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ABSTRACT. Near-perfect protection is a useful extension of per-
fect protection which is a necessary condition for authentication
systems that satisfy Pei-Rosenbaum’s bound. Near-perfect pro-
tection implies perfect protection for key strategies, defined in
the paper, in which the enemy tries to guess the correct key. We
prove a bound on the probability of deception for key strate-
gies, characterize codes that satisfy the bound with equality
and conclude the paper with a comparison of this bound and
Pei-Rosenbaum’s bound.

1 Introduction

In this paper we study authentication codes (A-codes) under spoofing at-
tack of order r. The following is a brief account of the main results of this
study.

We consider the class of (M, k, E) A-codes, where M, k and E are the
number of cryptograms, source states and encoding rules respectively, and
assume that the enemy has intercepted a sequence of r cryptograms, en-
coded under the same key. An A-code provides perfect protection if the
enemy’s best strategy is random selection from the remaining, M —r, cryp-
tograms. In this case the probability of deception P, is minimum and we
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have P, = (k —r)/(M —r). For these A-codes we obtain a lower bound,

E > E,, on the number of encoding rules. We note that E, denotes the
minimum number of encoding rules and hence if an A-code has E > E,
keys, it cannot provide perfect protection.

We say an A-code provides near-perfect protection if enemy’s best strat-
egy is random selection from the set of valid cryptograms whose size Cr,
k—r < C, < M —r, depends only on r and not the actual intercepted
sequence. Near-perfect protection is a useful extension of perfect protec-
tion. We note that the A-codes that satisfy information theoretic bounds
do not necessarily provide perfect protection but we will show that they
must provide near-perfect protection.

_ We will also study key strategies. Key strategies model enemy’s attack
when he/she attempts at guessing the correct key and using it to construct
a fraudulent message. We will show that an A-code that provides near-
perfect protection provides perfect protection for this subset of strategies
and hence the enemy’s best strategy is randomly selecting a key, from the
subset of keys that are valid for the intercepted sequence. We will derive a
bound on P,, characterize the A-codes that satisfy the bound with equality
and show that near-perfect protection is a necessary condition for equality
in the bound. We will conclude by giving a comparison of this bound and
Pei-Rosenbaum’s bound.

2 Preliminaries

We consider an authentication scenario with three participants: a transmit-
ter and receiver (communicants) who want to communicate over a publicly
exposed channel and an enemy who tries to deceive the receiver into accept-
ing a fraudulent message as genuine. We are only concerned with honest
communicants. An (M, k, E) authentication code (A-code) is a collection
£, |€] = E, of mappings, called encoding rules, from the set S, |S| = k, of
source states into the set M, |M| = M, of codewords. The code provides
protection only if k < M. The incidence matriz of an A-code is a zero-one
matrix, A = [aim], of size E x M in which a; = 1if m € M(e;:) and zero
otherwise; M(e;) is the subset of codewords that are authentic under the
key e;. Matrix A has exactly k ones in each row. Let m" denote a sequence
of r distinct cryptograms, m" = (mf, m3,...,m}), and use M" to denote
the collection of all such m™s. We use, M\m" to denote the subset of code-
words that do not occur in m", £(m) to denote the subset of keys that are
incident with m € M, i.e. £(m) = {& € €|aim =1}, and £(m") to denote
the subset of keys that are incident with all codewords m{ occurring in m".
The sequence m" is authentic under a key e; if m € M(e;) foralll <j <r.
For a set X we use X to denote its cardinality; for example E(m) denotes
the cardinality of £(m). We use m"m’ to denote the sequence obtained by
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concatenating m" and m’ and note that £(m™m’) = &(m") N E(m’).

An encoding rule may assign two cryptograms to one source state. In
this case we have an A-code with splitting. In this paper we only con-
sider A-codes without splitting although some of the results can be gen-
eralized to codes with splitting. In an A-code without splitting, a unique
source state s(e;,m) can be determined by an encoding rule ¢; € £ and
a cryptogram m € M(e;). Similarly a unique source sequence, s" =
(s(es, m7),- - , 8(ei, m})), can be determined by e; and m". We use Pg(s") =
Ps(s(e;,m]),- -, 8(e;, m~)) to denote the probability of a sequence of source
states and P(m") to denote the probability of a sequence, m”, of codewords.
We assume that Pg(s") = 0 if 8] = s] for some i # j, 1 <4, <r. The
communicants use a probability distribution # = (my,--- ,7g) on the key
space as their strategy and use it to choose an encoding rule e. The en-
emy may impersonate the transmitter by introducing a codeword m’ into
the channel or use a spoofing attack of order r in which he/she uses the
knowledge of a sequence, m", of r intercepted codewords to construct a
fraudulent codeword m’ € M\m". The enemy is successful if m’ € M(e).
Impersonation is spoofing of order zero and spoofing of order one is called
substitution.

Suppose an enemy has intercepted a sequence of r cryptograms. We
consider two different types of enemy’s action and define two classes of
strategies accordingly:

o the enemy tries to construct a valid cryptogram by guessing the cor-
rect key; he/she chooses a key e € £(mT), using a probability distri-
bution p™" on the set £(m"), and then randomly selects a cryptogram
m' € M(e)\m". The enemy’s strategy is the collection {p™",m" €
M7} where p™ is a probability distribution on the set M\m". This
is called a key strategy.

¢ Enemy tries to guess a valid cryptogram; he/she selects a fraudu-
lent cryptogram m’ € M\m" using a probability distribution ¢™" on
M\m". Enemy’s action in this case is similar to Simmons’ model of
attack [?], and is given by {g™ ,m" € M"}. This is called a message
strategy.

The relation between the two strategies and their significance is further
discussed in the rest of this paper.

We use PX and PM to denote the best probability of success for spoofing
attack of order r in the above cases, respectively.

3 Probability of deception

In a message strategy the communicants use a strategy = and the enemy
uses a strategy given by {¢g™ ,m" € M"}. The probability of deception
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when the enemy has intercepted m™ and wants to introduce the cryptogram
m' is the payof f(m,m’),

2.1:‘-0,- r@ims * ° * Gjmy &j :Ps((:-,m')
payoff(mr,m')= § 1 3%my Cimy P("-::; jm J . (1)

This can be used to find pM, probability of deception for the given strate-
gies,

py = E Z: z MjBim] Gjim3 +s@imr Bim’ Ps(e,-, m")qm; . (2)
mreEM™ m'eM\m" J

In a key strategy the enemy’s strategy is {p™ ,m™ € M"} where ™
is a probability distribution on the set £(m"). Proposition 3.1 gives an
expression for, pX, the probability of deception in this case.

Proposition 3.1.

E E

1 r
== 2 D wpl aympasmePs(enm’) D ammim.
mreMr i=1 j=1 m'EM\m" (3)

Proof: pKX is obtained by averaging the probability of success when com-
municants and the enemy are using their pure strategies. A pure strategy
of the communicants is choosing a key e; and an enemy’s pure strategy is
choosing a key e; followed by randomly selecting a cryptogram m' € M(e;).
Payoff of the game, that is, the probability of success of the enemy when
he/she has intercepted a sequence m" of cryptograms and chooses ¢; is,

Z Qim! Cjm/!

r o\ X Ti%my  Gimp Ps(m',€5)  mreMymr
payoff(m”, e;) = Z Blm") x Y )
i (4
P = P(m")p payof f(m", &), (8)
m”é
and we have,
PX = 3 P(m")Maze,payof f(m", ).
a

We note that for any key strategy {p™ ,m" € M"}, with probability of
deception equal to pX, one can obtain a corresponding message strategy
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{g™,m" € M"} with pM = pX . This can be verified by substituting,

r 1
9ont “k-r

B
ZP;"' Gim’, m’ € M\mr9
i=1

in expression (2) which results in (3) and pM = pK,
Corollary 3.1. P, = PM > PK,

4 Perfect protection

If enemy’s best strategy for any sequence m” of r cryptograms is random
selection from the set of valid cryptograms (or for key strategies, the set
of valid keys) then the value of the game is independent of the enemy’s
strategy. The size of these sets in general depend on m".

Suppose the enemy has intercepted a sequence m" of r cryptograms. An
A-code provides perfect protection for spoofing attack of order r [?), if

k—r
payof f(m",m’) = 7r—,

Vm"™ € M",m’ € M\m".
In this case the code needs at least E, encoding rules,

MM 1) (M —7)

=Dk

If E < E,, there exists m’ € M\m" with payoff(m",m') = 0; that is,
there exists a sequence m" for which the set of valid cryptograms Cpyr,
defined as,
Cmr=( | Mle) M,
e €E(mT)
has less than M — r elements.

An A-code provides near-perfect protection against spoofing attack of or-
derr if for any m" € M", with E(m") > 0, enemy’s best strategy is random
selection from Cp,r, and Cppr = C,.. For an A-code with near-perfect pro-
tection payof f(m",m') = (k — r)/C,, m' € M\m" and

k—-r k-r
P, = P,M = E P(m") = —_—
mremr Cr Cr

Near-perfect protection against spoofing attack of order r ensures that the

enemy’s chance of success is independent of the sequence m" and his/her
best strategy is to randomly select a cryptogram from C,r, Cpor = Ci.
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Proposition 4.1. The number of encoding rules in an A-code that provides
near-perfect protection for spoofing of order r satisfies the following bound,

1 C,
> .
Ez2 P “kor (€)

Equality holds if and only if the code satisfies Pei-Rosenbaum’s bound of
orderi,0<i<r, and H(EM ™) =0.

Proof: Using Theorem 3.1 in [?] we have

P, > QHEMS)-H(EIM)

Hence
PoPy--+ P, > gHEIM™*)-HE)
and using H(EJM"™!) > 0 and H(E) < logE we have
1
> —_—
P2RpR

The result follows by noting that the code provides near-perfect protection
for spoofing of order r. a

If the code provides near-perfect protection for spoofing of all orders
i, 1 <1 < r then bound 6 reduces to

p2 ]I ™

where Cy = M.

Example 4.1: Consider the incidence matrix of an A-code with'M =
6,k = 3,E = 4 given below. Let r = 1. Then C»- = 3 and bound 7 is
satisfied with equality.

E/M]T 2 3 4 5 6
1 |11 0 1 0 O
2 lo 11010
3 o011 01
4 |1 000 11

An A-code provides perfect protection against spoofing atiack of order r
for key strategies if, for all m™ € M", the enemy’s best strategy is random
selection from the set £(m"). In section 3 we noted that key strategies form
a proper subset of message strategies. Proposition 4.2 shows that if an A-
code provides near-perfect protection then it provides perfect protection for
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key strategies; hence for an A-code with near-perfect protection, enemy’s
chance of success will be the same if he/she tries to guess the correct key
or chooses a valid cryptogram.

Proposition 4.2. If an A-code provides near-perfect protection then the
code provides perfect protection for key strategies and P, = PM = PX,

Proof: We have
P=PM= %" p(mr)u_
Cr
mreMr

On the other hand using (4) we obtain,

E
TWjQimT o Qjmr. Ps (m'v €j )a"m' Qjm’
of f(m™, &) = : » - @8
pwof S sc) =3 B (F =) P) @

Since the A-code provides near-perfect protection, we have

ZE: TjAjmT «+-BjmyGim’ PS(mra ej) _ k—r

P(m") c '

=1

which implies that .
-r
payoff(m”,e;) = —=—.
2

Using (3) we have,

k-r
PK= z P(m")T=P,f".

r

mreMr
O
Corollary 4.1. Let P, = :{__’; Then the enemy’s best strategy is the

random key strategy.

5 Information theoretic bounds

Pei-Rosenbaum [?, ?] bound is the main information-theoretic lower bound
on F.. For r = 0, this bound reduces to Simmons’ bound [?] for imper-
sonation. Proposition 5.1 shows that equality in the bound is obtained
for A-codes with near-perfect protection and a matching source, that is, a
source whose probability distribution satisfies condition 2 of this proposi-
tion. In theorem 5.2 we obtain a second bound on P,K (and hence P,) and
then give a comparison of the two bounds.
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Theorem 5.1 (theorem 3.1 [14]).
P, > 2~ (H(EIM")-H (EIM"H))’ 9)

and equality holds if and only if,

1. the probability that m' is accepted as authentic if m" is observed is
constant and P, = payof f(m',m").

2. the conditional probability p(m'|e, m™) that m’ is the next cryptogram
sent by the transmitter, given that e is the actual encoding rule and
sequence m" is received, is constant for all e € £(m,m").

Bound (9) is applicable to a general A-codes. For A-codes without splitting
the equality in bound 9 can be obtained by another set of conditions given
in proposition 5.1.

Let Ps(m’|es,m") denote the probability of the source staie that is
mapped to m’ when m" is received and e; is used by the communicants.
Proposition 5.1. For an A-code without splitting equality in (9) is ob-
tained if and only if

1. the code provides near-perfect protection for spoofing attack of order
T
2. Ps(m’|e;,m") is independent of e;, for all m" € M", m' € M\m"
with E(m",m’) > 0.
Moreover in the case of equality P, = (k —r)/Cy.

Proof: Necessity. Using condition 1 of theorem 5.1 and expression (1) we
have,

Z P, =Cm.-Pr=z:Payoff(mram’)= (k—r),
m/EM\m" m’
and hence C,, . We also have,

P(m'lej, mr) = P(ej, m/, Tr) = Tjqimy *°* aj"‘:ajm'Ps(ej: 7":: m')
plej,m") Tj@jmy ** * @jmr Ps(ej, m")

= Ps(m/e;,m"), (10)

which completes the proof. Proof of sufficiency can be given in a similar
way. O

A second information-theoretic bound on P, can be obtained by general-
izing a bound originally proved by Brickell-Simmons [?] and later tightened
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by Stinson [?]. Our proof shows that this lower bound is in fact a lower
bound on P;*. It also gives a characterization of authentication systems
that satisfy the bound with equality.

Let 8,.(e;, m",m’) be,

ZjE=1 wjajm;...ajm:ajm:Ps(ej, m")

5r(es, m",m') = , 11
r(esym”,m') T4 Gimy o+ Bimy Gims Ps (€5, m") (11)
and 8, = min; gmr mer(es, m", m’).
Theorem 5.2.
PK > §,2-HEIMT) (12)

In the case of equality the A-code satisfies the following properties:
(i) E(m") = const = A,_, for all m" € M" with E(m") > 0;
(ii) E(m",m') = const = A\, = &é, for all m" € M" and m' € M"\m"
with E(m™,m’) > 0;
(iii) =;Ps(ej, m") is independent of j for all m" € M" and 1 < j < E;
(v) Bl = B = z\f:1 - )\:\:1 - kC—'rr

perfect protection. ;

and the A-code provides near-

Moreover the first three conditions are sufficient conditions for an A-code
to satisfy bound (12) with equality.

Proof: See appendix.

It is interesting to compare the bounds 9 and 12. Let a,. and B, denote the
value of the right hand sides of the two bounds respectively. If an (M, k, E)
A-code satisfies P, = a, or P, = B, then it provides near-perfect protection.
Hence for all m" € M"™ with E(m") > 0 we must have Cpr = C, which is
a requirement on the incidence matrix of the code. On the other hand if
an A-code provides near-perfect protection and there exists a source that
satisfies condition 2 of proposition 5.1, then the bound 9 is satisfied with
equality and the A-system uses all the redundancy, introduced during the
encoding process, for providing protection. However P, = §, requires the
incidence matrix of the A-code to satisfy much stricter conditions.

In general, if P, = a, then a, > 8, and if P. = 8, then 8, > ay.

If the A-code does not provide near-perfect protection neither of the
bounds can be satisfied with equality. Proposition 5.2 shows that in some
cases bound 9 is a tighter bound. However such a statement, in general, is
not possible.
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Proposition 5.2. If Ps(m’|e;, m") is independent of i then

ar > Br.
Proof: If P(m’|e;, m") is independent of i then

1
r+1y _ . anT+1
HEM™) = 3 Plewm™!)log 5y
i,mr+l
= Z P(e;, m"*?) log 6(ei, m", m’) > logé,
i,mr+i
and
o~ (H(E|MT)-H(E|M™)) 5 g o—H(EIM")

Appendix

Proof of theorem 5.2: The proof is similar to Stinson’s Lemma 2.7 [?].
We note that using (4) we have

r = _'_1—_
payoff(m”, &) = (k —r)P(m") m'e;:\m'

6 (m",m’, e;)Ps(m", &)Wy ---Gimy Gim?
_ miPs(ei,m")ims ... Gimz
- P(mm)(k—-7)

.o 6.m; Ps(es, m")
'zn’: 5,-("1 TV, €5)8im? 2 —P(m") . (13)

Let vX(m) = Maz;(payofi(e;, m")). Then we have
PX =3 reme P(m7)vf (m") and [?]

pK
H(EIM") 2 -log—,
r

which proves the bound.
Equality holds if and only if 6,(e;, m",m’) = §, is constant and PX =
vK(m"), Vm". If 6,(m",m’, &) = &, then
E
6,- X WgPs(ei, mr) = Zwjajm;...ajm;ajmops(ej,m"),

i—1
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which means that m; Ps(e;,m") is independent of i. In this case

6,- = E ajm;...ajm;ajm: = 5'.,
J
Moreover since PX = vX(m) we have,

" P(mn)(k-r)

7; Ps(ei, m")
P(mr)

. . r
PX = u¥ (m") = Maz,(payofi(es, m") = TLECLT ) 55 (1nr, mt, )
ml

= Ap X
and since,

P(m") = Zﬂ'gps(eg, m')a.-m;...a.-m; = 1r,-Ps(e;, m') z agm;-...a.-m;,
[ 4

we have, N
PK - ___ T
T 2; @im] .. Gimr

Hence 3=, aimr...@im; = A_1 is a constant and PX = \./A,_;. But for

any m" € M" we have the following equality A,_; x (k —r) = A\ X Cpyr.

It implies that Cppr = Cr. and PX = (k —r)/Cy. Also using expression (1)

we have

“jPS(eJ'vmr) Zj ajmy * * * Cimy Cjm’ _ Ar _ k—r
w3 Ps(ej, m™) 35 amy - - Gjmy A1 G

payof f(m",m’) =

and the A-code provides near perfect protection for class M, and perfect
protection for class K,. To prove the sufficiency of 1-3 we note that if
#;Ps(e;,m™) and Ej @jmy..-Gjmr@jm’ 8T constants then from (11) we have
br(m", m’, &;) = 6, = A\, independent of m", m’,i. Also
WiPS(ei:mr)sr) = or
P (m") Ar—1 !

and PX =Y .. P(m")vX(m") = 6,/A\r—1 = A+/Ar—1. To prove condition
5.2 we note that in general PM > PX_ If the A-code satisfies conditions
1-3 of theorem 5.2 we have
pM(m",m') = 5Ps(es,m7) 1; Gymg - GjmrGjms _ Ay

r ] ﬂjPS(ej, mr) Zj ajm‘,‘ cee ajm;; Ar—l ]
and so the best strategy of class M" is uniform strategy. That is, the A-code
provides near-perfect protection and so

vy = Mazi(payofi(m”, e;)) = Mazi(

Ar
Aro1’

PM = pPX =
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