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Let T be a (finite) tournament whose edges are coloured with two
colours. In {2] Sands, Sauer and Woodrow proved that there exists a vertex
s of T such that there is a monochromatic path from any other vertex of T
to s. Shorter proofs of this result were subsequently found by Reid [1] and
Shen Minggang (3]. Still open is the following:

Problem 1: (2] For every n > 2, is there a (least) positive integer f(n) so
that every tournament whose edges are coloured with n colours contains a
set S of at most f(n) vertices with the property that for every vertez v not
in S there is a monochromatic path from v to a vertez of S?

In this note we give an extension of the Sands-Sauer-Woodrow result, in
which the edges of T are coloured with the elements of a partially ordered
set P. In this case a directed path vyv;...v, in T is called monotone if
colour(v;vi4+1) < colour(vi41v;i42) in P for each i. Note that monochromatic
paths are monotone, and they coincide if P is an antichain.

Let us define the tournament colouring number, tc(P), of a poset P
to be the smallest positive integer such that, for any edge-colouring of any
tournament T by the elements of P, there is a set S of at most tc(P) vertices
of T with the property that there is a monotone path from any vertex of T
not in S to a vertex of S. The result of [2] then says that tc(P) = 1 when P
is a two-element antichain, and Problem 1 above asks whether tc(P) exists
for P a finite antichain of more than two elements.

Our main result is a characterization of those finite posets P with tour-
nament colouring number 1.

Theorem 1: The following are equivalent for a finite poset P:

(3) te(P)=1;
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(i1) P does not contain a subset isomorphic to eee or I P
(#t) P is a linear sum of 1- and 2-element antichains.

Here the linear sum of two disjoint posets P, and P; is the poset with
elements P, U P; and order relations the union of the order relations of P,
and P, together with z, < z; for all zy € Py, z3 € P;. The linear sum of
n posets is then defined inductively.

Actually, [2] contains the following stronger theorem which we will need
for the proof of Theorem 1.

Theorem 2: (Sands, Sauer, Woodrow 2] ) Let D be a finite directed graph
whose edges are coloured with two colours. Then there is a set S of vertices
of D satisfying

(a) for every vertezv of D—S there is a monochromatic directed path from
v to a vertez of S;

(b) there is no monochromatic directed path in D between any two vertices
of S. O
If D is a tournament, it is obvious that S must consist of a single vertex.

Proof of Theorem 1.

(z) = (i2). If P contains a copy of either poset of Figures 1a and 1b, we let T
be the tournament of 3 vertices shown in Figure lc, coloured as illustrated.
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Then T shows that tc(P) > 2.

(i2) = (iii). Let M be the set of minimal elements of P. By (i), |M| < 2.
If [M] = 1, then P is the linear sum of M and P — M since P— M obviously
satisfies (iz), (iii) follows for P by induction. If [M| = 2, then P is again

the linear sum of M and P — M, else P contains a copy of { o; and now
we use induction as before.

(i#t) = (i). This is by induction on |P|. Letting M again be the set of
minimals of P, we have by (iti) that |M| < 2 and that P is the linear sum
of M and P — M. Let T be a tournament and colour its edges with the
elements of P. Let D be the digraph with all the vertices of T and with
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edges only those edges of T' coloured by elements of M. Since IM| <2, by
Theorem 2 we can find a set S of vertices of T such that

(a) for any vertex v of D — S there is a monochromatic directed path
(coloured by an element of M) from v to a vertex of S, and

(b) no two vertices of S are connected by a monochromatic directed path
(coloured by an element of M) in D.

Now consider S as a subtournament of T. Its edges will all be coloured
by elements of P — M, by (b); thus by induction there is a vertex s of S
such that there is a monotone directed path from any other vertex of S to
s. But now, given any vertex v of T — {s}, by (a) there is a path (coloured
by an element of M) from v to a vertex w € S, and combining this with
a monotone path (coloured by elements of P — M) from w to s yields a
monotone path from v to s. Thus the vertex s demonstrates that tc(P) = 1.
a

The following 9-vertex tournament, given in (2], shows that tc(P) > 3
where P is the poset of Figure 1b:

vertices: ay, a3, ag, by, ba, b3, c1, ¢3, c3

directed edges: (ay,a3), (b1,d2), (c1,c2) coloured ¢
(a2, a3), (b2,b3), (c2,¢3) coloured b
(a3,a1), (b3, b1), (ca,c1) coloured a

(@i, b5) coloured ¢ for all i, 5
(bi, ¢5) coloured b for all ¢, 5
(ciyay) coloured a for all i, j.

Problem 2: Does tc (I . ) ezist? Does ic (I . ) =3?

Incidentally, Theorem 1 and the above example show that there is no poset
P for which tc(P) = 2.

We close with a further extension. One could replace the poset P by
a directed graph D (with a loop at each vertex), colour the edges of a
tournament T by the vertices of D, and instead of monotone paths consider
" D-paths” in T, i.e. paths vivs...v, satisfying ( colour(v;vi4;), colour
(vit1vi42)) is an edge or loop of D for all i. Here colour changes on the
path are only permitted if the vertices of D corresponding to these colours
are adjacent. The tournament colouring number tc(D) of D could then be
defined analogously as before. We do not know which digraphs D satisfy
te(D) = 1. We do not even know which graphs G satisfy tc(G) = 1, where
the edges of G are taken to be directed both ways. Note, however, that
(letting Cn be the n-vertex cycle) we have: tc(Cs) = tc(Cy) = 1, because
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o
tc( ’ ) = tc( I}(I ) = 1 by Theorem 1; and tc(D) > 3 whenever D contains
S

a 3-vertex independent set, because tc (®®e ) > 3, thus tc(C,) > 3 for
n > 6.

Problem 3: Doestc(Cs) =1 ¢
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