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Abstract Eight new codes are presented which improve the bounds on
maximum minimum distance for binary linear codes. They are rate (m —

r)/pm,r > 1, r-degenerate quasi-cyclic codes.
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I. INTRODUCTION

Let V(n, 2) be an n-dimensional vector space over the binary Galois field
GF(2), and denote a k-dimensional subspace of V(n,2) as C. C is said to

be an (n, k) binary linear code and can be represented as the rowspace of
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a k x n generator matrix

go,0 go,1 Jo,2 go,3 gon-1
g10 g1.1 91,2 91,3 gon-1
G = 92,0 92,1 92,2 92,3 gon-1 . )
gk-1,0 9k-11 9k-1,2 Gk-1,3 - Gk—-1n-1

This code contains 2¥ codewords corresponding to all possible combinations
of the rows of G. The Hamming weight of a codeword, wy(z), ¢ € C, is
the number of nonzero elements in z. The Hamming distance between
two codewords, dy(x;,x;),zi € C and x; € C, is the number of positions
in which they differ. The minimum distance of a code is defined as the

minimum Hamming distance between codewords
dmin = min{dg(z;, z;); zi,zj € C,z; # z;j.

For a linear code, the minimum distance is the minimum Hamming weight

of its nonzero codewords
dmin = min{wy(z;);z; € C,z; #0.

Let A; be the number of codewords of Hamming weight i in C. Then
the numbers Ag, Ay, - - -, An, are called the weight distribution of C [1] and

therefore .
Z A; = 2F.
=0

The maximum number of correctable errors in a codeword is given by
dmin -1
t=|—m—1,
|Gmin =
thus it is desirable to find codes which maximize dy,;,. Denote the max-
imum possible value of dmin for an (n,k) binary linear code as da(n, k).
Codes which have dmi, = da(n, k) are called optimal. For binary linear

codes, Brouwer and Verhoeff [2] have tabulated bounds on the maximum
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possible minimum distance for ¥ < n < 127, and Brouwer [3] maintains an
online table of bounds for k£ < n < 256.

na(d, k) has been completely determined for k¥ < 7 [3]. Conversely,
there remain many unknown values of ny(d, k) for k£ > 7. In this paper, the

bounds on eight values of da(n, 11) and da(n, 12) are improved.
II. Quasi-CycLic CODES

A code is called quasi-cyclic (QC) if there is some integer p such that
every cyclic shift of a codeword by p places is again a codeword [1, 4]. QC
codes were first investigated by Townsend and Weldon [5], Karlin [6, 7] and
Chen, et al. [4]. The blocklength, n, of a QC code must be a multiple of p,
so that n = mp [8]. If p = 1, the code is called cyclic. QC codes are known
to be good codes [9] (unlike the well known BCH codes, which are cyclic
codes [10]). In fact it is conjectured that arbitrarily long QC codes meet
the Gilbert-Varshamov bound [11] (if arbitrarily large primes exist with 2
as a primitive root). In addition, a connection exists between QC codes
and convolutional codes [12].

By rearranging the columns of the generator matrix, G, it can be shown
that many QC codes are equivalent to a code composed of m x m circulant

matrices. Thus G can be transformed to
G = [Co. C1, Co, ..., Cp-1], (2)

with C; an m x m circulant matrix of the form

o 51 €2 -+ Cm-1

Cm—-1 Co €1 - Cm-2

tm-2 Cm-1 €0 ** Cm-3 | (3)
(41 C2 ¢3 - Co

where each successive row is a right cyclic shift of the previous one. The

algebra of circulant m x m matrices over GF(2) is isomorphic to the algebra
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of polynomials in the ring f[z]/(x™—1) if C; is mapped onto the polynomial,
ci(x) = cio+cinx+ci2x?+ -+ cim-12™ [1]. The c;i(z) are called
defining polynomials [8]. These codes are a subset of the more general 1-
generator QC codes [13], which is in turn a subclass of QC codes. The class
of QC: codes of the form (2) is known to contain many optimal binary linear
codes [14, 15, 16].

If the polynomial c¢;(z) representing a circulant matrix C; contains a
factor of ™ — 1, then C; is singular. If all the ¢;(z) in a QC code have
a common factor of £™ — 1, then the QC code is called degenerate [8].
Degenerate QC codes are also 1-generator QC codes [13]. The order of a
1-generator QC code is defined as [13]

2™ -1

he) = B Toa@ o), oa@)’

4)

and k, the code dimension, is equal to the degree of h(z). If h(x) has degree
m, then k = m, and (2) is a generator matrix for C. If deg(h(z)) = k < m,
a generator matrix can be constructed by deleting r = m — k rows of (2).
These are called r-degenerate QC codes.

The QC structure of C can used to be reduce the computational com-
plexity of finding good codes. The first step is to obtain a set of defining
polynomials. Consider the set of polynomials of degree m — 1 or less. Two
polynomials, ¢j(x) and c;(x) can be said to belong to the same equivalence
class if

¢j(z) = az'ci(x) mod (z™ — 1),
for some integer | > 0 and scalar a €GF(¢g)\{0}. This means that two
polynomials are in the same class if one can be obtained from the other
by a cyclic shift, multiplying by a nonzero scalar, or both. Only one poly-
nomial from each class need be considered when constructing QC codes
since polynomials from the same class produce equivalent codes [17]. This

equivalence relation is induced by the action of a finite group on the set of
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m-tuples. Distinct equivalence classes correspond to distinct orbits under
the action of this group and so can be enumerated using Burnside’s Lemma
[17].

Once a set of defining polynomials has been constructed, the weight
distributions of the codes generated by the corresponding circulant matri-
ces, C;, must be computed. This task can be simplified since the Hamming
weight of ij(x)c;(x) mod (™ —1) is equal to the weight of ai; (z)z'c;(z) mod
(x™ —1) for all a € GF(q)/{0} and 0 < ! < m, so these redundant weights

can be eliminated. Arranging the remaining weights in a matrix [14] gives

h(z) da(z) - di(x) - dy(z)
al@) | wn w2 oo owy o - wyy
eax) | war  wa2 - wy - wyy
D= : : : : (5)
c(z) | wpr w2 o wr oo wiy
C;(.’L‘) Wyy Wwy2 e wzj e wzy

where i;(x) is the jth information polynomial, cx(z) is the kth generator
polynomial, and wy; is the Hamming weight of i;(z)ci(z) mod (z™ — 1).
Since the 7;(z) and ¢i () correspond to the set of class representatives, D is
a symmetric, square matrix, with y = z. The complete weight distribution

of any QC code can be constructed from D.
ITI. NEw CODEs OF DIMENSIONS 11 AND 12

The algorithm used to construct new codes is based on the approach in
[18], but with a heuristic (nonexhaustive) search. The search is initialized
with a code of the desired rate, chosen arbitrarily as p rows of D. Clearly
the minimum distance of this code is the minimum column sum of these P
rows.,

To improve the code, a new ci(z) is found to replace one presently in
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the code so that the minimum distance, or the column sum of the p rows, is
increased. If one is not found, a selection algorithm is used which provides
some degree of randomness, as in [14, 15, 16, 17]. This process is repeated
until the required minimum distance is achieved, or a limit on the number of
iterations is reached. This approach is used because an exhaustive search is
intractable for these code dimensions. Although the resulting codes are not
guaranteed to be the best possible, codes which meet or exceed the lower
bounds on minimum distance can still be obtained. In this case, eight codes
were found which improve the bounds in [2] and [3] on da(n, k). Numerous
agreements with the tabulated bounds were also found. No codes with
dimension k < 11 or k > 12 were found which improved the known bounds.

The eight new codes are listed in Table I. The generator polynomials,
ci(x), are given in octal, with the leading zeros deleted and the least signifi-
cant coefficient on the left, i.e., 3255 corresponds to ' +2°+28+z+1. The
common factor of all the ¢;(x), (™ — 1)/h(z), is also given, along with the
minimum distance and the new bound on d»(n, k), denoted by ds,, which

appears in [3].
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Table I. QC Codes Which Improve the Bounds on Maximum Minimum Distance for a Binary Linear Code

QC code m (2™ — 1)/h(z) | dmin dpy ei(z)

(140,11) 14 13 63 63 —65 | 1277,61,5523,343,6725,5717,1127,3075,1335,13

(147,11) 21 3303 66 66 — 69 | 56353, 1571733,43747,472531,1153757, 212331, 30333

(150,11) 15 31 68 68 — 70 | 17765, 427, 5455,1703,1761,445,4223, 5165, 12465, 15467

(180,11) 15 31 82 82 —84 | 2333,7671,13577,2725,737,6555, 15467,2167, 3075, 17237, 207, 4635

(210,11) 21 3303 98  98—101 | 1351577,467125, 36535, 546217, 30333, 326417, 452713, 5505, 124637
447307

(252,11) 21 3303 120 120 - 122 | 117607, 63565, 306635, 533065, 43747, 25727, 1135737, 234715, 670711
506653, 5505,461723

(161,12) 23 6165 72 72—-175 | 1653073,5567373,2727375,360575,1061105, 1564517, 73467

(168,12) 21 1101 76 76 — 80 | 155041,230311, 313221, 623147,674315,67161, 2733267, 65363
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