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ABSTRACT. In this paper, we discuss the automorphism groups
of circulant digraphs. Our main purpose is to determine the full
automorphism groups of circulant digraphs of degree 3.

1 Introduction

Let Z, be the cyclic group of integers modulo n with operation “+” and
zero element 0. Let S be a subset of Z, not containing0. Denote by C,,(S)
a circulant digraph. Its vertex set is Z,, and for i € Z, and s € S, (i,i+s)
is an arc of C,(S) from i to i + s. We call (4,7 + s) an s-arc and S the arc
symbol set of C,(S).

There are many papers on circulant digraphs, one can refer to [1-5] in
particular. In (3], B. Elspas and J. Turner posed the problem to charac-
terize the automrphism groups of circulant digraphs. Up to now, there has
been no decisive advancement on this subject. Let S = {3y, s3, ..., sk} and
ged(sy, 82, ..., 8k,m) = d. It is easy to see that C,(S) has d components
and each of them is isomorphic to Cy ({4, 2, ...,2}). In this case, the
automorphism group of Cy,(S) is the wreath product of the automorphism
groups of these d copies of a component [7]. Thus we need only to character-
ize the automorphism groups of the strongly connected circulant digraphs.
So Cy(S) is always assumed to be strongly connected.

If S contains only one integer, then C,(S) is an n-length directed cycle,
and its automorphism group is clearly the cyclic group of order n. When
IS| = 2, L. Sun [8] determined the automorphism groups of Cn(S). B.
Elspas and J. Turner [3] characterized the automorphism groups of circulant
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digraphs whose spectra have n distinct eigenvalues. In this paper, we focus
our attentions on the circulant digraphs of degree 3 (i.e., |S| = 3) and
consider their automorphism groups.

Let AutZ, be the automorphism group of Z, and Auts(Z,) = {7 €
AutZ, |r(S) = S} be the stable subgroup of S in AutZ,. Let Z; = {\ €
Zn | ged(A\,n) = 1}. It is well known that AutZ, = Z; and Cy(S) =
Cn(AS) (where AS = {As | s € S}). Let AutC,(S) be the automorphism
group of Cn(S) and L(Z,) = {0a : i — a+i(Vi € Z,) | a € Z,}.
Then L(Z,) is clearly a subgroup of AutC,(S) that acts transitively on the
vertices of C,(S). Define Q(S) = {7 € AwtCy(S) | 7(0) = 0}.

Lemma 1 [6]. AutCp(S) = L(Zn)X(S).

According to the above Lemma, to characterize AutCy(S) it is sufficient
to characterize (S). In view of the fact that Auts(Z,) is a subgroup of
Q(S), and Auts(Z,) C AutZ, = Z;, we indeed know the automorphism
group of Cy(8) if R(S) = Auts(Z,). Fortunately, in most situations, Q(S)
is actually equal to Auts(Z,). In the next section, we first give a necessary
and sufficient condition for a circulant digraph to satisfy Q(S) = Auts(Z,).
Based on this result, we fully characterize the automorphism groups of
circulant digraphs of degree 3.

2 Circulant Digraphs with Q(S) = Auts(Z,)

In this section, we give a necessary and sufficient condition for a circulant
digraph to satisfy Q(S) = Auts(Z,) and derive some additional results
in preparation for characterizing the automorphism groups of circulant di-
graphs of degree 3.

Lemma 2 [5]. Cr(S) is strongly connected if and only if S generates Zy,
if and only if ged(s), 82, ..., 8x,n) = 1, where S = {34, 83, ..., 8x }.

Theorem 1. Let C,(S) be strongly connected and Sp be a subset of S
that generates Z,. Then Q(S) = Auts(Z,) if and only if for T € (S) and
a,b € Sy, 7(a+b) = 7(a) + 7(b).

Proof: The necessity is obvious. To show the sufficiency, we need only
confirm that Q(S) C Auts(Zy,).

Let 7 € Q(S) and a,b € Sp. Then ou,0_r) € L(Z,) for u € Z,.
It is easy to see that o_,(u)70oy is an automorphism of Cn(S). Since
0_7(w)T0u(0) = —7(u) + 7(u) = 0, 0_r(u)T0y € Q(S). So by assumption,
we have

O—7(u)T0u (a+ b) = —7(u)T0u (a) + O _r(u)TOu (b)

ie, —1(u)+7(u+a+bd)=—7(u)+7(u+a)-7(u)+7(u+b)

ie, 7(u+a+bd)=7(u+a)—7(u)+7(u+bd). 1)
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Hence, if u € So, we have 7(u + a + b) = 7(u) + 7(a) + 7(b). In general,
suppose u =), 8; (8; € Sp). From (1), one can easily derive, by induction,
that 7(3°, 8;) = 3_; 7(s:). Since Sp generates Zy, for any v; and vz in Z,,
we have v; = Y, 8, and vp = 2_j 825, Where 8y;, 835 € Sp. Thus

T +v) = 7(3;8+1;825)
= 27(s1) + 2;7(s25)
= 7(v1) + 7(v2).

This means 7 € Autg(Z,) and completes our proof.

Corollary 1. Suppose a € S. If a is the unique in-adjacency vertex of 2a
in S, then for u,v € (a) and 7 € Q(S), we have T(u + v) = 7(u) + 7(v).

Proof: By assumption, 7(a) is the unique in-adjacency vertex of 7(2a)in S.
Furthermore, we have 7(2a) = 27(a). Since otherwise, 7(2a) = 7(a) +7(a’)
(@’ # a), then 7(a) and 7(a’) are two in-adjacency vertices of 7(2a) in S.
Set So = {a}. Our result follows immediately by the proof technique of
Theorem 1.

Corollary 2. Under the assumption of Corollary 1, if a is also relatively
prime to n, we have Q(S) = Auts(Z,).

The condition 7(a + b) = 7(a) + 7(b) in Theorem 1 can be easily verified
sometimes. Corollary 1 provides us with a criterion to check it when a = b.
Another criterion is described in the following lemma.

Lemma 3. Let a,b € S. If a and b have 2 unique common out-adjacency
vertex a + b, then for T € Q(S), we have 7(a + b) = 7(a) + 7(b).

Proof: By assumption, 7(a+b) is the unique common out-adjacency vertex
of 7(a) and 7(b). Since 7(a) + 7(b) is also a common out-adjacency vertex
of 7(a) and 7(b), we have 7(a + b) = 7(a) + 7(b).

Let u € Z,. We call u a fixed vertex of (S) if 7(u) = u for 7 € (S). The
following theorem tells us that fixed vertices of Q(S) generate a subgroup
of Z,, whose vertices are still fixed vertices.

Theorem 2. If C,,(S) is a circulant digraph and T is a vertex set of Q(S),
then all the vertices in (T') are fixed vertices of Q(S).

Proof: Foru,v € T, 0_ )70y € 2(S). Hence by assumption, o_(y)Toy(v)
= v, and then 7(u + v) = u + v. By using induction as in Theorem 1, one
can easily prove that 7(3°, u) = 3, ui( where u; € T'). This implies our
result.

Corollary 3. If T is a set of fixed vertices of §(S). Then for T € Q(S),
a € (T) and u € Z,, we have 7(a +u) = a + 7(u).

Proof: Since o_,()70y € $(S), then by Theorem 2, we have o_,(u)Tou(a)
=a,ie., 7(a+u) =a+7(u).
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3 Main results

Suppose S = {a1,a2,a3} and ged(ay,az,e3,n) = 1. Then Cy(S) is a
strongly connected circulant digraph of degree 3.

Let Nt (S) be the out-neighbour set of S in C,,(S). Then N*(S) contains
at most six distinct vertices: a; + a2, @) +a3, a2 +as, 2a;, 2a3, 2a3. The first
three vertices are obviously different. For convenience, we classify Cy(S)
into one of four types: I-type, II-type, Ill-type, IV-type, where I-type, II-
type, and Ill-type are given according to the following conditions (I), (II)
and (III), respectively.

(l) 2a; = a3 + a3 and 2a2 = a1 + ag3;
(II) 22; = as + ag and 2a3 = 2ag;
(III) 2a; = 2a; but 2a3 # a; + as.

Cn(S) is said to be I'V-type if none of the above three conditions is satisfied,
even after renumbering ay, a2, and az. Denote by Cy(T), Cn(T2), Cn(Ts)
and C,(Ty) the I-type, II-type, IlII-type and IV-type of Cy,(S), respectively.
We first consider the automorphism group of IV-type of C,(S).

(i) The Automorphism Group of Cyn(T})

Clearly, INt(Ty)| = 3. If [IN*(Ty)| = 3, we have N+(Ty) = {2¢, =
a2 + a3,2a2 = a; + a3,2ag = a; + a2}. This is in accordance with (I). If
IN+(Ty)| = 4, we may get 2a; = a3 + a3 and 2a3 = 2a3, this agrees with
(IT). So it suffices to consider the following two cases.

Case 1. |[N*(Ty)| =6.

In this case, N+(T4) = {a1 + a, a; + agz,az + asz, 2a;, 2az, 2(13}. So for
every pair a; and a;(a; # a;), a; + a; is the unique common out-adjacency
vertex of a; and e;, and 2a; has a unique in-adjacency vertex a; in T3. By
Lemma 3 and Corollary 1, for 7 € Q(Ty), we have 7(a; +a;) = 7(a;) +7(a;).
Then by Theorem 1, we obtain Q(Ty) = Autr,(Z,).

Case 2. |[N*(Ty)| = 5.

In this case, N*(T}) has two possiblities: N+ (Ty) = {2a; = a2 +a3,a1+
az, a1 +as, 2az, 2a3} or Nt (T}) = {a1 +a2, a1 +as, a2 +a3, 2a; = 2a2, 2a3}.
But the latter coincides with (III). So we need only to deal with the former.

By Corollary 1, for 7 € Q(S), we have 7(2a2) = 27(a2) and 7(2a3) =
27(as). Because (7(az),7(a2 + a3)) is an arc of C,,(Ty), there must be a
certain ay € Ty such that 7(a2 + a3) = 7(a2) + 7(a}). Similarly, there is
some aj € Ty such that 7(a2 + a3) = 7(as) + 7(a3). Hence

7(az + a3) = 7(az) + 7(a3) = 7(a3) + 7(a3).

We conclude that a = a3 and aj = a3 (i.e., T(a2 + a3) = 7(az2) + 7(a3)).

Otherwise, a4 = a2 or a§ = a3, say, a3 = az. Then 7(az + a3) =
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7(a2) + 7(a2) = 7(2a2). This means a; = a3, a contradiction. By the
same technique, one can easily check that for any v € Q(Ty), 7(2a,) =
27(a1),7(a1 + a2) = 7(a1) + 7(a2) and 7(a; + a3) = 7(a1) + 7(a3z). By
Theorem 1, we have Q(Ty) = Autr,(Z4).

By the above discussions, we get the following result.

Theorem 3. The automorphism group of IV-type Cn(T}) is
AutC,(Ty) = L(Z,)Autr,(Z,)

Since Autr,(Z,) = {) € Z | M\Ty = Ty}, Autr,(Z,) can be easily found
if Ty is given. In fact, Autr,(Z,) can also be described more explicitly.
Here we do not go into details.

(ii) The Automorphism Group of C,(T)

Set T\ = {a), a2,a3}. In this case, we have 3a; = 3az = 3a3z. By simple
computation, we have T} = {a;, § + a1, §n+ a;1}. Since T} generates Z,,
there is a certain a; € T, say a;, such that a, is relatively prime to n. Let
T{ = a7'Ty = {1, 2 +1,2n + 1}, then Co(T1) = Ca(T}). Now we depict
Cn(TY}) in Figure 1.
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Figure 1 Figure 2
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Let V; = {i,3 +i,3n+i}(1 <i <} —1) and V3_; = {§, 3n}. Denote
by Sy; the symmetric group on V;, i = 1,2,..., 3 — 1. It is easy to see from
Figure 1 that Q(T{) = Sy, x Sy, x «+- % Sv*_‘ . So we conclude that

Theorem 4. The automorphism group of Cn(T}) is
AutCyr(Ty) = L(Z,.)(Sv, XSy, X -+- X SVg-n)'

and so |[AutCyr(T1)| = 63 12n.
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By the way, we mention that AutCy(T}) is isomorphic to the wreath
product Zg wr Sy;.

(iii) The Automorphism Group of Cy,(T3)

Set T» = {ai1,a2,a3}, then 2a; = 0.2 + a3, 2a2 = 2a3. This 1mphes
4a; = 4ay —403 Set T21 = {l,:-l-l n+1}, Top = {1,4 +1, n+1}
and T23 ={L,3n+1,3n + 1}. Since 4:c = 4a; mod(n) has four solutxons
a1, +ay,3n+a; and 3n + a3, it is not difficult to see that Cn(T?) is
isomorphic to one of C,.(Tm) Cn(T22) and Cr(T23). Hence it suffices to
determine AutC,(T%) (i = 1,2, 3) because T, generates Z,, we can assume
that god(al,n.) =1.

First we consider C,(T2;). To be explicit, we depict T5; U N+(T21)
in Figure 2 along with the edges of C,,(T%;) in it. For 7 € Q(T2,), since
7(0) = 0, we have 7(T2;) = T2 and 7(N1(T21)) = N+(T21) So 7 maps the
m-nelghbour set of N+(T21)t.oltself ie, 7(Ta1U{3n+1}) = THU{3n+1}.
Hence 7(3n+ 1) = 3n + 1. Thus we clalm that
Conclusion 1. zn-l- 1 is a fixed vertex of Q(T%;).

By similar method, we have
Conclusion 2. %n +1is a fixed vertex of Q(Tz).

Conclusion 8. —n + 1 is a fixed vertex of Q(Tz3).

Under the asumptxon of the Ty, we have 4|n, so gcd( n+1l,n)=11If
8|n, we also have ged(3n + 1,n) = ged(3 + 1,n) = 1. Thus by Theorem
2, we deduce that every vertex of C,.(ng) is fixed vertex of Q(T22) and
so Q(Tx2) = {I} (the identical element group). Similarly, if 8|n, Q(T21) =
Q(Tes) = {1}.

In the following, we assume that 22||n (i.e., 2%|n but 23{n). We continue
to consider C,,(T21). According to assumption, gcd(%n +1,n) =2or4.
Hence we have to consider two situations.

Case 1. gcd( sn+1,n)=

In this case, 4n+ 1 generates the subgroup (2) of Z,. Since 3 in+1lis
a fixed vertex of Q(T%;), by Theorem 2, each vertex of (2) is fixed. Thus
by Corollary 3, for 7 € Q(Ty;) and u+1 € (2) +1 (or u+( n+1) €
(2) + (3n+ 1)), we have T(u + 1) = u + 1'(1) (or T(u+ (-4-n + 1)) =u+
'r(zn-i- 1)). Additionally, note that 7({1,2n +1}) = {1,%n + 1} and
Zn ={2QU(2)+1)=(2)U((2 + (4n + 1)), 7 is uniquely det.ermmed by
its action on A = {1, 2n + 1}. Define

_ ut3n+l, fo=u+le(@+1
mo(v) = { v, otherwise.
One can sunply verify that mp is an automorphism of C,, (Tzl) Notice that
mo(u+ (3n+1) =u+3n+m(l) =u+1 (Vu € (2), 1§ = I. Thus
we conclude that Q(T;) = {I, 7o} = S4 = S3 (where S; is the symmetric
group on 2 element set).
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Case 2. gcd(%n-l- 1,n) =4.

In this case, %n + 1 generates a subgroup (4) whose vertices are all the
fixed vertices of (T3, ). Since 41(3+1)—1, (3n+1)—1and (3n+1)—(2+1),
it is clear that (4) +1,(4) + (§ +1) and {4) + (3n + 1) must be distinct
cosets of (4). Hence

Zn =@ V(@ +DU@ +(F + 1)U (@) +Cn+1)).

According to Corollary 3, for 7 € Q(T»;), 7 is uniquely determined by its
action on T5; = {1,% + 1,3n + 1}. Let Sp,, be the symmetric group on
T3;. For w € S1;, and v € Z,,, define

v, ifve ()

u + 7(1), ifv=u+le{@)+1
u+1r(-§+1), ifv=u+§+1e(4)+(%+1)
utw(dn+l1), fv=u+in+1e{@)+(3n+1).

T7(v) =

One can directely check that 7 is an automorphism of Q(T%;). So we have
Q(Ta) = S, & Ss.

Now we turn to consider Q(T23). Remember that 2%||n, gcd(2+1,n) =2
or 4. According to Conclusion 3, 7 +1 is a fixed vertex of 2(T%3). By using
the same method as in Case 1, we claim that Q(Ty3) = S{1,3n41) = S2 il
ged(% + 1,n) =2, or Q(T3) & Sp, = S3 otherwise.

Now we summarize the above discussions in the following theorem.

Theorem 5. Let T»; = {1, + 1,43n +1}, Tz = {1,% + l,g-n + 1}
and Tos = {1,3n +1,3n + 1}. Then Cn(Th) is isomorphic to the one of
Cn(T21), Cn(T22) and Cn(T23), and so

L(Z,)S,, if22||n, Ty =T» and gcd(-g-n +1,n)=2
L(Z,)S2, if2%||n, Ty = To3 and ged(2 +1,n) =2

AutC,(Th) = L(Z,)83, if 2%||n, Ty = T»; and ged(3n +1,n) =4
L(Z,)Ss, if 2%||n, Ty = T3 and ged(% +1,n) =4
L(Z,),  otherwise.

(iv) The Automorphism Group of C,(T3)

Let T3 = {a1,a2,a3}, then 2e; = 2a3 but 2a3 # a; + a3. In this case,
Nt(Tz) = {a1 + a2,a1 + a3,az + a3, 2a; = 2ap,2a3}. Since 2a3 is the
unique vertex in N+(T3) which has only one in-adjacency vertex a3 in T,
2a3 must be a fixed vertex of 2(73). This implies that a3 is also a fixed
vertex of Q(7T3). Then by Theorem 2 and Corollary 2, AutCy,(Ty) = L(Z,)
if ged(as,n) = 1. In the following, we assume that ged(as,n) = a. Let
ged(ay, a2, n) = B. Notice that 2a; = 2ap mod(n), it is not difficult to
show that ged(a;, n) = B or ged(az, n) = B. Without loss of generality, we
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assume that ged(a1,n) = B, then (ay, a2) = {a1) = (B). Recall that Cn(T3)
is strongly connected, we have ged(a, 8) =1 and

Zn = {a) U ({a) +a1) U ({a) + 2a;) U--- U ({a) + (@ — 1)a1).

Since each vertex of () is fixed vertex of Q(73), by Corollary 3, for 7 €
Q(T3) and u + ia; € {(a) + iay, we have 7(u + ia)) = u + 7(ia;). Thus
7 is uniquely determined by its action on {ay,2a;, ..., (@ — 1)a;}. Now we
distinguish two cases.
Case 1. {a) + a; = (a) + a.

Clearly, for 7 € Q(T3), 7 maps every ag-arc to itself. Thus 7 is also an
automorphism of Cy,({a;, az}). We illustrate C,,(T3) in Figure 3 (Note that
2a) = 2a, a2 = (g5 + 1)a1).

pf a3 {(a)

ay ag (a)+ay {a)+ag
4 1 v L
(@201 ) (artaater
20y az+ay [ ] L L
(@) +(F-1)ay {a)+ag+(§-2)ay
(a-1)ay {a) +(a = 1)oy jag+(a-2)ay
(a)+§ay
Figure 3 Figure 4

From Figure 3, it is easy to see that 7({iay, a2+(i—1)a1 }) = {iay, a2 +(i—
1)a;}. So 7 acting on {ay, a2; 2a1,a2+4ay; ..., (@a—1)a1,a2+(a—2)a,} is the
product of some transpositions as follows: (a1 a2), (221 a2 + @1), (3a; a2 +
2ay), ..., ((a — 1)ay a2 + (a — 2)ay).

For u+ja; € (o) +ja) 0 <j<a-1)and1<i< a-1,define

utaz+(j—-1a, ifj=i

'r.-(u+.7a1)={ u + jay, ifj#14.

Notice that a; = (i%‘ + 1)a, and a3 — a1 € {(a), we can directely examine
that 7; is an automorphism of Q(T3) and 72 = I. Therefore, Q(T3) =
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(71) X (12) X +++ X {Ta—1) = S5~ (where S, is the symmetric group on a
two element subset).
Case 2. (a) + a; # {a) + as.

In this case, by Corollary 3, for any T € (7T3), 7 must permute the cosets
of (). We can regard the cosets of (a) as vertices and {a; + (a), az + (a)}
as arc symbol set. Since 2a;+(a) = 2a2+(a), we have az = (§+1)a; +(a).
Thus 7 acting on Cy(T3) induces an action of 7 on Cq({1, § + 1}). From
Figure 4, we claim that 7 is the product of some transpositions of cosets
as follows: ({(@) + a1 (@) + a2),({@) + 2a1 (a) + a2 + a1), ..., ({@) + (§ -
1)a; (@)+az2+(§ —2)a;). This means that Q(T3) = 82% ~!, Notice that, if
a =1, a; +{a) is certainly equal to az+ (a), we have Q(T3) & S§~! = {I}.
By c.mbining the discussions in Case 1 and Case 2, we have
Theorem 6. Let ged(as, n) = a. Then the automorphism group of Cp(T3)
is
L(Z,) x 8§71, ifa; + (@) = a2 + ()

AutCp (T3) = { L(Zn) x 3,? ~!, otherwise.
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