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ABSTRACT. Let n(k) be the smallest number of vertices of a
bipartite graph not being k-choosable. We show that n(3) = 14
and moreover that n(k) < k- n(k — 2) + 2. In particular it
follows that n(4) < 40 and n(6) < 304.

1 Introduction

The idea of associating with each vertex v of a graph G a list from which
the colour of v has to be chosen in a colouring of G is due independently to
Vizing [15] and to Erdds, Rubin and Taylor [8]. The choice number X;(G)
of G is the smallest integer k for which, for any assignment of a list of size at
least k to every vertex v € V(G), it is possible to properly colour G so that
every vertex gets a colour from its list. A graph G is said to be k-choosable
if X(G) < k. In this paper we consider choosability of bipartite graphs.
(The terms “choice number” and “k-choosable” are sometimes called “the
list-chromatic-number” and “k-list-colourable”.)

Both Vizing and Erdds, Rubin and Taylor observed that bipartite graphs
can have arbitrarily large choice numbers. (For a simple example of when
the choice number exceeds the chromatic number consider K3 g with lists
{1,2}, {1,3} and {2,3} assigned to the vertices in each class.) In contrast
Alon and Tarsi [2] have shown that the choice number of any planar bipar-
tite graph is at most 3. Thomassen [13] proved that the choice number of
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any planar graph is at most 5, and Voigt [16] exhibited examples of planar
graphs with choice number equal to 5. Thomasen’s remarkable proof is
simpler than standard proofs of the 5-colour theorem and interestingly uses
neither Euler’s formula nor Kempe chain recolourings.

Recently, (private communication), S. Gutner of Tel Aviv University
proved, among other results, that for every k > 3 it is an NP-hard problem
to decide if a bipartite graph is k-choosable.

Erdds, Rubin and Taylor proposed the following problem:

Determine the smallest number n(k) of vertices of a bipartite graph G
not being k-choosable (k > 2), that is there exist lists of colours of size k
assigned to the vertices of G, so that it is impossible to (properly) vertex-
colour G with every vertex getting a colour from its list.

Let m(k) denote the minimum number of edges possible in a 3-chromatic
k-uniform hypergraph, or equivalently, the minimum number of k-sets in
a family of sets not having property B (after Bernstein, see [5] and [11]).
Erdés, Rubin and Taylor proved that m(k) < n(k) < 2m(k) (and they
added, in a footnote, that the lower bound can be improved to m(k) + 2).
It is known that m(3) = 7, m(4) < 23, m(5) < 51, and that in general
k1/3-€2% < m(k) < k?2%*! (see Abbott and Hanson [1], Seymour [12],
Toft [14), Beck [4] and Erdds [6]). However the order of magnitude of m(k),
and hence of n(k), has not been determined. Erdds, Rubin and Taylor
observed that n(2) = 6 = 2m(2), and they remarked that “although it is
most likely that n(3) = 14, it would be quite a surprise if n(k) = 2m(k)
were to persist for large k.” Mahadev, Roberts and Santhanakrishnan [10]
have obtained bounds for p+ g where K, 4 is not 3-chcosable and where p,
p < g, is fixed. For example if p = 3 then ¢ > 27; if p = 4 then ¢ 2 19; if
p = 5 they show that Kp 4 is not 3-choosable when ¢ > 15; and if p = 6
then Kp q is not 3-choosable when g > 11. The first two of these results are
special cases of one of the results of Hoffman and Johnson [9].

In what follows we obtain a lower bound for n(k) depending on the
total number of elements present in the union of all the lists. We then
show that indeed n(3) = 14, and finally obtain an upper bound of n(k) <
k-n(k—2)+2*. In particular we have n(4) < 40 and n(6) < 304, compared
to the best known bounds 2m(4) < 46 and 2m(6) < 360 (see Seymour [12]
and Toft [14]). For odd values of k however the recursion does not give
better upper bounds than the best known bounds for 2m(k) (see Abbott
and Hanson [1}).

2 Results
We start with some simple Lemmas.
Lemma 1. Suppose that a bipartite graph B, . (with a and c vertices in
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the two sides of the bipartition) is not k-choosable and is vertex-critical
with respect to this property. Let the lists of size k assigned to the vertices
in the sides of the bipartition for which B, . is not properly colourable be
the families A and C. If the total number of colours, N, appearing in the
lists A and C is a minimum, then each colour appears in lists on both
sides of the bipartition and further every possible pair of colours appears
together in some lists.

Proof: Let S = U(AUC) and |S| = N. Suppose for example z € UA
but z ¢ UC. The critical property implies that we may assume that any
vertex-deleted subgraph of B, is k-choosable. Thus we may properly
colour a subgraph missing a vertex whose list contains = and then colour
the deleted vertex with colour z to obtain a proper colouring of the graph,
a contradiction. This implies that | U A| = |UC| = N. If some pair
of elements {z,y} fails to appear together on any list, relabel colour y as
colour z. This does not affect the non-colourability of our graph but does
contradict the minimality of N. a

It follows immediately that
Corollary. With a, c, k, and N as in Lemma 1, a+¢ > (5)/(5).

We define a transversal of a set S as a set St such that SNS* # @ for all
SeSs.

Lemma 2. If a bipartite graph B, is not properly colourable from some
list assignment of k-sets to its vertices, and if N is the number of different
colours that appear in those lists, then N > 2k — 1.

Proof: If the lists of the assignment are k-subsets of {1,2,...,2k—2}, then
{1,2,...,k — 1} is a transversal of the lists on one side of the bipartition
and {k,k+1,...,2k — 2} is a transversal of the lists on the other side, so
the graph is properly colourable from this assignment after all. a

To obtain a general lower bound for n(k), depending upon the total
number of colours N, we will relate the families of lists, A and C, to
sets of I-tuples of the set of colours S. However we first establish a useful
equivalence. Let T be the collection of all 2" subsets of S. We construct
a (tripartite) graph G with vertices being the sets belonging to A, C and
T (see Figure 1). Vertices of G belonging to A, C and T respectively, are
independent. An edge is added joining vertices of A and T if and only if
the corresponding sets are disjoint. An edge is added joining vertices of C
and T if and only if the set corresponding to the vertex of C is contained
in the set corresponding to the vertex of T. There are no edges joining any
vertex of A with any vertex of C.

Lemma 3. Suppose that the complete bipartite graph K, . has families
A and C as the lists assigned to vertices in the sides of its bipartition. Let
the graph G be as described above. The following are equivalent:
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Figure 1

i) K, is not properly colourable from the lists A and C
ii) Every transversal of A contains a member of C
iii) Every transversal of C contains a member of A

iv) T has no vertex of degree 0 in G.

Proof: First suppose that every transversal A® of A contains a member of
C, then since any proper colouring uses the colours of a transversal of A
it is easy to see that K, . is not properly colourable. On the other hand if,
for some A*, C; ¢ A* for all j then there exists a proper colouring of K, ¢
— we colour by selecting a colour from A for each A € A and by selecting
a colour from C; \ A* for each C; € C. Hence i) and ii) are equivalent.
Similarly i) and iii) are equivalent.

It now follows that if K, . is properly colourable from the lists A and C
there is a transversal of A not containing any member of C. The subset
of T corresponding to this transversal has degree 0. Conversely, if T has
a vertex of degree 0 the corresponding set is a transversal of A and does
not contain any member of C and K, . is k-choosable. Thus i) and iv) are
equivalent. a

We now restrict ourselves to the l-subsets of S and obtain the following
theorem.

Theorem 1. Suppose that K, . is not k-choosable. Let the lists of size k
assigned to the vertices in the sides of the bipartition for which K, . is not
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properly colourable be the families A and C. If |S|=|U(AUC)|=N 2>
2k -1 and 0 <1< N, then a+ c satisfies

2(%)
7+ (05

where (N;*) =0for1> N —kand (Y F)=0forl <k

Proof: Consider T; = {T|T is an l-subset of S} and the graph G; defined
in an analogous manner to G with T replaced by T; (G; is the subgraph
of G induced by AU CUT,). The degrees satisfy d(4;) = (Y;*) = p and
d(C;) = (5F) = q. Thus if () — ap — cg > 0 there is at least one T of
degree 0 in G;. We may now appeal to Lemma 3 iv). Hence if K, is not
k-choosable we must have that

)(2)()
7))

a+c2>

and similarly

leading to
atc2 ———2(1{)
T+ 05
as required. a

As n(k) is the minimum number of vertices of a bipartite graph G that
is not k-choosable (k > 2), we immediately have

Corollary 1.1. If a bipartite graph is not choosable with lists of size k > 2,

then 2(N)
. 1
n(k) 2 N oTEN R+ (O F

In [7] Erdos considered the problem of finding lower bounds for m(k),
in those cases where the total number of elements N is specified. The
corresponding terminology used in this case is my (k) where again we must
require that N > 2k — 1. We have

Corollary 1.2 (Erdés [7]). For M > k,

- = i
Mo 2 Mae®) 2 5 ()1 (g 2F) =27 T 0+ g
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Proof: By an argument of Erdds, Rubin and Taylor (8] the bound in
Theorem 1 is a lower bound for 2m(k), in fact for 2my(k), thus, if we
replace N by 2M and ! by M, the result follows. O

The bound obtained in Theorem 1 allows us, for fixed N and k, to select
1 in the most opportune manner possible. If we have N =5 and k = 3 then
! =2 in Theorem 1 gives a+c > 20; for N =6 and k =3 thenl = 3 in
Theorem 1 gives a + ¢ > 20; for N = 7 and k = 3, then ! = 3 in Theorem
1 gives a+c > 14; for N = 8 and k = 3, then [ = 4 in Theorem 1 gives a
bound of a + ¢ > 14; for N =9 and k = 3, then l = 4 or 5 in Theorem 1
gives a + ¢ > 12; for N > 10 and k = 3, by the corollary to Lemma 1, we
have that a + ¢ > 15. Thus, since N > 5 when k = 3, Theorem 1 tells us
that n(3) > 12. We can however improve on this by considering those cases
in which Theorem 1 fails to give a bound of at least 14. In fact we have

Theorem 2. Suppose that K, . is not 3-choosable then a + ¢ > n(3) =
14 = 2m(3).

Proof: Consider how, in Theorem 1, one might arrive at equality in the
case N=9,k=3,1l=4and a+c =12 First, 15a + 6¢c > 126 and
6a+15¢ > 126 imply that a = ¢ = 6. The 6 vertices of A have degree 15 in
G, and, since they cannot all correspond to disjoint triples, at least two of
them cover at most 5 of the 9 colours, and hence have a common neighbour
in T;. Thus the set of neighbours, N(A), of vertices of A in G; satisfies
[N(A)| < 6(15) — 1 = 89. The 6 vertices of C have degree 6 in Gy, hence
[N(C)| < 36. Therefore |[T;| = 126 > |[N(A)|+ |N(C)| and, by Lemma 3
iv), K, c is properly colourable from the lists A and C, a contradiction.
In the case where N =9, k = 3, l = 4 and a + ¢ + 13, we may assume
that @ = 6 and ¢ = 7. We consider a graph, H = Kg, whose vertices
represent A;, Az, ..., As and whose edges are weighted (coloured) 0, 1 or
5 depending upon the size of the intersection of the sets corresponding to
their end points being 0, 1 or 2 respectively (the 0, 1 and 5 are the sizes
of the intersections of the neighbourhoods of the corresponding vertices
in G;). Suppose H contains a triangle of weight 0, say on the vertices
Ay, As and As. Then none of Ay, As and Ag can be disjoint from A,
Az and Az — they must meet each in one place or one in at least two
places. Thus the neighbourhood of each of A4, As and Ag overlaps the
combined neighbourhood of A;, A2 and As in at least 3 places. That is
IN(A)| € IN(A1)UN(A2)U---UN(Ag)| < 3(15)+3(12) = 81. This together
with the at most 42 neighbours of C in G gives us the same contradiction
as before. Suppose then that H contains a triangle of weight 1. A similar
analysis gives [N(A)| < 3(15) —1+3(13) = 83 and again we are done. Now
assume that all triangles in H have weight > 1 and assume further that H
contains an edge of weight 0. This forces |[N(A)| < 2(15) +4(13) = 82 and
again we are finished. Finally, assume that all edges of H have weight > 0.
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If there is at least one edge of weight 5, then |[N(A)| < 15+ 104-4(14) = 81.
Otherwise it is easy to see that there are three triples not sharing a common
element. In this case |N(A)| < 15+ 14 + 4(13) = 81 and we are done. O

The above estimates of | N(A)| use a rudimentary version of the principle
of inclusion and exclusion. This principle implies that

INCA) < DD IN(A)I=D IN(ANN(A)1+ 3~ IN(AINN(A;)NN(AL)l-
£

i<j i<j<k

In the above, |N(A;)| = 15 for all 6 values of i, thus the first term on the
right hand side is 80. The second term subtracts the total sum of all edge
weights of H (the weights being 0, 1 or 5 as explained above). The third
term gives a positive contribution only for triangles of H with edge weights
5, 1, 1 (a contribution of 0 or 1), 5, 5, 1 (a contribution of 1) and 5, 5, 5 (a
contribution of 1 or 5).

At this juncture we have that n(3) > 14. As pointed out by Erdds,
Rubin and Taylor [8] the Fano plane F (see Figure 2) shows that it is
possible to achieve n(3) = 14 by taking as lists two copies of the sets of
vertices corresponding to the lines of F, namely {1, 2, 3}, {1,4,7}, {1,5,6},
{2,4,6}, {2,5,7}, {3,4,5} and {3,6,7}.

1

Figure 2

If one carefully analyzes the possible families of 14 sets that make K, .
not 3-choosable we believe it can be shown that the configuration resulting
in the equality n(3) = 14 is unique — two copies of the sets correspond-
ing to lines of the Fano plane. The required analysis to prove this is not
particularly informative and we have not carried it through rigorously for
the cases (|N],|A},|C]) = (9,6,8) and (9,7,7). Some of the interesting
configurations that need to be looked at include the affine plane of order 3
— the (9,12,4,3,1) design — with possible repetition of some edges, and
the following 3-uniform hypergraph (again with a repeated edge allowed):
{l’ 21 3}’ {lv 4’ 7}: {1, 5' 6}) {21 4’ 6}$ {2) 5» 8}’ {3n 4, 5}! {3: 6? 9}1 {1' 8n 9},
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{4,8,9}, {2,7,9}, {5,7,9}, {3,7,8} and {6,7,8}. This hypergraph, which
is based on the Fano plane, is not 3-critical but has as one critical subgraph
the following hypergraph: {1,2,3}, {1,4,7}, {1,5,6}, {2,4,6}, {2,5,8},
{3,4,5}, {3,6,9}, {1,8,9}, {5,7,9},and {3,7,8}.

We now turn our attention to the question of constructing bipartite
graphs, K, ., that are not k-choosable. Our construction will lead to a
general upper bound of n(k) < k- n(k — 2) + 2* which indicates that the
upper bound of n(k) < 2m(k) is too large in some cases.

Theorem 8. For all k > 3, n(k) < k- n(k —2) + 2%.

Proof: We first consider the case when k is even. Let G; be the hy-
pergraph with edge set {1,2}, {3,4},...,{2k — 1,2k}. Let K, be a non-
(k —2)-choosable bipartite graph on n(k — 2) vertices with lists of size k-2
(the families A’ and C') disjoint from {1,2,...,2k}. Form the k-uniform
hypergraph G2 with edges P; U A; where P; € G; and A; € A'. Form the
k-uniform hypergraph Gs with edges P; U C; where P; € G, and Cj € C'.
Form the k-uniform hypergraph G4 having 2*~! edges where each edge of
G, is a transversal of G; and the number of odd elements in any edge
of G4 is odd. Form the k-uniform hypergraph Gz with 2¥~! edges where
each edge of Gg is a transversal of G; and the number of odd elements in
any edge of Gg is even. Finally form the (non-k-choosable) bipartite graph
K with list sets A and C as follows: the sets belonging to A are those
belonging to G2 and Gy; the sets belonging to C are those belonging to
G3 and Gs.

To see that K is not k-choosable assume that a proper colouring L from
the list sets A and C exists, and let L and L¢ be, respectively, the colours
it uses from A and C (clearly L and L¢ are disjoint). Suppose first that
LA contains all the elements of an edge of G, say {1,2}. If L4 is also a
transversal of A’ then it contains some C; € C’ (by Lemma 3) and hence
an edge of Gg3, a contradiction. Thus L4 has empty intersection with some
A; € A’ This implies that L4 is a transversal of G, and since it contains
{1,2} this in turn forces L to contain a member of Gg, a contradiction.
We may then assume that La does not contain all the elements of any
edge of G;. Suppose next that La N {1,2} = @. Then it is a transversal
of A’ and, by Lemma 3, contains some C; € C’ and Lc must then be
a transversal of G;. If Lo contains an edge of G; then it contains all
the elements of an edge of G4, a contradiction. If L contains exactly &k
members of {1,2,...,2k} and an odd number of odds then again it contains
an edge of G4, a contradiction. Similarly, if Lo contains exactly & members
of {1,2,...,2k} and an even number of odds, then since k is even, it misses
a member of Gz, again a contradiction. Finally the remaining possibility is
that both L and L meet every edge of G in exactly one place. Then the
parity of k forces L and L¢ to both have an odd number of odd elements
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or to both have an even number of odd elements. Hence either L¢ contains
an edge of G4 or L4 contains an edge of Gg, a contradiction.

In the case where k is odd we replace the sets of Gg by those of G4. To
see that K is not k-choosable the proof is similar to the case of k even except
in the final case where we have that both L5 and L meet every edge of G,
in exactly one place. Then [LAN{1,2,...,2k}| =|LcNn{1,2,...,2k}| =k
and one of L and L¢ contains an odd number of odds, and thus an edge
of G4, a contradiction. a

The idea behind the construction in the proof of Theorem 3 is due to
Abbott and Hanson [1]. Since n(1) = 2, Theorem 3 gives n(3) < 14, and
indeed the construction produces, as A and C, two copies of the Fano plane
F. Since n(2) = 6, Theorem 3 gives

Corollary 38.1. n(4) < 40 and n(6) < 304.

The results in Corollary 3.1 are better than those resulting from n(k) <
2m(k) using the best known estimates for m(k) mentioned earlier. If we
compare the statement of the Theorem with best known estimates in the
case k odd, we have no improvement. What is interesting-is, for example,
that either m(4) is at most 20 or n(4) < 2m(4). The best guess for a lower
bound for m(4) is 19 suggested by Aizely and Selfridge [3] but the details
have never been published. The best known upper bound for mm(4) has been
23 for more than 20 years and it seems more likely to be the correct value.

38 Conclusion

Some obvious questions arise from our investigation beyond the basic ques-
tion of showing n(k) < 2m(k) for k¥ > 3. For instance, in the exam-
ples of Theorem 3 of non-choosable bipartite graphs, the sets in A are
transversals of the family C and conversely. Must this always the case
when [A] + |C| = n(k)?
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