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ABSTRACT. This note gives what is believed to be thefirst pub-
lished example of a symmetric 11 x 11 Latin square which, al-
though not cyclic, has the property that the permutation be-
tween any two rows is an 11-cycle. The square has the further
property that two subsets of its rows constitute 5 x 11 Youden
squares. The note shows how this 11 X 11 Latin square can
be obtained by a general construction for n X n Latin squares
where n is prime with n > 11. The permutation between any
two rows of any Latin square obtained by the general construc-
tion is an n-cycle; two subsets of (n — 1)/2 rows from the Latin
square constitute Youden squares if n =3 (mod 8).

1 Introduction

A Latin square of order n is an n x n array whose entries come from a set
of n symbols, such that every symbol occurs once in each row and once in
each column. We shall take the symbols to be 0,1,2,...,n — 1 and also
number the rows and columns from 0 to n — 1. For general information on
Latin squares see [1], the standard reference work.

A Latin square is said to be based on a group G if it becomes a Cayley
table of G’ when suitable borders are added. A group is cyclic if a minimum
set of generators consists of just one element and a Latin square based on
a cyclic group is called a cyclic Latin square. In the simplest type of cyclic
Latin square of order n the entry in cell (,j) is equal to i + 5 (mod n).
This Latin square becomes the addition table modulo n when borders in
natural order 0,1,2,...,n — 1 are supplied.
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A Youden square of size m x n, where m < n, is an array of m rows and
n columns whose entries come from a set of n symbols with the following
two properties:

(Y1) Every symbol occurs once in each row and at most once in each col-
umn.

(Y2) Every pair of symbols occurs in the same number of columns.

The sets of symbols in the columns of a Youden square constitute the
blocks of a symmetric balanced incomplete block design. For a review of
* the literature on Youden squares, see Preece [7].

A permutation of n symbols is called cyclic if it is composed of a single
n-cycle.

In this paper we are interested in Latin squares with the following prop-
erty:

(P1) The permutation from row i; to row iz is cyclic, for all i; and all
i # i1,

Every cyclic Latin square of prime order has property P1 and also has the
corresponding property for columns. On the other hand, no Latin square
of composite order based on a group has property P1.

Dénes and Keedwell [2] and Keedwell [3] show that, for all n > 7, there
exists a non-cyclic Latin square of order n such that the permutations
from column 0 to all other columns are cyclic. The transpose of such
a Latin square has the corresponding property for rows. However, this
property is much weaker than P1. The present note is believed to be the
first publication to give Latin squares which, although not cyclic, have
property P1.

From here onwards, except where otherwise stated, n is any prime not
less than 11. Also, r denotes any primitive root (mod n) and k= 3(n—1).
The entries in cell (%, ) of Latin squares L and M are denoted by (3, 5)
and m(i, j), respectively. The n symbols will be treated as the elements
of the Galois field GF(n). Arithmetical operations may be performed on
them so that, for instance, n — 1 and %(n + 1) may be written as —1 and
% respectively. Moreover, equality will always be modulo n.

2 Construction and Proofs

Since n is prime and r is a primitive root (mod n), the symbols can be ar-
ranged in the order 0,1, r,r2%,...,r7"*~2, where r®~! = 1. Take the addition
table of GF(n), with the borders arranged in this order, and let L be the
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cyclic Latin square that remains when the borders are deleted. The entries
of L are as follows:

1(0,0) =0,
1(3,0) = 1(0,%) = r* 1,
IG,3)=r"" 4771,

for1<i<n-1and1<j<n-—1. Besides having property P1, L has
properties P2, P3 as follows:

(P2) L is symmetric.

(P3) Every left to right broken diagonal of L’, except one, contains all the
non-zero symbols in the cyclic order 1,r,72,...,r*"2. The exceptional
diagonal contains only zeros.

Here, L’ denotes the array that remains when row 0 and column 0 are
deleted from L. Property P3 follows from the identity I(i+1, j+1) = rl(i, 5)
which holds for all non-zero i and j provided that ¢ + 1 (or 7 + 1) is taken
to be 1 when i (or j) is » — 1, in accordance with the fact that r"~! =1,

Now convert L into a new n x n array M by means of the following
transformation T'. Take the three left to right broken diagonals of L’ whose
entries in its top row are 2, 1‘;, —1 and permute these diagonals so that
these entries become %, —1, 2 respectively. Then M is a Latin square with
properties P1, P2 and P3 but is not based on a group.

Table 1 shows M when n = 11 and r = 2. For these values of n and r,
the entries —1 and % are 10 and 6 respectively. The underlined entries are
those that have been changed by T'. It is easy to check that M has the
properties stated above. For instance, the entries marked with asterisks
show that M fails the quadrangle criterion [1, p.18] and therefore M is not
based on a group.

o* 1* 2 4 8 5 10 9 7 3 6
1* 6« 3 5 9 10 o0 2 8 4 7
2 3 1 6 10 7 9 0 4 5 8
4 5 6 2 1* 9 3 7 0 8 10
8 9 10 1 4 2 7 6 3 0 5
5 10 7 9 2 8 4 3 1* 6 O
10 o0 9 3 7 4 5 8 6 2 1
9 2 0 7 6 3 8 10 5 1 4
7 8 4 0 3 1 6 5 9 10 2
3 4 5 8 0 6 2 1 10 7 9
6 7 8 10 5 0 1 4 2 9 3
Table 1
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We now turn to the general proofs. First, it is trivial that property P3
of L is preserved in M. The other properties of M are proved in three
theorems.

Theorem 1. M is a Latin square and is symmetric.
Proof: The effect of T is merely to permute three entries in each row of L

except row 0, so M is row Latin [1, p.104].

To show that M is symmetric, consider first the entries in row 1 and
column 1. Let v be the least positive integer such that r’ = —3. Then

N -

(Lv+1)=Ii1,00+10,v+1)=14+r"=
and hence, by the definition of T, m(1,v + 1) = —1. By P3 it follows that
mn—-v,1)=r""""Imlv+1)=r"v(-1)=2.

Again,
I(1,n—v)=1(1,0)+10,n—v) =14+r""V"1= 1

so m(1,n — v) = 2. Hence
m(v+1,1) = r'm(1,n - v) = (—%) 2=-1.

Thus m(i,1) = m(1,%) for i = v+ 1, n — v. The same equality holds
trivially for ¢ = 1 and it holds for all other ¢ since these entries of M are
"equal to the corresponding entries of L, which is symmetric. Hence row 1
and column 1 of M are identical. By P3 it follows that M is symmetric.

Since M is symmetric and row Latin, it is also column Latin and therefore
it is a Latin square. a

Theorem 2. M is not based on a group.

Proof: Consider the 2 x 2 subarrays of L that contain the entries
l(iltjl) = 0: l(ilﬁjZ) = l(i21j1) = 1’ lﬁ?vj?) =2.

One of these is the leading subarray, specified by iy = j; = 0 and iz =
j2 = 1. Since L is based on a group and therefore satisfies the quadrangle
criterion, there are n such subarrays. Under T, three occurrences of each
non-zero symbol are moved to different cells but all zeros remain unmoved.
Hence at most 3.3 = 9 of the 2 x 2 subarrays of M that occupy the same
cells as the above subarrays of L are altered and, since n > 11, at least
two remain the same. The leading 2 x 2 subarray of M has three entries
the same as in L but the entry 2 has been replaced by -.:; It follows that
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M does not satisfy the quadrangle criterion and so M is not based on a
group. a

Note that the proof of Theorem 2 requires that n > 9. Although M is
still different from L when n = 7 or 5, it is cyclic. Thus 11 is the smallest
prime for which Theorem 2 holds.

Theorem 3. Every permutation between two rows of M is cyclic.

Proof: Since M has the property P3 it is sufficient to consider the per-
mutations (a) from row 0 to row 1 and (b) from row 1 to row i, i > 1.
Let A; and u; denote the permutations from row 0 to row i in L and M
respectively, 1 <i<n-1.
(a) Now
A =(0,1,2,...,-1),
b1 = (0’ la 2a . 1)(2’ 2 -1) A1(2s 2 1)7

where dots denote sequences rising in unit steps and, in any product of
permutations, the leftmost permutation is applied first. The symbols
in the 3-cycle (2, §, —1) are actually 2, (n+1)/2, n—1 so they are in
the same cyclic order as in the n-cycle A;. Consequently y; is cyclic;
in fact 1 1

= (0, 1,5,...,—2,2,...,—5, —1)

where dots again denote sequences rising in unit steps.

(b) The permutations from row 1 to row i in L and M are A{'); and
“y 14 respectively. By P3,

l"l-ll‘i = ( 1, 5, 2)A1_1)“(2r - ,% "1' _ri—l).

Now ); is A; raised to the power r*~!, so AT1); is an n-cycle with
1

successive entries rising in steps of s (mod n), where s = ri=1 -1,

It is convenient to change notation. Divide every symbol in GF(n)
by s and define

t=g8" l, u=s1r""1=t41.
Then u7 ' ; is cyclic if and only if 8 is cyclic, where
0= (-t, t 2t)A1 (2u, 1'u., —u).

As an aid to the proof, we suppose that the n symbols are placed
round a circle in clockwise ascending order (mod n). Then the cyclic
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permutation 1\1 causes a one step clockwise rotation. The order of the
symbols —¢, 3¢, 2t round the circle may be either (1) clockwise or (2)
antlclockmse In either case (see Figure 1) the positions of 2u, fu,
—u relative to —¢, §t 2t are uniquely determined if these six symbols
are all different. Indeed, §t bisects one of the two arcs of the circle
joining —t to 2¢ because 23t = 1t —(-t), while 1 5u lies in the other
arc because Ju — 1t = 3, that i is, 3(n+1); in addmon, —u=—t—1
and 2u =2t + 2.

N ot
~
N=

)

Figure 1

Groups of three dots in Figure 1 show where the symbols not specifi-
cally marked can lie. We use Figure 1 to evaluate the above expression
for @ as a product of three cycles. In case (1),

0= (-t, t+1 2, —t+1,. ,;t2t+1
1 1
Eu,...,—u—1,2u,...,-§'u,-1,-u)
and in case (2)
1 1
0=(-t,5t+1,...,~u—1,2u..., 262 +1,
%u,...,2t,—t+l ,%u 1, —u).

In both cases 8 is cyclic.

It remains to consider the special subcases that arise when one of the
symbols 2u, 1u, —u coincides with one of the symbols —t, 3¢, 2t.
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1))

(2b)

Case (1), where —t, 3¢, 2t are in clockwise order, has only one special
subcase (1a), given by —u = 2t and ju = —t. This special subcase
and the three special subcases of case (2) are shown in Figure 2. From
Figure 2, diagrams (1a),

1
2t
1t
2t
(2a)
-
1
3t
2t
-t
2t
(20
Figure 2
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(2a), (2b), (2c), we obtain
0=(—t,t+1,...,2 -—1,2u,...,-%t,2t),

)

2
0=(—t,2u,2t+1,%u,...,2t,—t+1 %u 1, —u),
0=(—t,lt+1,...,—u—1,2u, ,2t2t+1 u, —u),

1 1
0=(—t,-2-'u,...,2t,-t+1 gl 1, -u),

respectively. In all four special subcases 8 is cyclic.

0

Because M is symmetric, Theorem 3 implies that every permutation
between two columns of M is also cyclic.

Another property that M shares with L is given in Theorem 4.

Theorem 4. The species to which M belongs consists of only one trans-
formation set.

Proof: We must show that every permutation of the three constraints of
M (rows, columns and symbols) leads to a Latin square from the same
transformation set. Since M is symmetric it is sufficient to consider only
the interchange of columns and symbols. Let My denote the Latin square
obtained from M by permuting its columns to bring row 0 into natural
order. Since Mp is in the same transformation set as M we may start with
My instead of M.

In Mp, the permutations from column labels t.o row entries are &, the
identity permutation, for row 0 and p; = X;(2ré~? -r“l, ri=1) for row i,
1 <i < n—1. (The notation is as in Theorem 3.) To interchange columns
and symbols, the permutations y; must be replaced by their inverses. Now

- 1 i—1yy —
B 1 ( i~ 1’5 i— 1’2’. I)Ai l’
where \;! is A; raised to the power —r*~1. The identity (a,b,c)A; =
M(a+1,b+1,c+1) holds for every 3-cycle (a,b,c). By applying it —r*~1
times we get
= A‘ (_r 0—1 ;rn-—l '_1,21“_1 _ri—l)
= A‘—l(_2ri—1, _%ri—l,rl'—l).

But r* = —1, so —r#~1 = r¥+i-1 and X! = Ayi. (The suffix k+i is taken
modulo 2k in the range 1 to 2k.) Hence

- -1 1 ki1
et = Nepi(2rHH 1,:2"”' —r*H7) = pig.
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It follows that the new Latin square can be converted back into Mo by
merely interchanging rows 1,2, ...,k with rows k+ 1,k +2,..., 2k respec-
tively. Thus there has been no change of transformation set. a

3 The Youden property

In this section n is prime, n > 11 and also n = 3 (mod 8).

Since n = 3 (mod 4), the element —1 is a quadratic non-residue modulo
n [4, p.66] so we can arrange all the symbols in the order

n n—-3

0,1,7%, 7%, ..., 7" 3, —1, =2, 4, .., -1
Here, zero is followed by the k quadratic residues and then the k quadratic
non-residues. Let o be the permutation from the arrangement of the sym-
bols used in constructing L to the new arrangement.

Take the addition table of GF(n), with the borders arranged as above,
and then delete the borders. The Latin square L* that remains can be
obtained from L by applying the permutation o to its rows and to its
columns. Let M* be the Latin square obtained in the same way from M
and let T* be the transformation from L* to M*. To investigate M* we
consider first L*.

The part of L* excluding row 0 and column 0 splits into four natural
k x k subarrays, corresponding to the separation of quadratic residues from
quadratic non-residues in the new arrangement of symbols. The entries in
these subarrays are as follows:

PG5 =2 47772 = Pk + i,k +5),
G k+5) =2 72 = (k4 4,5),
for1 <i<kand1<j<k. Properties P1 and P2 hold for L* because it

is cyclic and by construction. In place of P3, L* has the following property
P3*:

(P3*) In the four natural kx k subarrays, every left to right broken diagonal,
unless it contains only zeros, contains either all the quadratic residues
or all the quadratic non-residues and they occur in the same cyclic
order as in row 0 and column 0.

For later reference we state one further property P4 that follows trivially
from the above expressions for the entries of L*.

(P4) The sums of entries in cells (i, 5), (k + %,k + 7) and in cells (i, k + ),
(k+14,7) arezero (modn), for1<i<kand1<j<k.
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Rows 1 to k of L* are easily seen to constitute a Youden square of size k x
n. The property Y1 is immediate. Also, the quadratic residues (mod n),
which fill column 0 of this subarray, form a difference set (mod n) be-
cause n is prime and n = 3 (mod 4) [9, p.192]. Moreover, L* was de-
fined by means of an addition table (mod n), so if I*(i2,0) —*(i1,0) = d
then I*(iz,5) — I*(41,5) = d for 0 < j < n—1. By Y1, the n pairs
(1* (i3, 3), * (i2,5)) are (in some order) all the pairs (z,24d),0<z<n-1.
Hence property Y2 holds.

By P4, rows k + 1 to 2k of L* form a second Youden square. It can be
obtained from the one in rows 1 to k by interchanging columns 1,2,...,k
with columns k+1,k+2, ..., 2k respectively and replacing each symbol z
by —z. The complementary sets of rows of L*, namely rows k+1 to 2k
together with row 0 and rows 0 to k, form Youden squares of size (k+1) xn.

As an illustration, Table 2 gives L* for n =11, k=5 and r = 2. Gaps
are used to show the four natural k x k subarrays; entries that are altered
by T* are underlined.

0 1 4 5 9 3 0 7 6 2 8
1 2 5 6 10 4 o 8 7 3 9
4 5 8 9 2 17 3 0 10 6 1
5 6 9 10 3 8 4 1 0 7 2
9 10 2 3 7 1 8 5 4 0 6
3 4 7 8 1 6 2 10 9 5 0
10 0o 3 4 8 2 9 6 5 1 7
7 8 0 1 5 10 6 3 2 9 4
6 7 10 0 4 9 5§ 2 1 8 3
2 3 6 7 0 5 1 9 8 4 10
8 9 1 2 6 0 7 4 3 10 5

Table 2

Now consider M*. The permutation o applied both to rows and to
columns of M converts it into M*, so properties P1 and P2 of M are pre-
served in M*. Each broken diagonal of L’ becomes, in L*, a pair of broken
diagonals in two of the natural k x k subarrays, either those at the top left
and bottom right or the other two. Since T permutes three broken diago-
nals of L', the transformation T* permutes three pairs of broken diagonals
in k x k subarrays. Properties P3* and P4 of L* are preserved in M*.

In each column of L*, except column 0, the transformation T* permutes
three entries. In column 1 the permuted entries are 2, -,1;, —1 and they
lie in rows whose entries in column 0 are 1, —%, —2, respectively. Now 1
is a quadratic residue modulo any integer and —2 is a quadratic residue
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(mod n) since n = 3 (mod 8) [4, pp. 66, 68]. It follows that —3 is also
a quadratic residue (mod n). Hence the three pairs of broken diagonals
permuted by T* are all in the top left and bottom right k x k subarrays.
Hence the effect of T* on the subarray composed of rows 1 to k of L* is
merely to permute three entries in each of columns 1 to k. Because the set
of entries in each column of the subarray is not altered by T*, the property
of L* that rows 1 to k form a Youden square is preserved in M*. Similarly,
M?* contains three other Youden squares in the same positions as those in
L*. When n =11, the 5 x 11 Youden squares in M* are readily recognized
as coming from species 2 of Preece [6, Table 1].

Since M* is obtainable from M by merely permuting rows and columns
it belongs to the same species with only one transformation set.

Remarks

The total enumeration of 7 x 7 Latin squares by Norton [5] and Sade (8]
shows that there is no non-cyclic 7 x 7 Latin square that has both property
P1 and the corresponding property for columns. No non-¢yclic 5 x 5 Latin
square has property P1.

When = is even, an n-cycle is an odd permutation but the product of two
n-cycles is even and therefore not cyclic. Since the permutation from row
0 of a Latin square to row 2 is the product of the permutations from row 0
to row 1 and row 1 to row 2, no Latin square of even order n > 2 has the
property P1.

It is an open question whether there is a Latin square of composite odd
order with the property P1. If there is, it cannot be based on a group.
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