 a+4

1 0101 o0 1 0101 o0

2 0010 1 2 0010 1

3 1 000 O or 3 1000 O

4 0110 1 4 0110 0

a+4\1 01 0 O e+4\1 0 1 1 0

To construct T from T, replace the former by

1 2 3 4 a+4 1 2 3 4 a+
1 0100 1 1 0101 o0
2 0010 1 2 0011 0
3 1 00 0 O or the latter by 3 1000 O
4 1110 0 4 0010 1
a+4\0 0 1 1 0 a+4\1 1 1 0 O

Case 4: ¢ =0 and a > 0. Note that d = a + b in this case. To construct
T from T, replace

1t | 04 . 0, |12 )05,
[AD]= |O: 1 | by [A|D] = |70t 17
07 | 1% ol 15,

~ 7t
and [A/|D'] by J — [A|D] .
Case 5: c=a = 0. Note that b = d in this case, and both can be taken to
be positive. The submatrix of T on lines 1, 2, 3, 4 and b + 4 is either

1 2 3 4 b+4 1 2 3 4 b+4
1 0101 O 1 0101 O
2 0010 1 2 0010 1
3 1001 1 or 3 1001 1
4 0100 1 4 0100 O
b+4\1 0 0 0 O b+4\1 0 0 1 ©

11



To construct ‘T from T, replace the former by

1 2 3 4 b+4 1 2 3 4 b+4
1 0100 1 1 0101 O
2 0010 1 2 0011 O
3 1001 1 or the latter by 3 1 001 1
4 1100 O 4 0000 1
b+4\0 0 01 O b+4\1 1 0 0 O

In all five cases, to construct T we replaced blocks of T with (0, 1) blocks
having the same row and column sums as the corresponding blocks in T.
Thus the row and column sums of T agree with those of T. Further,
the replacements were made in such a way as to ensure that T is still a
tournament matrix (necessarily in P(s)), and that its first two rows agree
in more places than the first two rows of T.

It now follows that there is a tournament matrix T in P(s) having the
form

H

F|G

- O O

HEo or

0
1| E
0

=l
I

. 4

with

|

lt t 01t_ 0:
E=|1 | ,F= f ,G=|0.|,andH=| 0 |.
— — — v
1 4 1 (i

Let S be the tournament matrix found from T by replacing its leading 3x 3
0 01

principal submatrixby |1 0 0|. ThenS and T are adjacent in S(s) since
010

their associated tournaments differ only in the orientation of the arcs on the

3-cycle involving 1, 2 and 3. Further, S and T are permutationally similar

since exchanging rows and columns 1 and 2 of T yields 8. Consequently,

their associated tournaments contain the same number of cycles. Hence S

and T are adjacent vertices of S(s) having the same degree. O

We close this section by giving an explicit description of S(s) when s =
[2222 2.
Example 1. Let s = [2 2 2 2 2]*; according to the appendix in Moon
[16], all tournament matrices in P(s) are permutationally similar, since up

12



to relabeling of vertices, there is just one tournament with score sequence

=1

01100
00110
(i.e. outdegree sequence) s. Let Ty; = {0 0 0 1 1| and note that it
1 0001
11000
is a vertex of S(s). Moreover, it is a circulant matrix, so it can be written
01000
» 00100
as a polynomial in the matrix C = |0 0 0 1 0f. Now any vertex
0 0001
1 0000

of 8(s) can be written as PT;;P* for some permutation matrix P, and it
follows from the fact that T, is a circulant that the permutation matrices
satisfying PT; Pt = Ty, are I,C,...,C% Thus we find that of the 5!
permutation matrices of order 5, exactly 5!/5 = 24 of them yield distinct
vertices of S(s) when we perform the similarity transformation PT;;P®.
Hence, S(s) has 24 vertices, and here they are:

[0 1 1 0 0 0 0 1 0 1 00011
00110 1 0010 10001
Tpu=|0 0 0 1 1/, Tip=(0 1 0 0 1|, Ty3=[1 1 0 0 0O
10001 10100 01100
1 1 0 0 0f 0 1 0 1 0] 0 0 1 1 0
01 0 1 0] [0 0 1 1 0] [0 1 0 1 0]
00101 10100 00101
Tiu=(1 0 0 1 O, Tyy=|0 0 0 1 1|, Toe=(1 0 0 0 1
01001 01001 01100
1 0 1 0 0] 1 100 0 1 0 01 0
0 1 0 0 1] 0 0 1 0 1] (0 1 1 0 0]
00011 1 0010 00011
Ty=|1 1 0 0 0|, T4=|0 1 0 1 0|, Ts;=|0 1 0 1 0
10100 10001 10001
0 0 1 1 0] 0 1 1 0 0 1 0 1 0 0
010 0 1] 0 0 0 1 1] [0 0 1 1 0]
00101 10100 10010
Tze=|1 0 0 1 0|, Tas=|1 0 0 0 1|,Te={0 1 0 0 1
11000 01100 00101
0 0 1 1 0f 0 1 0 1 0] 1 1.0 0 0

13



0 1 0 1 0] 0 0 0 1 1] 0 0 1 0 1]
00110 10100 10001
Ty=|1 0 0 0 1[,Tgo=|1 0 0 1 Of,Ty3=|0 1 0 1 0
0 0101 01001 11000
1 1 0 0 0 0 1 1 0 0] 0 0 1 1 0
[0 1 1 0 0] 0 1 1 0 0] [0 0 1 1 0]
00011 0 0101 10001
Tyu=|0 1 0 0 1],Ts1=|0 0 0 1 1], Ts2=({0 1 0 1 O
10100 11000 01001
1 0 0 1 0 1 0 0 1 0] 1 0 1 0 0
0 0 0 1 1] [0 1 0 0 1] 0 1 0 0 1]
1 00.10 00110 00110
Tss=|1 1 0 0 0|, Ts4e=|1 0 0 0 1|, Te;={1 0 0 1 O
0 0101 10100 1 0001
0 1 1 0 0 0 1 0 1 0] 0 1 1 0 0
0 1 0 1 O] 0 0 1 1 0] 0 0 1 0 1]
00011 100 01 10100
Teo=|1 1 0 0 0], Tes={0 1 0 0 1|,Tes=(0 0 0 1 1
00101 01100 11000
1 0 1 0 0 1 0 0 1 0] 0 1 0 1 0

The tournament corresponding to T;; has 12 cycles, and since all of the
vertices above are permutationally similar, we see that S(s) is a 12-regular
graph. In order to describe the adjacency, we consider each “row”, Tk,
T2, Tis, Tis of vertices in the list above, and give the adjacencies in the
subgraph induced by any single row, and by any pair of rows.

For any single row, row k say, we have the following induced subgraph:

T T T T

k3 k2 k3 ke

& & .

Figure 1

For rows 1 and k, 6 > k > 2, T, is adjacent to both Ty; and Tys—j;, for
1<j<4.

For pairs of rows involving rows 2,3, ...,6 we will use the following con-
vention: (Row i, Row j) — G; will mean that the subgraph of S(s) induced

14



by rows i and j can be described by relabeling the vertices in the graph G,
below by replacing v, by Tip, 1 < p < 4, and vgp by Tjp, 1 < p < 4. The
notation (Row i, Row j) — Gy is defined analogously.

1 v v 14
112 12 13 14
p
»
v v v
23 22 23 Vz.
Figure 2
v v v 4
11 12 13 1e
v
14 v
21 V: 2 23 34
Figure 3

We have the following list of subgraphs of &8(s) which are induced by
pairs of rows: (Row i, Row i4-1) = G for 2 <i < 5, (Row i, Row i + 2)
— Gy for 2<i <4, (Row i, Rowi+3) — G, for 2 <i < 3, and (Row i,
Row i4-4) — G, for i = 2. Finally, we remark that it is not difficult to see
that G is isomorphic to Gs.
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4 A Polytope with Extremal Properties

As part of their discussion on the interchange graph of tournaments with
a common score vector, Brualdi and Li consider the set of tournament
matrices of order n whose score vectoris 8, =[1123 ... n—3n—-2n-2]*
(it is easy to see that for n > 3, 8y is a strong tournament score vector,
since it satisfies (*)). They then use the special structure of 8,, to produce
some specific information about the corresponding interchange graph. In
this section, we will present some properties of S(8,) which distinguish
it from the 1-skeletons associated with other score vectors. The following
result will be useful.

Proposition 2. (Brualdi and Li [4]). Given two tournament matrices
T, 0
T, and T, their join, T, * T, is defined as Ty * T = 0 ] , and
L J T,
define T+ Ty x- - -+ Ty inductively by T1%Ta#---«Ty = Ty %(Ta%---xTx).
For k > 2, let Uy be the tournament matrix of order k given by

00 ... 001
10 ... 00O
U= 1 =~ 1 1
11 ... 100
01 110

If T is a tournament matrix with score vector 8, then there are integers
ki,...,ky with ky+---+ky, —u+1=n such that T = Uy, * U, %+ - *Ug,.

The tournament associated with Ug, * Uy, # --- * Ui, is pictured in
Figure 4. Any arc not shown in that and all subsequent figures is taken to
be oriented from the higher numbered vertex to the lower numbered vertex.
It is clear from Figure 4 that the vertices of $(8,) can be placed in one-to-
one correspondence with the subsets of {2,3,...,n — 1}, which yields the
following result, also obtained by Brualdi and Li [4].

1 kx k‘+}:’-1 k‘+. . .+km-u+2 k‘+. . .+k‘-u+1 an

Figure 4

Proposition 3. S(3z) has 2*~2 vertices.

The special structure of the tournament associated with Ug, * Uy, * - - %
Uy, allows us to enumerate its cycles. This leads us to the next result.
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Theorem 4. Suppose that n > 3 and that Uy, *Uj, *-- -+ Uy, is a vertex
of 8(8,). Then its degree is equal to

u u-—2 u
Z Z 2kp41tethm—2m+2p | Z (2%-2_1).
m=p+2 p=0 p=1

Proof: For notational convenience, define kg to be 1. Referring to Figure
4, we see that there are two 4ypes of cycles in the tournament associated
with Uy, * Uy, % --- % Ug,: those involving vertices numbered between
ko+---+ky —p and ko + -+ + kp, — m for some p > 0 and m >2p+2,
and those involving only vertices numbered between ko + - - - + kp, —p and
ko + -+ 4+ kpy1 — p — 1. The cycles of the former type are in one-to-one
correspondence with the subsets (including the empty set) of U;-’;;l{ko +
ootki—j+1, kot -+ kj—5+2, ..., kot +kj+1—3—2}, while the cycles of
the latter type are in one-to-one correspondence with the nonempty subsets
of {ko+---+kp—p+Lko+---+kp—p+2,...,ko+ - +kpp; —p—2}.
The result now follows directly. a

Recall that Corollary 2.2 asserted that for a strong tournament score
vector s with n entries, each vertex has degree at least (n — 1)(n — 2) /2.
Our next result shows that 8, is (up to reordering of its entries) the unique
score vector yielding equality in that lower bound on the degree.

Theorem 5. Suppose that s is a strong tournament score vector of order
n 2 4, and that its entries are in nondecreasing order. If there is a vertex
T of S(s) with degree (n — 1)(n — 2)/2, then s = &, and T is one of the
following: Uy x Uy % --- % Uy, Ug * Uy * ~+%x U, Ugx U x---x Uy x Us,
U3*U2*---*U2*U3.

Proof: First note that each of the matrices listed above is permutationally
similar to the adjacency matrix of the tournament T}, in Figure 5. We will
be done if we can show that the vertices of the tournament G corresponding
to T can be relabeled to yield T,,.

1 2 3 n-1 ‘ n

Figure 5
We will proceed by induction on n; the result is easy to verify for n = 4.

Suppose that n > 5. A result of Moon [16] asserts that each vertex of
a strongly connected tournament on = vertices is on a cycle of length k
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for 3 < k < n. It follows that any such tournament contains a strongly
connected subtournament on n—1 vertices. Without loss of generality, we’ll
suppose that the subtournament of G on vertices 2,...,n, G’ say, is strongly
connected. Now vertex 1 is on at least n — 2 cycles, and by the comment
preceding Corollary 2.2, G’ contains at least (n — 2)(n — 3)/2 cycles. But
since G is assumed to have exactly (n—1)(n—2)/2 = n—2+(n—2)(n—3)/2
cycles, we find that 1 is on exactly one cycle of length k for 3 < k < m, and
that G’ has exactly (n — 2)(n — 3)/2 cycles. By the induction step, G’ can
be relabeled to give Ty,—1, so without loss of generality we can suppose that
G’ is as pictured below.

2 3 4 n-1 n

Figure 6

Since 1 is on a cycle of length n, it follows from the structure of G’ that
one of the following must hold:

i) l1—okandk—-1—>1forsomed <k<n-—1,
ii)l1-nandn—-1-1,

iii)y 1-»3and2— 1, 0r

iv)1—-2andn— 1.

If i) holds then both 1 - k - k+1 - k-1 —1land1 — ko k-
2 — k —1 — 1 are 4-cycles through 1, a contradiction. If ii) holds, then
1—-n—o>n—2 —=n-1 - 1is the only 4-cycle through 1. Hence
1 > n—2 otherwise l = n > n—-3-n-2->1is a 4-cycle, and
n—3— 1 otherwise ]l »n-3 >n—-2-n-1-1 is a 4-cycle.
Butnowbothl = n—-2—+n—-1—->1andl 5 n —-n—-3 — 1 are
3-cycles, a contradiction. If iii) holds, then the only 4-cycle through 1 is
15324521 Hencel — 5, otherwise 1l -3 —+4 -5 —1is
a 4-cycle. If1 >4, thenbothl 54 —+2—1and1 —-5—-2—1are
3-cycles, a contradiction, while if 4 — 1, then both1 -3 —+4 — 1 and
1 — 5 — 2 — 1 are 3-cycles, another contradiction.

Thus we see that iv) must hold - ie. 1 > 2andn — 1. If1 - n-1,
then 1 = n —1 — n — 1 is the only 3-cycle through 1, in which case we
must have 1 > kfor 3 <k <n-—3,otherwisel = n—-1—-k—1lisa
3-cycle. Further 1 — n — 2, otherwise 1 = n — 3—sn—2-—1isa3-cycle.
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It then follows that G can be relabeled to give T,,. On the other hand, if

—-1—-1,thenn-1—-1—-2—3.--=>n-2—1istheonly n—1 cycle
through 1. Hence 3 — 1, otherwise 1 -3 — 4 — ... — n — 1 is another
n —1 cycle. Thus 1 —» 2 — 3 — 1 is the only 3-cycle through 1. But then

—2 -1, (otherwise 1 5 n -2 —n—1—1is a 3-cycle), which in turn
yields that n —3 — 1 (otherwise 1 » n—3 — n —2 — 1 is a 3-cycle), and
so on. It now follows that k — 1 for 3 < k < n — 1, and hence that G is
T.. a

Our next result establishes another property which is unique to S(y).

Theorem 6. Suppose that s is a strong tournament score vector of order
n > 4 and that its entries are in nondecreasing order. If there is a vertex
T of S(s) which is adjacent to every vertex in S(s), then s = &, and T is
one of the following: U,,Us * Up,_1,Up_; * Uy, Uy * U, _3 * Us.

Proof: First note that for each of the matrices listed above, the corre-
sponding tournament can be relabeled to give the tournament U,, pictured
in Figure 7. We will be done if we can show that the tournament G cor-
responding to T can be relabeled to yield U, (equivalently, if there is a
permutation matrix Q such that the tournament associated with Q*TQ is

U.).

Figure 7

We will use induction on n > 4; since (1,1,2,2) is the only strong score
vector of order 4 whose entries are nondecreasing, the case that n = 4 is
easily verified. So suppose that » > 5 and that T is adjacent to every vertex
of S(s). Again appealing to a result of Moon [16], we can suppose without
loss of generality (by simultaneously permuting the rows and columns of T
if necessary) that the subtournament of G on vertices 2,...,n, G’ say, is
strongly connected. Let T be the trailing principal submatnx of T of order
n — 1, and let § be its score vector. If there is a vertex T; in S(8) which
is not adjacent to T then the tournament associated with T'; can not be
obtained from that associated with T by the reversal of a single directed
cycle. Let Ty be the tournament matrix of order n» whose first row and
column agree with T and whose trailing principal submatrix of order n — 1
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is Ty. Since T and T3 have the same first row and column, it follows from
Theorem 2 that T is adjacent to T in S(s) if and only if T, is adjacent
to T in S(s). We thus obtain a contradiction if T is not adjacent to every
vertex of S(3). Hence we see that T is adjacent to any vertex in 5(3), and
applying the induction step, we will assume without loss of generality that
G’ is as pictured below.

2 3 4 n-1 n
Figure 8

Note that G can not have two arc-disjoint directed cycles, otherwise the
tournament obtained by reversing the orientations of both cycles would
correspond to a vertex of S(s) which is not adjacent to T. Now vertex 1
of G is on a cycle of length n, and it follows from the structure of G’ that
one of the following must hold:

i) k—»1landl—>k—1forsomed4d <k<n-1,
iijn—=1landl—>n-1,

iii) 3—1and1— 2, 0or

iv) 2—1and1—n.

Suppose that i) holds, and note that n =3 —= 2 = n is a cycle in G.
Thenj — 1fork+1<j <n, otherwise 1 - j - k — lisacyclein G
disjoint from the one above. Similarly, n — n — 12— nisacyclein
G, which yields that 1 — j for 2 < j < k-2, and we find that G can be
relabeled to give U,.

If i) holds then n = n—1 — 2 — n is a cycle in G. Then1 — j for
3<j<n-—2otherwisel »n—-1—j—1 is a cycle disjoint in G from
the one above. Further, 1 — 2 otherwise we have the cycle2 -1 — 3 — 2.
It follows then that G can be relabeled to give Uy,.

If iii) holds then againn - n—1—>2—snisa cycle in G. We must
have j — 1 for 4 < j < n, otherwise 1 — j — 3 — 1is a cycle in G disjoint
from the one above, and so G can be relabeled to give Un.

Finally, if iv) holds thenn -3 —2—nisa cycle in G. If 4 — 1, then
1—»n.—»4-»lisacycleinG,whileifl—>4,then1—>4—>2—»1
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is a cycle in G. In either case, we have two arc-disjoint cycles in G, a
contradiction. Thus iv) cannot hold.

Consequently, we can relabel G to obtain U,, as desired. a
Theorem 6 leads immediately to the following.
Corollary 6.1. For n > 4, S(8,,) is 4-connected.

Proof: If we delete any three vertices (and their adjacent edges) from
S(8n), then the resulting graph still has one of Uqn, Uz« Up_y, Uy 1+ Uy,
and Ug x U,,_3 x U, as a vertex, and that vertex is adjacent to all of the
remaining vertices. Hence the resulting graph remains connected, which
yields the result. a
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