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ABSTRACT. Let R = (ry,r3,...,7m) and S = (s1,32,...,8a)
be nonnegative integral vectors. Denote by A(R,S) the class
of (0, 1) matrices with row sum vector R and column sum vec-
tor S. We study a generalization of invariant positions called
locally invariant positions of a class A(R, S). For a normalized
class, locally invariant positions have in common with invariant
positions the property that they lie above and to the left of
some simple rook path through the set of positions.

Introduction

Let R = (ry,r2,...,7m) and S = (sy,82,...,3,) be nonnegative integral
vectors. Let A(R, S) denote the class of (0, 1) matrices with row sum vector
R and column sum vector S. The study of properties of these classes was
begun in the late 1950’s by Herbert J. Ryser and others. Basic information
on A(R, S) classes can be found in [1] and [2]. Ryser observed that replacing
one of the following submatrices by the other leaves row and column sums

unaltered:
10 01
01 10

Ryser called such a replacement an interchange and proved that between
any two matrices in an A(R, S) class there exists a sequence of intermediate
matrices in the class each obtained from the previous one by an interchange
(1, page 68]. A position 5 with 1 <§ < m, 1 <j < nis called an invariant
position for the class A(R, S) if all matrices in the class have the same entry
in the ij position; that is, either condition a) or condition b) holds:

a) A;;=1for all A € A(R,S)
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b) A;; =0 for all A€ A(R,S).

If a) holds (b) holds) then ij is called an invariant 1-position (0-position)
of A(R,S). Invariant positions and invariant sets of positions have been
studied in [3].

We now generalize the concept of invariant position. A position, ij, is
a locally invariant 1-position of the class A(R, S) if there exists a matrix
A € A(R, S) such that

i) A.'j =1
ii) no single interchange applied to A makes the ij entry equal to 0.

We will henceforth refer to these as properties i) and ii). Locally invariant
0-positions of A(R,S) may be defined analogously.

To illustrate these ideas consider the class A(R,S) with R = § =
(3,2,1,1). It can be shown that the positions 11, 12, 21, 22 are locally
invariant 1-positions of A(R, S) and 23, 24, 32, 33, 34, 42, 43, 44 are locally
invariant O-positions. The matrix A € A(R, S) given below shows that 22
is a locally invariant 1-position of A(R, S).

0111 1101
1100 1010
A= 1 00 0f° B= 0100
1000 1000

The matrix B shows that 11 is a locally invariant 1-position. B also shows
that 34, 43, 44 are locally invariant O-positions. Other matrices in A(R, S)
can be found to establish the local invariance of the positions listed. It is
important to note that local invariance is a property of the class A(R,S)
and not of any particular matrix in the class. Bz = 0 and yet 22 is a
locally invariant 1-position of the class A(R,S). An invariant 1-position
(0-position) is clearly a locally invariant 1-position (locally invariant O-
position). It is possible, however, for a position to be locally invariant yet
not invariant for a class A(R, S) as is demonstrated by the case R =8 =
(3,2,1,1) given above. There are no invariant positions in this class.

Our goal in this paper is to say as much as possible about the set of
locally invariant positions of a class A(R,S). Our task is simplified by
considering only normalized classes: those in which ry > r2 > 7, and
8 > 83 > -+ > 8,. We are able to show, in Theorem 2, that for a
normalized nonempty class A(R, S) the locally invariant 1-positions are to
the left and above some simple rook path through the set of positions. This
is a property shared with invariant 1-positions.

Results: We begin with the following very simple lemmas.
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Lemma 1. Let A(R,S) be nonempty with sy > 83 > -+ > 8,. Let i be
an integer with 1 < i < m. Then there exists A € A(R, S) such that the
ith row of A consists of r; 1’s followed by n —r; 0’s.

Proof: Let B € A(R,S). Suppose B;j = 0 and By, = 1 for some 1 <
J < k £ n. Monotonicity of the column sum vector S assures the existence
of an interchange resulting in a new matrix B’ € A(R,S) with Bj; = 1
and B’,,, = 0 and other entries in row i unchanged. In this way l’s in
row i may be moved to the left so long as they are preceded by a 0. The
outcome of this recursive procedure is a matrix satisfying the conclusion of
this lemma. a

Corollary 1. Let A(R,S) be nonempty withry > r3 > ...ry,. Let j be
an integer with 1 < j < n. Then there exists A € A(R, S) such that the
Jth column of A consists of s; 1’s above m — 55 0’s.

Proof: Transpose the matrix and interchange the terms row and column. 0J
Lemma 2. Let A(R,S) be a nonempty class of 2 x n (0,1) matrices with
ry 2 12. Let A€ A(R,S). Then there exists A’ € A(R,S) such that

8) if Aj =1 then Ajj=11<j<n

b) if Ayj=0then Ay; =0,1<j<n

c) if Ayj = Ayj =1 then A'2j=A’lj =1,1<j<n.

Proof: For a matrix B € A(R, S) we define

B(l) = {J | BIJ B2.1 = 1}

B(2) = {j | Byj =1, By; =0} (1)
B(3)={j| Bij =0,By; =1}

B(4) = {j | By; =0, By; =0}

We clearly have B(1) U B(2)U B(3)U B(4) = {1,2,...,n}. The left side
of this equality suggest a partition of {1,2,...,n} which determines the
matrix B. Note that up to three of the B(i) may be empty.

Given A € A(R, S) we form A’ € A(R, S) by defining

A'(1) = AQ1)

A(2)=A(B)UA(2)-C) (2
A(3)=

A'(4) = A(4)

where C is any subset of A(2) with size |C| = |A(3)|. The conditionr; > rp
implies |A(2)] > |A(3)] which makes selection of C possible. From (2)
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it is easy to verify that A’ € A(R,S). Note that Az; = 1 implies j €
(A(1) U A(3)) C (A'(1) U A'(2)). Thus A}; =1 establishing condition a).
Also if Ay; = 0 then j € (A(3)UA(4)) C (A'(2)UA’(4)). Therefore Az; =0
establishing condition b). Condition c) is obvious. o

Theorem 1. Let A(R,S) be normalized and nonempty. The position ij is
a locally invariant 1-position of A(R, S) if and only if there exists a matrix
A € A(R, S) of the form

J
[ * U * *
A=t L 1 M 1 (3)
* V * *
* X * Y

where L and M are row matrices with all entries equal to 1; U and V' are
column matrices of 1’s; W, X and Y are zero matrices.

We allow the possibility that one or more of the indicated sub-matrices
may be trivial.

Proof: If there is a matrix A € A(R, S) of the form (3) then 4 is a locally
invariant 1-position of A(R, S). Let ij be a locally invariant 1-position of
A(R, S) and let A € A(R, S) satisfy properties i) and ii). Then if A;y =0
for some 1 < w < j then monotonicity of the column sum vector S assures
the existence of an interchange which places a 0 in the ij position.

This contradicts the fact that A has property ii). Thus A;, = 1 for
1 < w < j. We may conclude by similar reasoning that A,; = 1 for
1 € v < i. We may now choose the 0’s in row i to be located in the
rightmost positions. This follows by applying Lemma 1 to the submatrix
of A consisting of columns j + 1,3 +2,...,n. Similarly the 0’s in column j
may be chosen to be in the lowest positions.

Now let an entry of matrix Y be 1. Then a single interchange makes the
ij position 0, a contradiction. Thus Y is a zero matrix and A has form
(3). (]

Theorem 2. Let A(R,S) be a nonempty normalized class. If ij is a
locally invariant 1-position of A(R, S) then so is every position vw satisfying
1<v<iandl <w<j.

Proof: Since ij is a locally invariant 1-position of A(R, S) there exists,
by Theorem 1, A € A(R,S) of form (3). Now fix a number v,1 < v < i,
and apply Lemma 2 to the 2 x n submatrix of A consisting of rows v
and i. We conclude that there exists A’ € A(R, S) of the form (3) with the
distinguished 1 in the vj position. The matrix A’ shows that the vj position
is a locally invariant 1-position of A(R,S). Similarly, using the column
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version of Lemma 2, we may prove that the positions iw with 1 < w < j
are locally invariant 1-positions of A(R,S). The Theorem follows. a

Corollary 2. Let A(R,S) be a nonempty normalized class. If ij is a
locally invariant 0-position of A(R, S) then so is every position vw satisfying
tfvEm,j<w<n.

Proof: Reflect matrices in A(R,S) once about the horizontal axis, once
about the vertical axis and interchange zeros and ones. Applying theorem
2 to the resulting class of matrices gives corollary 2. a

Discussion: Theorem 2 shows that for a normalized, nonempty class
A(R, S) the set of locally invariant 1-positions occupy all positions above
and to the left of some simple rook path throughout the m x n array of
positions. For the example given earlier in which R = S = (38,2,1,1) the
locally invariant positions are as indicated below.

3 2 1
3 * * &
IR
1 & # #
1| & # #
* — a locally invariant 1-position

& - not a locally invariant position
# — a locally invariant O-position

FHIre

Ryser has proved the following.

Proposition. (Theorem 5.2 in [2]) Suppose ij is an invariant 1-position
in the normalized, nonempty class A(R, S), then there exists integers e, f
withi < e <m and j < f < n such that every matrix A € A(R, S) has the

form
(I A
A= ( r 4 ) )
where J.s is the e x f matrix all of whose entries equal 1, and 0 is the
(m —e) x (n — f) zero matrix. (]

A similar result holds for invariant 0-positions. The variability in the class
containing matrix A in (5) is found in the positions given by submatrices
A, and A;. In a sense the class containing A has split into two smaller
classes. From this example we see that the study of local invariance may
be restricted to classes without invariant positions.

The (m+1) x(n+1) matrix T defined by T}; = ij+(ris1+Tisa+. .. Tm)—
(81+32+...8;) is called the structure matrix of the class A(R, ). It is well
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known that matrices in A(R, S) have the form (5) if and only if Tey = 0 [2,
page 186-7]. Thus the structure matrix prescribes the invariant positions
of a class. Is there also a simple relationship between the structure matrix
and locally invariant positions?
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