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ABSTRACT. A method for synthesizing combinatorial structures
which are members of an extended class of resolvable incom-
plete lattice designs is presented. Square and rectangular lat-
tices both are realizable, yet designs in the extended class are
not limited in number of treatments by the classically severe
restriction v = s or v = s(s ~ 1). Rather, the current re-
striction is the condition that there exist a finite closable set
of k-permutations.on the objects of some group or finite field,
which is then used as the generating array for a L(0,1) lattice
design. A connection to Hadamard matrices H(p,p) is consid-
ered.

1 Introduction

The first of the systematically studied and applied resolvable designs were
the square lattices, introduced by Yates (1936). If v = s2 is the number of
treatments, construction of a design possessing R > 3 replicates depends
upon the existence of a set of R — 2 mutually orthogonal latin squares
(MOLS) of side s. Arranging the treatments in an array A of side s, the
rows and columns of A form respectively the blocks of the first two repli-
cates. Succesive replicates are-formed by superimposing on A one of the
latin squares, and taking as blocks those variables adjacent to the same
symbol. Orthogonality of the latin squares prevents any two treatments
from appearing in more than one block. Thus, a scarce design or else a
balanced incomplete block design emerges, depending upon whether there
exists a complete set of MOLS of side s.

Harshbarger (1949) extended the lattice principle to simple and triple
rectangular lattices where v = ks, with k = s — 1. A more general ap-
proach via mutually orthogonal latin squares is presented in John (1987).
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Treatments are initially set out in an (s)z(s) array with cells belonging to
one of the principle diagonals left blank. If there exists a complete set of
mutually orthogonal latin squares of side s, then a set of s — 2 squares can
be found where the symbols each appear on the diagonal corresponding to
the blank diagonal of the initial array. Again, rows and columns of the
initial array respectively form blocks for the first two replicates. Successive
replicates are found by supetimposing each of the orthogonal squares on
the initial array, with blocks formed from all treatments which are paired
with the same symbol. Orthogonality forces a scarce design where any two
treatments concur in at most one block.

Kempthorne (1952) has suggested constructing kx(k-1) lattice designs by
superimposing a latin square of side k in which 1 entries have been omitted
from each row, each column, and the set of occurrences of each symbol. The
idea is also mentioned by Street and Street (1987). However, few details are
given; and particularly, the utilization of orthogonality is not considered.

The purpose of the present research is to present a scheme for construct-
ing, when they exist, members of an extended broad class of equi-block
lattice designs. A representative of the extended class of L(0,1) lattice de-
signs is obtained somewhat as in the method of Yates. The treatments are
initially set up in an array, L, of dimension (s)x(k), where k < s. Block
size is k, and blocks of the first replicate consist of the rows of L. The
construction of additional replicates depends upon the existence of a set
of r mutually orthogonal latin rectangles (MOLR) of the same dimension
as L. Superimposing each latin rectangle on L and taking as blocks those
variables adjacent to the same symbol leads to r further replicates.

Orthogonality of the rectangles forces a design for which two arbitrary
treatments concur in at most one block. Whenever k = sandr =s—1
are permissible parameter choices, the design can be extended to become
a balanced incomplete block design, by taking columns of the initial array
as the blocks of an additional parallel class.

Thus, a method for synthesizing combinatorial structures which are mem-
bers of an extended class of resolvable, incomplete, lattice designs emerges.
Both square and rectangular lattices may be realizable, yet designs in the
extended class are not limited in number of treatments by the classical
restriction v = s2 or v = s(s — 1). In fact, due to the non-existence of
orthogonal latin squares of side six, the case v = 30 does not permit a
classical lattice design, yet possesses a realizable L(0,1) design (see Section
3). However, the condition for obtaining an L(0,1) design on v = ks treat-
ments is that there exist an s-closable set of k-permutations taken from the
s objects of some algebraic module S.

As there is a one-to-one correspondence between the set of Alpha(0,1)
designs and the set of L(0,1) extended lattice designs, it might be expected
that statistical efficiency properties of the two classes are somewhat equiv-
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alent. However, a number of application areas exist where the design itself
is of more importance than is its statistical properties; viz, tournament
scheduling in sports (Cooke, (1996)). An application of the L(0,1) design
method to the scheduling of certain types of tennis and golf tournaments
is presented in Section 4. Connections to Alpha(0,1) designs are investi-
gated in Section 5, and some techniques for constructing s-closable latin
rectangles are given in Section 6.

2 Construction of Mutually Orthogonal Latin Rectangles

In combinatorial practice, two latin squares of side s with elements in the
module § = {zo,z,,..z,} are called orthogonal iff when superimposed
every ordered pair (a,b) from SxS appears exactly once. However, the con-
cept permits a useful generalization whereby orthogonality can be defined
for rectanglular arrays. Consequently, the method of Bose (1938) for gen-
erating mutually orthogonal latin squares (MOLS) naturally extends to the
problem of generating mutually orthogonal latin rectangles (MOLR).

Let A be a rectangular array of dimension (r)x(k), with r,k < n, whose
elements are in the set § = {zo, z1,%3, ...z, }, Where |S| = s. It is assumed
that the elements of S can be combined with some binary differencing op-
eration (-). Ryser (1963) defines array A a latin rectangle provided each
row of A is a k-permutation chosen from S, with each column being an
r-permutation. On the other hand, Hall (1987) stipulates the further re-
quirement k = s in order that A be a latin rectangle. For present purposes,
the Ryser definition will be adopted. Thus, every sub-rectangle of a latin
square is a latin rectangle, yet not every latin rectangle can be extended to
a latin square.

Two latin rectangles of the same dimension will be called mutually or-
thogonal iff when the arrays are superimposed any ordered pair (a,b) from
SzS appears at most once (some pairs may not appear). A set {Lj: 5=
1,2,...r} of latin rectangles having the same dimension will be called mu-
tually orthogonal (MOLR) iff each pair is mutually orthogonal.

Closable Sets of Permutations

Let s = n + 1 be a positive integer, and 1 < k < 5. A finite set of k-
permutations of the objects from S is called s-closable provided the vector
difference of two arbitrary members is also a k-permutation. Usually, the
differencing refers to arithmetic modulo s, but in all cases there is assumed
a group or finite field structure on the elements of S within which the (-)
operation for combining two scalar elements is well defined.

Latin rectangle A whose row vectors constitute an s-closable set of r-
permutations shall be called s-closable. It shall be called s-closed iff every
row difference (of two arbitrary rows) is also a row vector of A. As an
example, if S is a finite field, the linear permutation functions {fa(z) =
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az : 03£aeS} induce a closed set of permutations {fo(S) = aS,a # 0} from
which a closed latin rectangle can be formed. Omission of the zero element
of the field from each permutation will result in a closed latin square of side
s — 1. Moreover, any sub-rectangle is an s-closable latin rectangle, which
may not be s-closed.
Bose’s Method Applied To MOLR

If Bose’s (1938) method for generating MOLS is applied to the row vec-
tors of an s-closed (r)x(k) latin rectangle, there results an r-set of MOLR
whose dimension is (s)x(k). The procedure here is simple: develope cyclicly
each row vector R; by adding successively each non-zero element from mod-
ule S, to obtain the latin rectangles {L; : ¢ = 1,2, ...t} whose rows are
{Ri+zk : k=0,1,..s — 1}. The property that each row difference associ-
ated with the s-closable rectangle is a permutation forces mutual orthogo-
nality of the {L;}.

38 Constructing an L(0,1) Lattice Design

As a first illustration of the construction process for an L(0,1) design, con-
sider the case S = {0,1,2,3,4,5, mod6}. As previously recalled, the non-
existence of MOLR of side s = 6 prevents construction of a classical lattice
design characterized by v = 30 treatments which possesses more than two
replicates. However, as there exists an s-closable latin rectangle of dimen-
sion 4x5, there can be constructed an extended L(0,1) design having five
replicates whose parallel classes are of dimension 6xk, with blocksize k, for
2 < k < 5. The corresponding s-closable rectangle of maximal dimension
4x5 is given by the

Generating Rectangle, G:

[« =N =R o]
B N =
W = N
N =W
- W

By cyclic development of each row of the array G, there results a set
of four MOLR of dimension 6z5. For purposes of illustration, one such
rectangle is the

First Latin Rectangle:

012 3 5]
1 2340
2 3451
3450 2
4 501 3
5 0 1 2 4|
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Setting out the treatments in an array whose rows are blocks of the

design, there results the
First Replicate:

[ 0
5
10
15
20

25

1
6
11
16
21
26

2

7

12
17
22
27

3
8
13
18
23
28

4
9
14
19
24
29

J

Superimposing in turn on this array each of the MOLR and grouping
into blocks those variables which are adjacent to a common symbol, with
these symbols placed in natural order, there results four additional parallel

classes:
Second Replicate:

w00 WN = O

Third Replicate:

N D=wWwo

Fourth Replicate:

—
00 W= B NO

Fifth Replicate:

= NDWAO

PN w;©

U-Ranbwil- W N

SooNng

[y
o N oww©o o

18
14
10
11
16
17

14
12
10
15
18
16

13
18
10
12
14
19

17
16
10
14
13
18
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22
23
19
15
20
21

21
19
17
22
20
23

21
23
15
17
22

23
22
21
15
19

26
27
28

29
25 |

28
26
24
29
27
25 |

27
29
26
28
20
25

29
28
27
26
20
25




4 Sports Application - An Unbiased Tournament Schedule

The problems associated with designing an unbiased, round-robin doubles
tennis tournament schedule are discussed in Cooke (1996). Basicly, such a
schedule is a resolvable, incomplete, equi-block combinatorial design pos-
sessing at least five parallel classes (rounds). To be unbiased as regards
choices of partners and opponents, two blocks can intersect at most once.
The block size is k = 4, and v = ks, where s is the number of tennis courts
simultaneously available.

Schedules of 5, 5, and 7 rounds were found for the respective cases v = 16,
20, and 28 players, but difficulties were encountered when attempting a five
round schedule for 24 players. Street and Street (1987) tabulate a three
round schedule (an Alpha(0,1) design). The purpose of the present section
is to record a five round L(0,1) design, thought to be the longest possible
such schedule. Again, the maximality question for length of a resolvable
scarce design, over all possible combinatorial design types, appears to be
an open problem, due basicly to the broadness in scope of the question.

We start with a sub-rectangle of G as the
Generating Rectangle, GS:

01 23
0 2 51
0 314
0 4 3 2

By cyclic development of each row of the array GS, there results a set of
four MOLR of dimension 6z4.

Setting out the treatments in a 6z4 array whose rows are blocks of the
design, there results the

First Round:

0 1 2 3]
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23

Superimposing in turn on this array each of the MOLR and grouping into
blocks those variables which are adjacent to a common symbol, in the order
that they appear in successive columns, there results four additional parallel
classes:
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Second Round: ~ i
18 15

22 19

10 7
14 11

il )
Qhea~N
=)

w

| 20
Third Round:

17 6 23
21 10 3

18 11

N oro
I3}

13 2 19

Fourth Round:
13 22 11

17 2 15
21 6 19
10 23
5 14 3
9 18 7 |

Fifth Round: )
9 14 19

13 18 23
17 22 3
21 2 7
1 6 11
5 10 15 |

Noabwso
b

Noaboso

5 Connections to Alpha Designs

The Alpha method for combinatorial design provides a series of resolvable,
incomplete block designs which can be generated readily. Williams (1975)
provides a large table of such designs. As an alternative to the tables,
Paterson and Patterson (1983) give a computer algorithm for choosing a
suitable generating array, based on the aim of choosing block designs with
high efficiency factors. It is established in John (1987) that the Alpha(0,1)
designs, as opposed to Alpha(0,1,2) designs, etc, are characterized by the
most optimal efficiency factors.

A spin-off of the present research is the provision of means to obtain,
without computer search, initial arrays which always generate Alpha(0,1)
designs. A sufficient condition for this to happen is that the initial array
be a top zero-bordered s-closable Latin rectangle. If s = n + 1 is a prime
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or prime power, there is a module, S, whose elements constitute a finite
Galois field, from which there can be chosen an s-closable Latin rectangle
of maximal dimension (s-1)x(s). (See Section 6 below). Thus, by appending
a top row of zeroes, there is obtained an (s)x(s) array which developed in
the usual manner generates an Alpha(0,1) design whose s parallel classes
are of maximal dimension (s)x(s).

Each L(0,1) design is not dual to some Alpha(0,1) design, as the dual
is classically defined (see Raghavaro (1971)); yet the terminology would
appear well-deserved. The condition for generating either an L(0,1) or an
Alpha(0,1) design is the same. Each requires an s-closable set of permu-
tations as a generating array, and the same initial array can be used for
generating a design of either type.

If the s-closable set is a (k-1)x(r) array of r-permutations, by cyclicly de-
veloping the columns an Alpha(0,1) design of blocksize k, resolution classes
(k)x(s), and replication number r emerges. Likewise, by cyclicly developing
the rows of the same array and then employing the resulting MOLR. to
group treatments, there emerges an L(0,1) design of blocksize r, resolution
classes of dimension sxr, and replication number k. At most two additional
replicates are obtainable by grouping as blocks rows and columns of the
initial array.

6 Construction of S-closable Latin Rectangles

Recall from Section 2, Latin rectangle A whose row vectors constitute an
s-closable set of r-permutations is called s-closable. It is called s-closed iff
every row difference (of two arbitrary rows) is also a row vector of A.

As an example, if S is a finite field, the linear permutation functions
{f.(x) = ax : 0#aeS} induce a closed set of permutations {f,(S) = aS,a #
0} from which a closed latin rectangle can be formed. Omission of the zero
element of the field from each permutation will result in a closed latin square
of side s — 1. Moreover, any sub-rectangle is an s-closable latin rectangle,
which may or may not be closed.

When S is not a finite field, s-closable (r)x(k) rectangles may sometimes
be obtained, but whose k-permutations are usually characterized by small
values of r and/or k. For example, Patterson, Williams, and Hunter (1978)
give a set of basic generating arrays for Alpha designs, which (except for
one case) by omission of a row of zeros provide 3zk s-closable arrays char-
acterized by v = ks < 100. When s is not a prime power, for larger values
r,k < s the question of existence and methods for constructing (r)x(k) s-
closable arrays appears to be an open problem. Indeed, the existence of
such an array of dimension (s-1)x(s) would guarantee the existence of a
complete set of MOLS of side s.

When S is the group Z, of residue clm modulo s = p, a set of elements
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{ax : k < n} which satisfy gcd(a;,s) = 1 and ged(a; — aj,8) = 1,7 # 3,
yields an s-closable set of permutation functions fx = axz. For s = 15, three
such distinct sets exist: {1, 2}, {7, 8}, and{13, 14}. Thus, three sets of triple
L(0,1) lattice designs are known to be possible. In fact, by considering sub-
rectangles, triple L(0,1) lattice designs with parallel classes of dimension
15zk, k < 15 are possible, in triplicate sets.

As another example, when s = 35, four such sets are possible: {{1,2,3,4}+
104,:=0,1,2,3},

7 Connections to Hadmard Matrices

J. A. Butson (1962-1963) investigates the properties of generalized Hadamard
matrices and relations to relative difference sets. S. S. Shrikhande (1964)
studies the connections between generalized Hadamard matrices and or-
thogonal arrays of strength two. The reviewer of the present paper has
questioned whether there is a relation between these concepts and the s-
closeable generating rectangles of Section 6. For Hadamard matrices the
question is affirmatively answered in this section. Here, it is demonstrated
that for primes p > 2 the problem of constructing a generalized Hadamard
matrix H(p,p) is combinatorially equivalent to constructing an affine re-
solvable balanced incomplete block design characterized by parameters

AR(p) :v=p*b=p*+p,r=p+Lk=p =1 (1)

For clarity, the present demonstration considers a specific case p = 5;
however, it is made clear that the procedure is valid for general prime p.
Thus, the present result is a counterpart of Todd’s (1933) discovery that
construction of a classical Hadamard matrix H(2,4t) having integer ¢ > 1 is
combinatorially equivalent to the problem of constructing an unresolvable,
symmetric, balanced incomplete block design whose parameters are (v =
b=4t-1l,r=k=2t-1,2=t-1).

Actually, the work of Shrikhande (1964) establishes that existence of a
certain orthogonal array OA implies the existence of a Hadamard matrix
H(p,p?[(p — 1)t + 1]) which for vanishing t becomes H(p, p?). He also es-
tablishes a combinatorial equivalence between a series of orthogonal arrays
and a series of affine resolvable BIB designs which produces AR(p) when
a parameter is made to vanish. Thus, if Shrikhandes proof can be shown
reversible, this implies H (p, p?) and H(p, p) themselves are combinatorially
equivalent.
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For p = 5 and z = exp(2n/p), consider the Hadamard H(p,p) matrix

1 1 1 1 1
1 z! 22 £
H(B,5)=|1 22 ¢ ! 28 2
1 28 z! 4 z?
1 =4 28 22 !
whose conjugate-transpose has the property H » HT =5].
The notation
H=zF (3)
means h;; = z%;i,5 =0,1,...p — 1, where
0 00 0O
012 3 4
E=|02 41 3 @)
0314 2
0 4 3 2 1

It is observed that the core of E is a Latin square with an algebraic
property: the mod p differences are such that the row vectors are an s-
closed set (with s = p = 5). This, plus the fact that E is in the standard
form required of the generating matrix for the o method (see J. A. John
(1987)), assures that the a(0,1) design generated by E will be a group
divisible (GDD), resolvable, incomplete block design characterized by m
groups of n treatments whose parameters are

GDD(p):v=mnym=n=p=5k=r=p;b=p% X =0 2 =1 (5)

Moreover, as John (1987) observes, given design GDD(p) generated by
the alpha method, its generating matrix E is readily inferred. Thus, the
process can be reversed, after making sure that the generating matrix is in
standard form, to obtain an H (p, p) matrix. For, if the exponent core were
not p-closable, the design could not be a(0, 1), and if the nonzero core has
side p — 1, for prime p the core must be p-closed.

Finally, to complete the demonstration it is shown that AR(p) and GDD(p)
can each be obtained from the other. To obtain AR(p) from GDD(p), as
resolution class p+ 1 simply take the transpose of the first resolution class,
whose columns are the p groups of 1st associates which have never been to-
gether in blocks of the design. The extended design is the affine resolvable
BIB having parameters

AR(p):v=phk=pr=p+1;b=p’ +p;A=1 (6)
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Clearly, to obtain GDD(p) from AR(p), that resolution class is omitted
whose rows qualify as the groups of first associates.

However, it is pointed out that the properties of Hadamard matrices
indicated by Butson (1962-1963) make it clear the general H(p,p) matrix,
for p > 2 a prime, has an exponent core which is p-closed. Thus, our
demonstration holds for general prime p.
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