A Note on Paths in Edge-Coloured Tournaments

V. Linek* and B. Sands†

August 8, 1994

Let T be a (finite) tournament whose edges are coloured with two colours. In [2] Sands, Sauer and Woodrow proved that there exists a vertex s of T such that there is a monochromatic path from any other vertex of T to s. Shorter proofs of this result were subsequently found by Reid [1] and Shen Minggang [3]. Still open is the following:

Problem 1: [2] For every n > 2, is there a (least) positive integer f(n) so that every tournament whose edges are coloured with n colours contains a set S of at most f(n) vertices with the property that for every vertex v not in S there is a monochromatic path from v to a vertex of S?

In this note we give an extension of the Sands-Sauer-Woodrow result, in which the edges of T are coloured with the elements of a partially ordered set P. In this case a directed path $v_1v_2...v_n$ in T is called monotone if $\operatorname{colour}(v_iv_{i+1}) \leq \operatorname{colour}(v_{i+1}v_{i+2})$ in P for each i. Note that monochromatic paths are monotone, and they coincide if P is an antichain.

Let us define the tournament colouring number, tc(P), of a poset P to be the smallest positive integer such that, for any edge-colouring of any tournament T by the elements of P, there is a set S of at most tc(P) vertices of T with the property that there is a monotone path from any vertex of T not in S to a vertex of S. The result of [2] then says that tc(P) = 1 when P is a two-element antichain, and Problem 1 above asks whether tc(P) exists for P a finite antichain of more than two elements.

Our main result is a characterization of those finite posets P with tournament colouring number 1.

Theorem 1: The following are equivalent for a finite poset P:

⁽i) tc(P) = 1;

^{*}Research supported by an NSERC undergraduate student summer research scholarship.

Research supported by NSERC Operating Grant 69-3378.

- (ii) P does not contain a subset isomorphic to ••• or . ;
- (iii) P is a linear sum of 1- and 2-element antichains.

Here the *linear sum* of two disjoint posets P_1 and P_2 is the poset with elements $P_1 \cup P_2$ and order relations the union of the order relations of P_1 and P_2 together with $x_1 \leq x_2$ for all $x_1 \in P_1$, $x_2 \in P_2$. The linear sum of n posets is then defined inductively.

Actually, [2] contains the following stronger theorem which we will need for the proof of Theorem 1.

Theorem 2: (Sands, Sauer, Woodrow [2]) Let D be a finite directed graph whose edges are coloured with two colours. Then there is a set S of vertices of D satisfying

- (a) for every vertex v of D-S there is a monochromatic directed path from v to a vertex of S;
- (b) there is no monochromatic directed path in D between any two vertices of S. □

If D is a tournament, it is obvious that S must consist of a single vertex.

Proof of Theorem 1.

 $(i) \Rightarrow (ii)$. If P contains a copy of either poset of Figures 1a and 1b, we let T be the tournament of 3 vertices shown in Figure 1c, coloured as illustrated.

Then T shows that $tc(P) \geq 2$.

(ii) \Rightarrow (iii). Let M be the set of minimal elements of P. By (ii), $|M| \leq 2$. If |M| = 1, then P is the linear sum of M and P - M; since P - M obviously satisfies (ii), (iii) follows for P by induction. If |M| = 2, then P is again

the linear sum of M and P-M, else P contains a copy of \mathbb{I}_{\bullet} ; and now we use induction as before.

 $(iii) \Rightarrow (i)$. This is by induction on |P|. Letting M again be the set of minimals of P, we have by (iii) that $|M| \leq 2$ and that P is the linear sum of M and P - M. Let T be a tournament and colour its edges with the elements of P. Let D be the digraph with all the vertices of T and with

edges only those edges of T coloured by elements of M. Since $|M| \leq 2$, by Theorem 2 we can find a set S of vertices of T such that

- (a) for any vertex v of D-S there is a monochromatic directed path (coloured by an element of M) from v to a vertex of S, and
- (b) no two vertices of S are connected by a monochromatic directed path (coloured by an element of M) in D.

Now consider S as a subtournament of T. Its edges will all be coloured by elements of P-M, by (b); thus by induction there is a vertex s of S such that there is a monotone directed path from any other vertex of S to s. But now, given any vertex v of $T-\{s\}$, by (a) there is a path (coloured by an element of M) from v to a vertex $w \in S$, and combining this with a monotone path (coloured by elements of P-M) from w to s yields a monotone path from v to s. Thus the vertex s demonstrates that tc(P)=1. \Box

The following 9-vertex tournament, given in [2], shows that $tc(P) \ge 3$, where P is the poset of Figure 1b:

vertices:
$$a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3$$

directed edges: $(a_1, a_2), (b_1, b_2), (c_1, c_2)$ coloured c
 $(a_2, a_3), (b_2, b_3), (c_2, c_3)$ coloured b
 $(a_3, a_1), (b_3, b_1), (c_3, c_1)$ coloured a
 (a_i, b_j) coloured c for all i, j
 (b_i, c_j) coloured a for all i, j

Problem 2: Does $tc \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ exist? Does $tc \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 3$? Incidentally, Theorem 1 and the above example show that there is no poset P for which tc(P) = 2.

We close with a further extension. One could replace the poset P by a directed graph D (with a loop at each vertex), colour the edges of a tournament T by the vertices of D, and instead of monotone paths consider "D-paths" in T, i.e. paths $v_1v_2\ldots v_n$ satisfying (colour (v_iv_{i+1}) , colour $(v_{i+1}v_{i+2})$) is an edge or loop of D for all i. Here colour changes on the path are only permitted if the vertices of D corresponding to these colours are adjacent. The tournament colouring number tc(D) of D could then be defined analogously as before. We do not know which digraphs D satisfy tc(D) = 1. We do not even know which graphs G satisfy tc(G) = 1, where the edges of G are taken to be directed both ways. Note, however, that (letting C_n be the n-vertex cycle) we have: $tc(C_3) = tc(C_4) = 1$, because

 $tc\begin{pmatrix} \bullet \\ \bullet \end{pmatrix} = tc\begin{pmatrix} \bullet \\ \bullet \end{pmatrix} = 1$ by Theorem 1; and $tc(D) \geq 3$ whenever D contains a 3-vertex independent set, because $tc(\bullet \bullet \bullet) \geq 3$, thus $tc(C_n) \geq 3$ for $n \geq 6$.

Problem 3: Does $tc(C_5) = 1$?

References

- [1] K. B. Reid. Monochromatic reachability, complementary cycles, and single arc reversals in tournaments, in Graph Theory Singapore 1983, Lecture Notes in Mathematics 1073, Springer Verlag, (1984) 11-21.
- [2] B. Sands, N. Sauer, and R. Woodrow. On monochromatic paths in edge coloured digraphs, J. Combinatorial Theory Ser. B. 33 (1982) 271-275.
- [3] Shen Minggang. On monochromatic paths in m-coloured tournaments, J. Combinatorial Theory Ser. B. 45 (1988) 108-111.

Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario N2L 3G1 Canada Department of Mathematics and Statistics University of Calgary Calgary, Alberta T2N 1N4 Canada