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Abstract

This paper examines the numbers of lattice paths of length n from the
origin to integer points along the line (a,b,¢,d) + t(1,—1,1,~1). These
numbers form a sequence which this paper shows is log concave, and for
sufficiently large values of n, the location of the maximum of this sequence
is shown. This paper also shows unimodality of such sequences for other
lines provided that n is sufficiently large.

Introduction

Consider the d-dimensional integer lattice. One can form a walk on it
by going at each step one unit in either direction parallel to an axis. Simple
combinatorial expressions are known for the number of walks of length n
from the origin to a given point if the dimension is 1 or 2. In 4 dimensions,
a simple combinatorial expression exists for the number of walks of length
n from the origin to the line (a,b,¢,d) + t(1,-1,1,—1), but the known
expressions for the number of walks of length n from the origin to a given
point in the 4-dimensional lattice are not as simple. See [2] for details. We
nonetheless wish to get some idea of the properties this number has.

A sequence zg, 2, ..., &, is said to be unimodal if zg < z; < ... <
Ty > iyl > ... 2 z, for some i € {0,...,n}. This sequence is said to
be log concave if #? > z;41z;-1 for all i € {1,...,n— 1}. Note that all
log concave sequences with no internal zeros and no negative numbers are
unimodal. For a survey of some log concave and unimodal sequences, see
[1] or [4]. Along a line in the integer lattice, one can define a sequence by
letting the elements of the sequence be the number of walks of length n
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to integer points (2, ..., %) such that Y i~ |z;| < nand } -, || = n
(mod 2). The questions we consider in this paper involve the log concavity
and unimodality of such sequences.

It can be readily shown that such sequences are log concave in dimen-
sions 1 and 2. In this paper, we show log concavity for such sequences
formed by the line (a,b,¢,d) + t(1,—1,1,—1). We also consider where the
maximum is along the line via a method which can be generalized to show
the unimodality for large enough n of such sequences along other lines.

Proof of Log Concavity for Specific 4-Dimensional Line

Let P2(p) be the number of walks of length n from the origin to the
point p in the d-dimensional lattice. In this section, we shall show
Theorem 1: Suppose a, b, ¢, and d are integers such that a+b+c+d=n
(mod 2). Let g(t) = Pi((a,b,c,d)+t(1,-1,1,-1)). Then the sequence
v 9(—2), 9(-1), 9(0), g(1), 9(2), ... is log concave.

Note that this theorem shows the unimodality of the sequence consist-
ing of the number of paths of length n from the origin to points on the line
(a,b,¢,d) +t(1,—1,1,—1) since this sequence has no internal zeros. Also
note that it suffices to prove that g(0)% > g(1)g(-1).

The proof of this theorem will involve several lemmas. The first lemma
provides an expression for P2((a,b,c,d)).

Lemma 1:

Pi((a,be,d) = ) (:1) ((n1+zl+b)/2) ((n1+2‘_ b)/2)

nit+n2=n

((n2 + :2+ d)/2) ((n2 + 22— d) /2)

where the binomial coefficient (}) is defined to be 0 if k ¢ {0,...,n}.

Proof: There are P2 ((a,b))P2,((c,d)) lattice paths of length n from
the origin to the point (a,b,¢c,d) such that n, given steps are parallel to
one of the first 2 axes and the other steps are parallel to one of the other
axes. There are, of course, (:1) ways to choose the nj given steps.

Furthermore, [2] shows that

Pi((a,b)) = ((n + an+ b)/z) ((n + an- b)/2) '

Summing over all possible values of n, completes the lemma. |
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Let z and y be non-negative integers less than or equal to (n — (e +
b+ c+d))/2. Let

(z,9,4) =
n a+b+2z\fa+b+22\ fc+d+2Z\ [c+d+2E
a+b+ 2z a+b+z atz c+d+ 2 c+2
( n )(a+b+2y>(a+b+2y)(c+d+2;ﬁ)<c+d+2g)
a+b+2y/\a+b+y aty c+d+73 c+y
where a+b+c+d+22+2f=nanda+b+c+d+2y+2§=mn. Let
(xiy’—)=
n a+b+2z\fa+b+22\ fe+d+28\ [c+d+ 2%
a+b+2x/\a+b+z at+z+1 c+d+ 7 c+E+1
( n )<a+b+2y)<a+b+2y)(c+d+2g)<c+d+237)
a+b+2y/\a+b+y a+y-1 c+d+ 9 c+y-1)’
and let (:L‘,y) = (x)yx +) - (zay’ _)‘
Observe that

(P:((a) b,c, d))2
- PHa+1,b—1,c+1,d=1))PX(a—1,b+1,c—1,d+1)))
(n—a-b—c-d)/2(n-a—b—c—d)/2

= > > (@

=0 y=0

Thus we would like to show Y (z,y) > 0. Unfortunately, (z, y) is sometimes
less than 0. In addition, computer number-crunching has demonstrated
that (z,y) + (y, ) may also be negative.

The strategy we employ does involve matching each negative (z,y)
term with a unique positive term. ‘Consider the diagram in Figure 1. All
terms represented on the diagonal and the lines just off the diagonal can
be shown to be nonnegative. Negative terms below these lines are matched
with unique positive terms in the upper triangle in Figure 2 while negative
terms above the lines are matched with unique positive terms in the lower
triangle in Figure 3. The 2 triangles intersect along the diagonal, but we
shall show that at most one term is matched to a given term along the
diagonal. Furthermore we shall show that each negative term has been
matched with a positive term at least as large in absolute value as the
negative term. Figure 4 contains output from a Maple run which gives the
values of (z,y) for a specific example.

The following 3 lemmas provide this alternate method and together
prove Theorem 1.
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Figure 1 Figure 2 Figure 3
Lemma 2: If |z — y| <1, then (z,y) > 0.
Lemma 3: If (z,y) <0, then (y,z) > 0.
Lemma 4: If (z,y) < 0, then (z,y)+(y+ 1,z —-1) > 0 ifz > y and
(z9)+(y-1z+1)20fz<y.

Theorem 1 follows from these lemmas by noting that each negative
term in the sum can be matched up with a unique positive term such that
the sum of the two terms is positive. Note that Lemma 3 is required to
ensure that positive terms with £ = y are not matched up with 2 separate
negative terms. For example, in Figure 4, (3,3) is matched up with a
negative term (2,4) but the term (4, 2) is not negative (and so does not
have to be matched with (3,3) as well).

Proof of Lemma 2: Let z and y be given. Note that (z,y) > 0 if

(a+b+2:c)(a+b+2y)_(a+b+2a: a+b+2y >0 (¥
a+c aty a+z+1 a+y—-1/~
and

c+d+22\ fc+d+ 27 c+d+28\ fce+d+27
= - - - . >0.  (#%)
c+z c+y c+Z2+1 c+y—1
Ifanyofb+2z—1,a+z+1,b+y+1,and a+y—1 is negative, then (*)
clearly holds. Otherwise, since

a+b+2z a+b+2y)_(a+b+2z)(a+b+2y

a+z at+y a+z+1 aty-—1
(a+b+2:c)(a+b+2y)( (b+z) (a+y) )
= 1- ,

a+z aty (a+z+1)(b+y+1)

(*) follows from the fact that 0 < b+z < b+y+1land0<a+y<atz+1.
(**) can be shown likewise. |
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> print(p);

proc(n,a,b,c,d)
P = 1/2*n-1/2%*a-1/2%b-1/2%c-1/2+d;
M := array(0 .. p,0 .. p):
N := array(0 .. 2+p);
for i from 0 to 2*p do N[i] := 0 od;
for i from 0 to p do
for j from 0 to p do
M[i,j] := binomial(n,a+b+2*i)*binomial (a+b+2*i,a+b+i)*
binomial (a+b+2*i, a+i)*binomial (c+d+2*p-2*i, c+d+p-i)*
binomial(c+d+2'p-2'i,c*p—i)'binomial(n,a+b+2‘j)‘
binomial(a+b+2*j,a+b+j) *binomial (a+b+2%j,a+j)*
binomial(c+d+2'p-2'j,c+d*p-j)'binomial(c+d+2‘p-2‘j.c4p-j)-
binomial (n, a+b+2*i) *binomial (a+b+2*§, a+b+i)*
binomial(aob+2'i,a+i+1)*binomial(c+d+2'p-2'i.c+d+p-i)'
binomial(cfd#Z'p-2'i,c+p-i+1)'binomial(n,a*b«Z'j)'
binomial (a+b+2*j, a+b+j) *binomial (a+b+2%j, a+j-1)*
binomial(c+d+2'p-2'j,c+d+p-j)'binomial(c#d*Z'p-Z'j,c+p-j-1):
e := N[i+j}:
N(i+j] := e+M[i, )]
od
od;
print (M) ;
print (N)
end

> P(20,4,6,3,-1);

array(0 .. 4,0 .. 4,,

(0, 0) = 525774431868112627200000
(0, 1) = 803000950489481103360000
(0, 2) = 233013668668822641600000
(0, 3) = -31561639777364336640000
(0, 4) - -8140680189828426240000
(1, 0) = 1223620495983971205120000
(1, 1) = 2055682433253071624601600
(1, 2) = 795353322389581283328000
(1, 3) = 15538038044240904192000
(1, 4) = -11577856269978206208000
(2, 0) = 754520450927616172800000
(2, 1) ~ 1363462838382139342848000
(2, 2) = 620260194218437412640000
(2, 3) = 55232869610387589120000
(2, 4) = -3359645792627604480000
(3, 0) -~ 121390922220632064000000
(3, 1) = 233070570663613562880000
(3, 2) = 118356149165116262400000
(3, 3) = 15414720281985024000000
(3, 4y = 0

(4, 0) = 0

(4, 1) - 0

4, 2) - 0

(4, 3) = 0

4, ) = 0

1
...output continues...

Figure 4 - Maple output when (a,b,c,d)=(4,6,3,-1) and n=20.
The array contains the valuves of (x,y).
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Proof of Lemma 3: Observe that

__(b+=z) (a+y) (d+3) (c+17))
(a+z+1)(b+y+1)(c+z+1)(d+§+1)

(£9) = (2,1, 4) (1

while

(y,r)=(x,y,+)(1— (b+y) (at+z) (d+3) (c+5:))

@ty +D)+tz+D)(c+i+)(d+z+1)

Note that since (z,y) < 0 and hence (z,y,—) # 0, all of the following
are non-negative: b+z—1,a+y—1,d+i-1,c+j-1,a+z+1,b+y+1,
c+Z+1,andd+§+1. Ifanyoneofb+y+1,a+z+1,d+3+1,and
¢+ &+ 1 is zero, then (y,z,—) = 0 and the lemma holds. Otherwise, since

(b+z) (aty) (d+%F) (e+d) _,
(a+z+1)(b+y+1)(c+E+1)(d+F+1) " "

then
(e+z+1)(b+y+1)(c+i+1)(d+5+1)

b3z ety @+  (c+d)

Since
(b+y) (a+2) (d+79) (e + %)

(a+y+1)(b+z+1)(c+g+1)(d+2+1)
@+e+1)(b+y+1)(c+E+1)(d+F+1)
(b+=z) (a+y) (d+8%) (c+ %)

the previous inequality implies (y, z) > 0 and the lemma follows. |
Proof of Lemma 4: First let’s consider the case where £ > y. Pro-
vided that no divisors are 0, we can write

(zy)+(y+1le-1)=

o) (G238 1) 52 (- =)

Note that (z,y,—) # 0 since (z,y) < 0. To conclude this expression is
well-defined, we need to also show the following proposition.
Proposition 1: (y+ 1,z — 1,+) > 0 in this case.

Since (z,y,—) > 0, the following are all non-negative: a + b+ 2z,
c+d+2% a+b+2y, c+d+2j,a+b+z,z,a+z+1,0+z—1,c+d+3,
Fc+3+1,d+z2-1,a+b+2y, c+d+2§,a+b+y, y,a+y—1,b+y+1,
ct+d+y, g, c+y—1,andd+gy+1.
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Observe that

a+b+4+2y+2\/a+b+2y+2

WHle-14)= (a+b+2y+2>(a+b+y+l)( a+y+1 )
c+d+2§-2\fc+d+2§-2
(L) )

a+b+4+ 2z~ a+b+2x-2

(a+b+2x— )(a+b+x—1)( a+z-—1 )
c+d+22+2\ fe+d+2z+2
(c+d+i+1)( c+i+1 )

Since z > y and hence z > y+ 1 and § > Z + 1, we may conclude that the
following are also non-negative: a+b6+2r—2, a+b+z—1,z~1,a+z -1,
c+d+g—1,d+§—-1,§—1, and ¢+ d + 2y — 2. Thus all the binomial
coefficients in (y + 1,z — 1, +) are non-zero and hence (y+1,z—1,+) > 0.

To continue the proof of Lemma 4, we shall show
Proposition 2:

(z1y)+)_1| _(y+l,$—l,_)
(.’L‘,y,—) - (y+1,l’—1,+)

Observe that implicit in this proposition is the fact that (y + 1,z —
1,-)<(y+1,z—1,+) and hence (y+ 1,z - 1) > 0.

Proof of Proposition 2: This proof is quite straightforward. Observe
that

(z.y4) _(a+z+)(b+y+)(c+E+1)(d+g+1)
(z,y,-) (b+2) (a+y) (d+3E) (c+9)

and

(y+lz—1,-) (a+z-1)(b+y+1)(c+E+1)(d+§-1)
(y+Lz—1,+) (b+z) (a+y+2)(d+2+2) (c+§)

Note that all terms are non-negative and that inequality follows by a term
by term comparison. [ |
The following proposition completes the proof in the case that z > y.
Proposition 3:
(y+ Lz - 17+) 2 (z,y,—).
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Proof: Observe that

(y+l,z-1,4+)

(:c,y,—) -
(a+b+z)z(a+z)a+tz+1)(a+b+2y+1)(a+b+2y+2)
(a+b+2z—1)(a+b+2z)(a+y)a+y+1)(a+b+y+1)(y+1)
(c+d+NFd+F)(d+F+1)(c+d+2E+1)(c+d+2E+2)
(c+d+2i—1)(c+d+29)(d+&)(d+E+1)(c+d+E+1)(E+1)

Observe that

(a+b+z)z(a+z)atz+1)a+b+2y+1)(a+b+2y+2)
(a+b+2z—-1)(a+b+22)a+y)a+y+1)(a+b+y+1)(y+1)
_ (a+b+a)z(a+b+2y+2)(at+b+2y+2)
Ta+b+2z—1)(a+b+2z)(a+b+y+1)(y+1)
(a+z)a+b+2y+1)(a+z+1)
(a+v)(a+b+2y+2)(a+y+1)

Since z > y and the terms are positive, it is clear that (a+z+1)/(a+
y+ 1) > 1. Furthermore,

(a+z)(a+b+2y+1) (a+z)/(aty)
(e+v)a+b+2y+2) (a+b+2y+2)/(a+b+2y+1)
__1+(=z-y/la+y)
1+ (1/(a+b+2y+1))
S 1+(1/(a+y))
“1+(/(a+b+2y+ 1))

Because b+ y+ 1 > 0, we may conclude that a+y < a+b+2y+ 1. Since
a+y > 0, we may conclude the above fraction is at least 1.
Now let’s look at the first fraction.

(a+b+z)e(a+b+2y+2)(a+b+2y+2)
(a+b+2z—1)(a+b+2z)(a+b+y+1)(y+1)

S (a+b+z)x (a+b+2y+2)a+b+2y+2)
= (a+b+2z)(a+b+2z) (a+b+y+1)(y+1)
_ @)
fly+1)
where (w+ (a+))
w a w
)= Gor @r oy
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The first fraction can be shown to be greater than 1 by Proposition 4;
this proposition will complete the proof of Proposition 3.
Proposition 4: If > y+ 1 and a + b+ y and y are non-negative, then

f(®) 2 fly+1).
Proof: We can rewrite f(z) as follows.
f(z)
_ (=z+(1/2)(a+8)) +(1/2)(a + b))((z + (1/2)(a + b)) — (1/2)(a + b))
2%(z + (1/2)(a+b))?
_1 (1/2)(a +b) __(1/2)(a+b)
=3 (s coeem) (- i)
- l( __((/2)(a+b))* ) '
4 (z+(1/2)(a+b))2/)"
Likewise

_1 ((1/2)(a + b))
fly+1) =7 (1 T+ D)+ (1/2)(a+ b))2) '

Since 0 < (y+1)+(1/2)(a+b) < z+(1/2)(a+b), it follows that f(y+1) <
f(=z). N

The case where z < y can be proved from the case > y by observing
that (z,y) along the line (a,b,¢,d) + t(1,-1,1, 1) is the same as (y,z)
along the line (b,a,d,c)+¢(1,-1,1,~1). [ ]

Location of the Maximum

At what value of ¢ is the maximum of P}((a,b,¢c,d)+¢(1,-1,1,~1))?
Computer number-crunching shows that for certain lines this point may
vary depending on n. As n increases, the point where the maximum occurs
approaches a certain location which is described in the following theorem.
Theorem 2: The mazimum of P((a,b,c,d)+1(1,-1,1,-1)) occurs at an
integer value of t such that (a+1t)— (b—1t)+ (c+1t)— (d —1t) is as close to
0 as possible provided that n is sufficiently large.

Proof: Let us examine the expression

Pi((a,b,¢,d))=>" (,:) (%(nl Zla + 1,)) (%(nl :la - b))

(%(nz :26 + d)) (%(nz :20 - d)) '

For what range of n; can we find the main portion of the sum? For large
enough n, we shall find that the sum is concentrated around n; = n/2.
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Let

t(n,n1,a,b,c,d) =

(:1) (%(nl -T-la + b)) (%(nl ila - b)) (%("2 :20 + d)) (%(nz -1:-2c - d))

where no = n — n;. Note that

t(n,n1 + 2,a,b,¢,d)
t(n,n1,a,b,¢,d)
_ nz('ng - 1) (n1 + 2)(1‘11 + 1)
T (42 + 1) (3(m+a+b)+1)(F(m—a-b)+1)
(n1+2)(n1 +1)
(i+a-b)+1)(3(n—a+b)+1)
Lna+c+d)i(ny—c—d) j(na+c— d)3(n2 — c+ d)
na(nz — 1) na(ngy — 1)
_ my(ma—1) (1+2)1+40) 1+ 2)(1+ 5
T (m+2)(n+ 1) (14 22y (1 4+ -“-"“) (1+ = b+2)(1 + -a+b+2)

(1+c+d) (1+—c—d+1) (1+ d) (1+—c+d+1).
ng ng—1 ny no—1

Suppose that n; > in + /n. Then

t(n,n1+2,a,b,¢,d) 2
t(n,ny,a,b,c,d) ~ ! N +fi(n)

where fi(n)/(1/n) is bounded as n — oo. Thus if ny > $n+vn + n®6,
then for large enough n,

t(n, in +/n+ %% + fa(n),a,b,c,d)

t(n, 3n +/n+ fa(n),a,b,c,d)
where fa(n) and fa(n) are added to make the expressions be integers of the
correct parity; we let fo(n) and f3(n) be as close to 0 as possible; hence

they have absolute value no more than 1. By similar reasoning, we may
conclude that

t(n, %n — /=18 + fa(n),a,b,¢c,d)
t(n, %n —/n+ fs(n),a,b,c,d)

for large enough n.

< exp(—2n"1)

< exp(—2n°1)
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Now let us examine, for n; between 3n—,/n—n% and in+/n4n%S,
the following ratio:

t(n,ny,a+1,b—1,c+1,d-1)
t(n,n1,a,b,¢,d)
%(nl-—a+b) %(nz—c+d)
%(n1+a—b)+1%(n2+c—d)+1
_ 14 o=edb g —edd
= —b+2 —d+2
14 22 4 eodi2
2(—a+b-a+b-2-c+d—c+d-2)
n
4(-a+b—c+d-2)
n

=1+ + fs(n)

=1+ + fe(n)

where lim,_.o fo(n)/(1/n) = 0. Since lim,_ o nexp(—2n%1)/(1/n) = 0,
we may conclude
Pi((a+1,6—1,c+1,d—1))
Pi((a,b,c,d))
where lim,_. f7(n)/(1/n) = 0.
For sufficiently large n, this ratio implies that the location of the max-
imum of P}((a,b,c,d) + #(1,—1,1,—1)) occurs at an integer ¢ such that
(a+t)—(b—1t)+(c+1t)— (d—1) is nearest 0. |
This technique may be adapted to show the unimodality of the se-
quence of the number of paths of length n from the origin to integer points
along other lines provided that n is sufficiently large.
Theorem 3: Let ay,...,am, b1, ..., by be integers such that Yo bi is even
and 377 a; = n (mod 2). Let g(t) = PP((ar, .., am) + (s, ..., bm)).
Then the sequence ..., g(—2),g9(—1), 9(0), 9(1), g(2), ... is unimodal for suffi-
ciently large n, and the mazimum of this sequence corresponds to an integer
t such that (ay, ..., am) + t(by, ..., bm) is as close to the origin as possible.
Sketch of proof: First note that we are only interested in a certain
portion of the line; the portion of the line where all coordinates are decreas-
ing in absolute value or all coordinates are increasing in absolute value will
not contain a maximum of g(t) except at the end of such a portion. Thus
we may assume that we are looking at a portion whose length does not
increase with n.
Without loss of generality, assume that for some integer d with 0 <
d<m/f2, b,...,baq are all odd while bagyy, ..., by, are all even. Then

Pl (ay,...,am)

= E t(n,my, .., Mg, Nadt1, .., N, @1, oy By

ml,...,md,n“.,.l,...,nmzo
mi+...+ma+nag1+...4Anm=n

=1

+4(—a+b—nc+d—2)+f7(n)
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where

n
Un, My, .oy Md, N2d 415 -0, Bim, B, vy Bn) 1= ( )
my, ..., Md, N2d41, -+ m

(1 G ) o)

i=1
,-__,]2';'[_,_1 (‘%(n:z-,l' ai))'

By techniques similar to the proof of Theorem 2, we may conclude
that if (2/m)n — n —n%® < m; < (2/m)n+ v/ +n%%i=1,..,dand
(1/m)n — \/n —n% <n; < (1/m)n+/n+n%,i=2d+1,..,m, then

t(na my, ..., Md, N2d+1, -y Tm, G1 + bla -y @m + bm)
t(n,my, ..., Md, N2d41, .oy Tomy @1, --vy Gm)

m 1 m
=1- %(Z asb; + 521;,?) +o(1/n).
i=1 i=1

Furthermore, the terms where any of my, ..., ma, nad+1, ..., ny, are outside
this range are so small (for sufficiently large n) that we may conclude

PP((a1 4 by @m b)) 0 mon 1SN
(e oy = LT (ot g L)+ ol/).

For sufficiently large n, this ratio implies that the maximum of g(t) occurs
at a value of ¢ such that (ay, ..., @m) + (b1, ..., bm) is as close to the origin
as possible. |

Problems for Further Study

A number of questions remain open in this field. For the line we
studied, one wonders if there is a more elegant approach to showing log
concavity of the sequence studied. Also, one may ask if such sequences are
or are not Pdlya frequency sequences of various orders; such sequences are
log concave.

Showing (or disproving) log concavity along most other lines in 4 di-
mensions or along any line in dimensions other than 1, 2, or 4 remains
open. It is not obvious how to generalize the techniques of Theorem 1 to
these cases. It is not even clear what an appropriate matching would be. Is
there a proof by induction on the number of dimensions? See [3] for some
induction proofs on some problems involving log concavity and unimodality.
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If direct proofs remain unavailable, can results on log concavity for
these lines be shown for large n?

The location of the maximum, except for large n or direct computation
in specific cases, remains unknown for the most part. How fast does this
maximum move as n is increased?
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