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ABSTRACT. A cover of a finite set N is a collection of subsets of
N whose union is N. We determine the number of such covers
whoee blocks all have distinct sizes. The cases of unordered and
ordered blocks are each considered.

1 Imtroduction

Any representation of a finite set N as N = Ny U N ---U N, with N;j#¢
and N; # Nj for ¢ # j is called a cover of N. The sets N; are called
the blocks of the cover. If V(n) denotes the number of covers of N where
IN| = n, and V(0) = 1 then it is well known (see Comtet [C, p165] or

[HW]) that V(n) satisfies

n
3 (:) V(k) =221,
k=0
Thus by binomial inversion,
= (n —kg2%—1
Vin) =) (k) (-1)"~*2
k=0
=22"-114+0@2" 2" ")) as n — 0.
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Suppose now that the order of the subsets in a cover of N is to be taken
into account. If X(n) denotes the number of such ordered covers with

X(0) =1, then ot
(- E

k=1 m=1

This holds since both sides of the equation give the number of ordered
unions NjUNy .- :UN,, CN,1<m<2n-1.

The right hand side counts these according to the number m of blocks in
the union while the left hand side counts these according to subsets M C N
with NyU---UNp = M and |M| = k. Denote the sum £, (*,-")m! by
z(n) so that

n

M HECEEC)

k=0
and again by binomial inversion,

X(n)= Z": (:) (1) *z(k).

k=0
Now
2"-1 2" -1 1
a(n) = (2" - 1)'"§m =@ -1 j; 3
~e(2" — 1)L (1.2)
Also since
§ (") (~1)"*z(k)| < 2"z(n - 1)
k=0 k -
we deduce that
X(n) = z(n)(1 + 02" ™" ")) as n — oo, (1.3)

where we have used Stirling’s formula to estimate z(n — 1)/z(n).

The main aim of this paper is to determine the number of covers of N
corresponding to each of the cases above under the additional restriction
that the sizes of the blocks be distinct. This problem is the direct analog
of the problem considered in [KORSW)] of determining the number of par-
titions of an n element set with distinct block sizes. In a partition of a set
we require that blocks be pairwise disjoint. Similar problems within the
content of cycles of permutations were solved by Greene and Knuth [GK]
and concerning irreducible factors of polynomials over a finite field by the
present authors in [KW].
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2 Unordered Coverings with distinct block sizes

Let W(n) denote the numbers of covers of N with the added restriction
that the sizes of the blocks be distinct and set W(0) = 1. Then we can
write ~ .
W(n)=W(n)+ W(n)

where W (n) denotes the number of unordered covers of N with distinct
block sizes where N occurs as one of the blocks and W(n) denotes the
remaining cases where N does not occur as one of the blocks. We introduce
W(n) since as shown below there is a formula for calculating this. Firstly
since the set N can be adjoined to any cover counted in W(n) it follows
that W(n) < W (n) and hence

W(n) < W(n) < 2W(n). (2.1)

We now derive a formula for W(n): Let us denote the sizes of the blocks
(excluding N itself) in a cover belonging to W(n) by m; < ma--- < my,
where 1 < k < n —1. There are () possible choices of-elements for the

block of size my, 1 < i < kand 5o (n )(,) --- (o) covers with these block
sizes. Summing over all possibilities for the sizes of the blocks leads to the
formula

woenE £ () e

k=11<m;<mgz--<mp<n 1

where the term 1 counts the cover by the set N alone. Next we divide up
the covers contributing to W(n) into the following classes:

(i) the set N itself,

(ii) the set of covers contributing to W(n) with N adjoined to each such
cover,

(iii) these cover with distinct block sizes whose union is a strict subset
of N, if the block N itself is disregarded. If this union consists of m
elements from N then we have () choices for the elements and W (m)
covers corresponding to each such choice of elements. It follows from
the above that

W =14+ W+ 5 () Wom

m=1
n-1
=Wrn)+ z=:0 (;) W(m) (using W(0) =1).
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Adding W’(n) to both sides gives for n > 1,

oW(n) = mé (";) W(m) (2.3)
and by binomial inversion we obtain the formula
W(n)=2 (E (T’;) (-1)“-'"W(m)) + (1)~ (24)

=1

At this stage we obtain an asymptotic estimate for W(n) in terms of the
largest term in the sum of equation (2.2). Let P(n) denote the number of
covers of N with n blocks of distinct size. Then

Plm) = H(J) T

By (2.2) forn > 1,

W(n) _l+2

P( ) r=11<51 < <jrSn—-1 ) (r)

Let us denote the inner sum above by S,(n). Then for r > 3,

Sr(n) < (n)
where
Me(n): = 15j1<"-nlir.‘l!rsﬂ—l (Jnl) o (;:)
2
= (ii (:)) a,(n)
where

L 1 if r even
ar(n): = () ifrodd,

(by the unimodality of the binomial coefficient).
Put s: = [§]. Then since s > 1 for r 2 3,

}jl C) zn(';)"1 e (n;])'—l

196



Since (%) < n” we get

n’ nt—2e
S0 S D e G e

One has
_ {r/2 if r even

-’L? if r odd,
hence for r even, r > 2

1
Se(n) < .
'( )— (%)r-—?

while for r odd, r > 3,

n 1
Sy(n) < (25_1_),_3 (12; = (1;_1)9-—2 .

Now
n~-1

Z Sr(n) = Si(n) + Sa(n) + Z Sr(n).
We assume that n 2 5, Then

n-1

4
ZS (n) < Z (n—l)r-z ST

Also,
so=Egysiri=o(z)
and
1
Sa(n) =
= 2 OO
= 1
B ,lf’i"zfl‘:_’ () &) ¥ dcz;n—z GG
n n2
“U()
Thus

W(n) = P(n) (1 +0 (%)) . (2.5)
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We now estimate log P(n) using the following sharper version of Stirling’s
formula, (see e.g. Wilf [W, p121])

1 +R(n),n—00 (2.6)

logn! =nlogn — n+—logn+c1+12

where ¢; = § log2r and R(n) = O(3s).

Put o
c: = Z R(m).
m=1
Then n
1
Y R(m) =c2+o(-?) .
m=1 w
Also, let
n
An): = Zlogj!, B(n): = Zjlogj.
j=1
Firstly
n n n
B(n) = Zlog j Z 1=Y"Y logj=>_(logn! —log(i - 1)!)
i=1 i=1 j=1 i=1
n-1
=nlogn! — Zlogj! = (n+1)logn! — A(n).
i=1
Then

log P(n) = (n+ 1)logn! — 2A(n)
= B(n) — A(n). (2.7)

By (2.6) we have

n

1 .
Am) =Y (.1 logj —j+ —log: et et R(J))

i=1

= B(n) — -l-n(n +1)+ 1 logn! +cn

1 1
+5 <logn+7+0( )) +c2+o(?)

= B(n) - 5"(“"‘1)
1 1
+ 3 (nlogn-n+ Elogn+c1)

+cm+—-(logn+'r)+c‘2+0( )
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Therefore

A(n)= B(u)——n +§nlogn+(c1—1)n+-§logn c3+0( )28)

where v is Euler’s constant and

1
a: ——(§cl+12+02)

From (2.7) and (2.8) we deduce that

P(n) = E(n) (1 +0 (%)) (2.9)

where

E(n): =exp (%n2 - %nlogn+ (l-c)n- -:l;logn+ cs) . (2.10)

We now compute cg:

By using the Euler-Maclaurin summation formula, Wilf [W, p126] found
the constant term in the asymptotic expansion of B(n) to be

log 21r logk
G = ,,2 Z ¥

12 12

Since the constant term on the right hand side of
B(n) =(n+1)logn! — A(n)

is log27 + & + c3 — ¢4 by (2.8) we deduce that

1

B=2-C1- 75
z_log21r_l 1 ilogk
6 3 12w g2

_y log2r 1 ('(2)

6 3 1262’

where {(s) denotes the Riemann zeta function.

Next by (2.4), _
W(n) =2W(n)(1 + p(n))
where ____(
2Wn-1)
lp(n)| < 2 W)
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From (2.5) we see

W%'(;)l) -5 (40 (3))

2632+ (3)

E(g(;)l) = exp(—n + O(logn)).

Now by (2.10),

Thus 1
le(n)] < 2" exp(—n + O(logn)) < —.

We conclude that
W(n) = 2E(n) (1 +0 ('};)) @.11)

where E(n) is given by (2.10).
Finally we note that from (2.2), for n 2> 1,

oW (n) = "i[l (1 + (;)) (2.12)
and so by (2.4),
W(n) = mz: (;:) (-1)"-"'3.:]""1l (1 + ('J")) +(=1)".

By using (2.12) in place of (2.2) we obtain an alternative and shorter way
to derive (2.5): By (2 12),

W(n)/P(n) = ﬁ (1 + (;)—1) >1

m=1

Wn)/P(n) < (1 + %)2 (1 + (’2‘)_1)“

and



However, the reason for including the original method is that this same
approach will be applied to estimate a sum like (2.2) without a simple closed
form, that arises in section 3 on ordered covers.

3 Ordered Coverings with Distinct Block Sizes

Let Y(n) be the number of ordered covers of N with the restriction that

the sizes of the blocks be distinct, Y(0) = 1. As before we write
Y(n)=Y(n)+ ¥(n)

where ?(n) is the number of ordered covers of N with distinct block sizes
where N occurs as one of the blocks and Y (n) counts the remaining cases
where N does not occur as a block. In addition the above variables with
subscript r denote covers with precisely r blocks (excluding the block N

itself in the case of f;,(n)). We begin as in the previous section by noting
the inequalities,

Y(n) <Y(n) < 2¥(n). (3.1)

Now let 1 < r < n. Since there are r + 1 positions in which the block N
can be added to a cover with r blocks that excludes N we have

Vi(n) = (r + 1)Ts(m) + Z( )(r+ 1)¥s(n)
From this

n-1 Y N) n—1n-1
> L0 v+ 3 3 (2) v

r=1 r=1 m=r

Adding Y (n) to each side leads to

Y(n)+ Z Y(“) Z (;) Y (m). (3.2)
m=0

If we denote the left hand side of (3.2) by Z(n) then binomial inversion
gives the formula

n

Y(r) =Y (Z)(—l)"-'“Z(m), (33)

m=0
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where we define Z(0) = 1.

. A%aifn v;e have an explicit formula for ¥ (n) = Z:;(: ¥, () since Yo(n) =
and for1 <r <n,

V(n)= 3 (n’:l) (7:2) ("’;) r+1).  (34)

1€my <my<m,.<n

Let Q(n) denote the number of ordered covers of N with n blocks of distinct
size so that

o (n
Qn)= n!g (J) = nlP(n). (3.5)

There does not appear to be a compact expression like (2.12) for Z(n),
but we can estimate the sums (3.4) as we did with (2.2) to show that

Z(n) = Q(n) (1 +0 G))

Y(n) = Z(n) (1 +0 (%) .
1

)
Y (n) = n!P(n) (1 +0 (;;))

= SnlW(n) (1 +0 (%)) : (3.6)

Remark From (3.6) and (2.7) we see that
log W(n) ~ log Y (n).
On the other hand the estimates of the introduction show that
log X(n) ~ nlog V(n).

as well as

From this and (2.9) we deduce that

In either case, however, the proportion of covers of N with distinct block
sizes is asymptotically zero. In particular we deduce for both the ordered
and unordered cases: Almost all covers of a finite set with n elements have
two distinct blocks of the same size.

In fact there is a simple direct proof of this. To every unordered cover
of N with distinct block sizes associate those covers consisting of the same
blocks and an additional two singleton blocks. There are either (3) or (*37)
such associated covers depending on whether or not the original cover had a
singleton block. This implies that the proportion of cover of N with distinct
block sizes is O (Jy). In the ordered case, the ordering of the blocks only
increases the number of associated covers with at least two singleton blocks.
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