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ABSTRACT. Motivated by the spectral radius of a graph, we
introduce the notion of numerical radius for multigraphs and
directed multigraphs, and it is proved that, unlike the spec-
tral radius, the numerical radius is invariant under changes in
the orientation of a directed multigraph. An analogue of the
Perron-Frobenius theorem is given for the numerical radius of
a matrix with nonnegative entries.

A typical numerical value assigned to a finite multigraph is the spectral
radius. By definition, the spectral radius of a multigraph is the spectral
radius of the adjacency matrix of the graph. There are, however, other
numeric quantities associated with finite square matrices, the spectral ra-
dius being just one of these. In this note our interest is in the quantity
that is known as the numerical radius. Our aim is to assign to each finite
multigraph a “numerical radius” and to describe in what sense the numer-
ical radius is an invariant of the graph. Because the spectral radius and
the numerical radius coincide for symmetric matrices, and hence for ad-
jancency matrices, the definition of the numerical radius for a multigraph
must necessarily involve nonsymmetric matrices,

Some linear algebra will be required. The complex vector space C™ carries
a natural inner product (§,7) = 3,7 and an induced norm |[¢|| =
(€,£)Y/2. The standard orthonormal basis vectors of C* are denoted by
e1,...,en and the set of vectors in C" for which each entry is nonegative
will be denoted by (R")¢. Every T € My(C), an n x n matrix over C, is a
linear transformation on C® and induces a quadratic form Qr on C™ that
is defined by Qr(£) = (T%,£), for € € C*. The spectral radius po(T) and
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the numerical radius w(T') are

p(T) = max{|\| : T = Ay for some nonzero 1 € C"}
w(T) = max{|(Tn,n)| :n € C" is such that |in]| = 1}.

It is known from matrix analysis that the norm |{T|| of T coincides with
p(T*T)!/2, where T* denotes the adjoint of T' (the conjugate transpose of
T). Furthermore p(T) < w(T) < ||T||, and equality holds throughout if
T is normal (that is, if T and T* commute). Denote the canonical matrix
units for M,(C) by E;j, for 1 < 4,5 < n, and the group of n X n unitary
matrices by U,. The symmetric group S, of permutations of {1,...,n} is
a subgroup of U,: each o € S, is represented by P,, the unique unitary
whose action on the standard basis elements is Pye; = €,(;). The quantities
p(T) and w(T) do not change if T € Mn(C) is replaced by UTU* for some
U eln.

Perron-Frobenius theory is concerned with the spectral radius of finite
square matrices over Rg, the nonnegative real numbers. Before com-
mencing with the study of multigraphs, we will indicate how the Perron-
Frobenius theory also provides information about the numerical radius of
matrices with nonnegative entries.

The first of the following definitions is classical, having been introduced
by Frobenius for the study of spectral properties. The second definition is
relevant to the numerical radius.

Definition. Suppose that T € M (C).

1. T is said to be reducible if there is some o € S, for which P,TP!
admits a block decomposition of the form

A B
0o C)’
where A and C are square matrices. A matrix that is not reducible

is called irreducible.

9. T is said to be *-reducible if there is some o € Sy, for which P,TP:
admits a block decomposition of the form

A O

0o C)’
where A and C are square matrices. A matrix that is not +-reducible
is called *-irreducible.

Theorem and Definition: (Perron-Frobenius) If A € Mu(RS), then
there exists a unit vector £ € (R™)¢ such that A€ = p(A)¢. Futhermore, if
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A is irreducible, then p(A) < p(A + €E;;) for all 4,5 and all € > 0, and the
vector £ is the only unit vector ¢ € (R*)§ that satisfies Ay = p(A)¢; in
this case, where A is irreducible, each entry of the eigenvector £ is positive.
The spectral radius of A is called the Perron value of A; a unit vector
€ € (R")g satisfying the eigenvalue equation A¢ = p(A)¢ is called a Perron
vector of A and is unique if A is irreducible.

Our algebraic result, a version of the Perron-Frobenius theorem for the
numerical radius of a matrix with nonnegative entries, is quite elementary,
and although we could find no single reference for the result, it is no doubt
well-known to many linear algebraists. (For example, the first portion of
the theorem can be found either implicitly or explicitly in [2] and (3].) It
seems that our focus on -irreducibilty and, subsequently, graph theoretic
interpretations is, however, new.

A Perron-Frobenius Theorem: If A € M,(R7), then there exists a
unit vector £ € (R"){ such that (A€,€) = w(A). In fact, a unit vector
¥ € (R"){ satisfies (A¢, %) = w(A) if and only if ¢ is a Perron vector
of A# = (1/2)(A + A*) (the hermitian part of A). Furthermore, if A is
*-irreducible, then w(A) < w(A + €E;;) for all 4,5 and all € > 0, and the
vector £ is the only unit vector ¢ € (R"){ that satisfies (A9, %) = w(A); in
this case, where A is »-irreducible, each entry of £ is positive. A unit vector
¥ € (R")g for which (A¢, ¥) = w(A) will be called a Perron w-vector of A
and is unique if A is *-irreducible.

Proof: To prove that the numerical radius of A is achieved at some unit
vector £ € (R™){, it suffices to show that for every unit vector 1 € C™ one
can find a £ € (R*)§ such that |(An, n)| < (A€, £). Given such a vector 7,
simply let &5 = [n;| for each j and compute:

(An o)l <D~ aislmsl Iml = Y s 656 = (AL, €) .
$.J (%]

We now proceed to explain the connection with the Perron vector of
A = (1/2)(A + A%). As is shown above, to maximize the modulus of the
quadratic form Q4 : C* — C it suffices to restrict Q4 to R™ — in fact, to
(R™)§ — and to then maximize Q4 over real unit vectors. This allows us
to symmetrize Q4 in the usual way. That is, consider Q4u instead of Qa.
For every ¢ € (R™)§,

Qan(6) =) (1/2)(ai; + a;0)€s6: = D aii&ik = Qal) .

4 4,5
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Thus,

w(Af) = max{Q4x(€) : € € (R™){ and I¢]| =1}

=max{Qa(€) : £ € (R")] and ||¢]| =1}

However, because A is hermitian, p(A¥) = w(A¥) = ||A¥||; the Perron-
Frobenius theorem states that p(A¥) is an eigenvalue of A¥ and that there
is a corresponding unit eigenvector £ € (R™)d. With this vector £, we
have w(A) = p(A¥) = (AHE,€) = (AL, £). Hence, A attains its numerical
radius on the Perron vectors of AH. Conversely, suppose that ¥ € (R®)§
satisfies (A, ¥) = w(A). Then y also satisfies (A%, ) = w(4) = ||A¥]|.
The Cauchy-Schwarz inequality yields ||A|| = (A¥9,9) < [|A%]lll4]] <
||AH||; but this is a case of equality within the Cauchy-Schwarz inequality
and, therefore, A¥% must be a multiple of 3. From (A#y,¥) = p(A¥) it
follows that A = p(AH# )y and so ¢ is a Perron vector of A¥.

Assume henceforth that A € M, (RY) is x-irreducible. We claim that
AH is x-irreducible. If it is not, then there is some o € S, for which
P,AH P! is block upper-triangular. Because P,AHP: = (P,AP!)H, this
block upper-triangular matrix is symmetric and hence block diagonal. But
the only way for (P, AP:)H to be block diagonal is for Py AP; itself to be
block diagonal, which is in contradiction of the x-irreducibilty of A. Hence,
AH must be irreducible and so the remaining statements concerning the
numerical radius of A follow from the corresponding ones for the spectral
radius of AY. ]

If a matrix 7 is block diagonal, with diagonal blocks Sy, ..., Sk, then
a straightforward computation reveals that w(T) is the maximum of the
w(S;), 1 £ i < k. If T is »reducible, then there exists a 0 € Sy such
that P, TP} is block diagonal with each diagonal block being +-irreducible.
Thus, for the numerical radius, one need only work with matrices that are
x-irreducible.

Corollary 1. If A, B € My (RY) have the same hermitian parts, then they
have the same numerical radius. If, further, one of A or B is *-irreducible,
then £ is a Perron w-vector for A if and only £ is a Perron w-vector for B.

Proof: The first assertion is an immediate consequence of the theorem and
we move to the proof of the second statement. Assume that it is A that is
s-irreducible. From our argument used in the final part of the theorm, we
may conclude that A is irreducible. Therefore, AH (which coincides with
BH) has a unique Perron vector. (m]

Corollary 2. The numerical radius of a matrix over Z$, the nonnegative
integers, is an algebraic number.
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We turn now to our principal objective: the introduction of a numeri-
cal value that is assigned to multigraphs and warrants the descriptive title
“numerical radius.” As with the spectral radius of a multigraph, we do this
by defining a correspondence between multigraphs and matrices over zZs.
There is a new twist however: the correspondence is made in a manner
whereby several matrices, typically nonsymmetric, are affiliated with a sin-
gle multigraph. In contrast, the definition of numerical radius for directed
multigraphs is rather straightforward.

Definitions.

1.

The directed multigraph I'(A) of a matrix A € M(ZE) is the directed
graph on n vertices vy, ..., v, that has a;; edges directed from v; to
v; for all pairs i,j. Conversely, given a finite directed multigraph,
there is a finite square matrix B over Z§ such that this graph is
precisely I'(B). (We say that the directed graph induces the matrix
B.) Plainly, this correspondence between finite directed multigraphs
and finite square matrices over Zg is a bijective correspondence.

- The multigraph I'(A) of a matrix A € M, (Z¢) is the graph on n

vertices vy,...,v, that has a;; + a;; edges between pairs of distinct
vertices v; and vj, and that has aj; loops at the vertices v;. Note
that several different matrices may share the same multigraph; in
particular, I'(4*) = I'(A).

. If T is a finite directed multigraph, then I denotes the underlying

(undirected) multigraph; equivalently, I is the multigraph of the ma-
trix induced by I'. On the other hand, an orientation of a multigraph
I is a configuration of directions for the edges of I' that result in a
directed multigraph I; equivalently, an orientation of I is the directed
multigraph of some matrix whose multigraph is I".

. For a complex matrix T € M, (C), the digraph of T is the directed

multigraph of the zero-one matrix whose (%, 7)-entry is nonzero if and
only if ¢;; # 0, and the graph of T is the multigraph of this zero-one
matrix determined by T.

. (Numerical radius of a directed multigraph) If T is a finite directed

multigraph, then w(["), the numerical radius of [, is defined to be
w(A), the numerical radius of the matrix A € Mo (Z}) that is induced
by I'. A Perron w-vector for I is defined to be a Perron w-vector of
A.

The first proposition addresses the combinatorial meaning of irreducibilty
and -irreducibilty. Recall that a directed graph is strongly connected if
between any two vertices there exists a directed path connecting them, and
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that a graph is connected if between any two vertices there exist a path
connecting them.

Proposition 1. A complex matrix T is irreducible if and only if its di-
graph is strongly connected, and is *-irreducible if and only if its graph is
connected.

Proof: The relation between irreduciblity and strong connectivity is well-
known - see [1;3.2.1] — and we will prove only the second statement.

Let M denote the zero-one matrix whose (i,j)-entry is nonzero if and
only if t;; # 0. Observe that for o € Sy, P,TP! is block diagonal if and
only if P, M P¢ is block diagonal.

Assume that [(M) — that is, the graph of T — is not connected. There
exist vertices v; and v; in ['(M) that are not connected by a path within the
graph. Partition the vertices of I'(M) into two sets: the set Z will contain
all vertices that are connected to v; by a path, and the set J will contain
all remaining vertices. Note that there can be no edges between a member
of Z and a member of J. This absence of edges between the vertices of Z
and J immediately implies that P, M P% is block diagonal, where o € Sy, is
any permutation that is induced by the patitioning of the vertices of I'(M)
into the two sets Z and J. Hence, T is *-irreducible.

Conversely, assume that T is *-reducible. There is a 0 € Sy, such that
P,MP! is block diagonal, with the first block being a k x k matrix. Two
distinet vertices v;,v; in T'(P,M P£) share an edge only if 1 < 4, j<kor
k < i,j. Thus, a vertex v € {vy,...,vx} does not share an edge with a
vertex w € {Vk41,++-,Un}. If T =071, then v € {vr01),.., Vr(x } does not
share an edge With w € {Ur(kt1)s:++»Vr(n)} in D(PrPoMPgFPr) = (M);
hence, the graph I'(M) of T is not connected. O

The second proposition concerns a weak form of equivalence for multi-
graphs and directed multigraphs. We say that two graphs I'; and I’z are
equivalent, denoted by I'y ~ Ty, if ' is obtained from I'; by permuting
the vertices but leaving the edges fixed. This is different from a graph iso-
morphism, which preserves valencies as well. The meaning of 'y ~ Tz is
analogous.

Proposition 2. For directed multigraphs Iy, T2 on n vertices, Iy~ by
a permutation o € S, that sends the vertex set of T'; onto the vertex set of
f'; if and only if Ay = P, APy, where Ay, Az € M,(Z]) are the matrices
induced by I’y and I’y respectively.

Proof: Assume that 'y ~ I’z by the permutation o. The group S, is
generated by transpositions and so it is enough to assume that o itself is a
transposition, say o = (i, ). The matrix P, A, is obtained by interchanging
rows i and j of A;. Thus, multiplication on the left by P, effects a change
on where edges depart from but does not alter the destination; for example,
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in I'(A;) an edge directed from the ith (respectively the jth) vertex to the
Jjth (respectively the ith) vertex becomes a loop at the jth (respectively
ith) vertex in I'(P, A;). Exchanging columns i and j in P, A, results in the
matrix P, A1 P;. Thus multiplications of P,A; on the right by P! changes
the destinations of the edges without altering the point of departure; thus,
for example, the edges that had arrived at the ith (respectively, the jth)
vertex of ['(P,A;) now arrive at the jth (respectively, the ith) vertex of
I'(P, A1 P}). Hence, I'(P, A, P}) is precisely I'(4,), whence Py A Pt = A,

The proof of the other direction is similar. 0

Corollary. If I'; and Ty are connected directed mu!iigraphs that are
equivalent via the permutation o € S, then w(l"1) = w([z) and the Perron
w-vector & for Ty is given by P,€,, where &, is the Perron w-vector for
.

Proof: Let A; and Az denote the induced matrices. From Ap = P, AP
and the invariance of the numerical radius under unitary similarity trans-
formations, we have w(Az) = w(A;). Since the graphs I’; and I, are
connected, the matrices A; and A; are +-irreducible, which implies that Iy
and I, have unique Perron w-vectors, say £ and & respectively. From the
uniqueness of the Perron w-vectors and

w(l) = (Az62,&2) = (A1 PL6s, PL&y) = w(l’y)
it follows that &, = Pi¢&,. (]

Proposition 3. Suppose that " is a finite multigraph and that Ty and I,
are two orientations of T. Then w(I'1) = w(I'2). If T is connected, then §
is a Perron w-vector of T if and only if £ is a Perron w-vector of T's.

Proof: Let A, A, € M (ZF) be the matrices induced by I'; and )
respectively. Because I'; is simply I'; with certain of the directions reversed,
A, and A2 must have the same hermitian parts. Hence, w(A,;) = w(A2) by
Corollary 1. If T is connected, then 4, and Ay are *-irreducible and, again
by Corollary 1, the unique Perron w-vector of I'; coincides with the unique
Perron w-vector of I',. (]

The proposition above indicates how to give a well-defined meaning to
the notion of numerical radius of a multigraph.
Definition. (Numerical radius of a multigraph) IfT is a finite multigraph,
then the numerical radius w(I") of T" is defined to be w(T’), where I is any
orientation of I". IfI"is connected, then the Perron w-vector of I is defined
to be the Perron w-vector of I', for any orientation I* of T

We turn now to some properties of the numerical radius. The second
statement of the proposition below demonstrates that it is only with multi-
graphs having loops that the numerical radius is indeed a new (numerical)
invariant of graphs.
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Proposition 4. Suppose that T is a finite connected multigraph.
1. If IV is a proper submultigraph of T, then w(I') < w(T).

2. If p denotes the spectral radius of T, then p < 2w(T") and equality
holds if and only if T has no loops.

Proof: Orient I so that the resulting directed graph I has its edges directed
from v; to v; whenever i < j, and let A € M, (Z¢) be the x-irreducible
upper triangular matrix whose directed multigraph is I'. The subgraph
I induces a matrix A’ € Mn(Z) such that I = I’'(A’) and having the
property that a}; < a for all pairs (k,1). Because I is a proper subgraph,
a}; < ai for at least one pair (k,1). By the Perron-Frobenius Theorem,
w(I’) = w(A’) < w(A) = w(T), which proves (1).

The spectral radius p of T" is p(adjT), the spectral radius of the adjacency
matrix adjT of T'. The off-diagonal parts of adjT" and 2AH agree, however
the diagonal entries of 2A# dominate the corresponding diagonal entries of
adjT; hence w(2AH) > w(adiT") = p(adiT) and equality holds if and only
if 2AH = adjT. But 2AH = adjT" if and only if the diagonal entries of 2AH
and adjI’ are zero. a

A classical combinatorial problem is the determination of those real num-
bers that arise as the spectral radius of some graph (i.e., of some symmetric
zero-one matrix). This problem dates back to Kronecker, to whom a good
portion of the solution is attributed, and has only recently been settled to
a certain level of satisfaction. Outside of small values, which is Kronecker’s
contribution, it is known from the works of Hoffman [5] and Shearer [6]
that the set of spectral radii of graphs is dense in the set of real numbers
beyond 71/24-7=1/2, where 7 is the golden mean 271(v/5+41). (A thorough
discussion of these developments is made in [4], Chapter 1 and Appendix
1.) Using Proposition 4, Kronecker’s theorem immediately yields informa-
tion concerning graphs with small numerical radii and those real numbers
less than 1 that are the numerical radius of some graph.

Corollary.(Kronecker) Suppose that T is a connected multigraph on n
vertices. Then w(T') < 1 if and only if T is one of

A — (n=1)
D, '—-< (n>4)
E; ._.._.Z_. - ——o (n=6,7,8)

In these cases, w(I') = cos(n/hr), where hp isn+1if ' = As, 2n — 2 if
I'=D,(n>4),o0r 12,18, 30if T is Es, Es, Es respectively.
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Proof: If w(T') < 1, then the diagonal of any matrix induced by I must be
zero, for if A € My(Zg) is induced by T, then ay is given by (Ae;,e,) for
each i, which are nonnegative integers less than 1. Hence, I" has no loops
and so by invoking Proposition 4, we find that w(I") = 2p(I"). The claimed
conclusions now follow from Kronecker’s theorem for the spectral radii of
graphs [4:1.4.3].

On the other hand, if T is one of those graphs listed above, each of which
is without loops, then we may again invoke Proposition 4 to obtain the
claimed conclusions. a

More generally, one can study the set W = {w(T") : T is a finite multigraph}
by way of £ = {p(G) : G is a finite mutligraph without loops}. If A €
Mn(2Z{) is a matrix induced by some multigraph, then 24 is a symmet-
ric matrix over Z§ and hence its spectral radius is given by the spectral
radius of some zero-one matrix of trace zero [5:2.1]. Conversely, if M is
a symmetric zero-one matrix of trace zero, then for the upper triangular
part A of M, 24# = MH = M. 1t follows, therefore, that W = 1€. Some
of what is known about £, and hence about W, is summarised below (see
Appendix 1 of [4] for further details).

Proposition 5. (Kronecker-Hoffman-Shearer) The set W N [0,1] is the
closure of {cos(/q)}q>2. For T = (V54 1)/2, the set of limit points of
WN(1, (v1/2+7-1/2) /9] is countable and is given by the closure of { -;-(ﬁ;‘l 2t
B v 2)};,21, where B is the positive root of the polynomial py(z) = z*+! —
$5-9xz;, for k > 1. Every real number exceeding (72 4+ 7=12)/2 is the
limit of numerical radii of multigraphs.

We conclude with some further examples.
EXAMPLE 1. Let K, denote the complete graph on n vertices. A tour-
nament 7 with n players is any orientation of K. Thus, the numerical
radius of any tournament 7 is w(K,), by Proposition 3. The computation
of w(K,) is simple. Let A € M,,({0,1}) be any tournament matrix. Then
AH = (1/2)(eet - I), where e = Tie;. The matrix ee® is a rank-1 ma-
trix with eigenvalues 0 and n; hence, the eigenvalues of A¥ are —1 /2 and
(n —1)/2. Therefore w(K,) = w(A¥) = (n - 1)/2. The Perron w-vector
for K, is given by n—1/2¢.
EXAMPLE 2. If T has a cycle, then w(I') > 1. To see this, assume first
that T itself is a cycle with n-vertices. Then the cyclic shift A € M, ({0,1})
with the action Ae, = e;, Ae; = €j+1 for 1 < j < n, is a unitary matrix
with graph I'. Hence, w(I") = w(A) = 1 and the Perron w-vector for the
cycle is given by n~="/2e, as in Example 1. In general, if T contains an n-
cycle, then this cycle is a subgraph of I and hence w(T") > 1 (the inequality
is strict if I" is connected but is not a cycle).
EXAMPLE 3. It is simple to determine the numerical radius and the Perron
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w-vector of any multigraph on two vertices. This amounts to computing
the numerical radius of any 2 x 2 matrix A = (‘: Z having nonnegative

entries. We are to maximize (A£,£) for £ = cosfe; + sinfez as 0 varies
from 0 to w/2. Written explicitly,

(A%, 8) = a;d +00820(a;d) +sin20(¥).

An application of the Cauchy-Schwarz inequality to the final two summands

reveals that
a+d a-d\? b+c\?
=12+ [ ()
with Dsin20 = (b + ¢)/2 and Dcos20 = D(a — d) /2, where
D= (2'2'—“)2 + (2‘2’3)2 Solving for cos® and sin@ yields the Perron w-

vector
/1 a—d 1 d-a
§= ‘§+'_4D31+ §+ iD e2.
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