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ABSTRACT. A Mendelsohn triple system, MTS(v) = (X, B), is
called self-converse if it and its converse (X, B~!) are isomor-
phic, where B~! = {{z,y,); (z,5,2) € B}. In this paper, the
existence spectrum of self-converse MTS(v) is given, which is
v=0or1 (mod 3) and v #6.

1 Introduction

Let X be a v-set, v > 3. A cyclic triple from X is a collection of three
ordered pairs (z,y), (v, 2) and (z,z), where z,y, z are distinct elements of
X. It is denoted by (z,y, 2) (or (y,2,z) or (z,z,y)). A Mendelsohn triple
system on X is a pair (X, B) where B is a collection of some cyclic triples
from X such that each ordered pair of distinct elements of X belongs to
exactly one cyclic triple of B. This system is denoted by MTS(v). It is
easy to see that |[B| = 3("3;12, and it is well known that an MTS(v) exists if
and only if v = 0,1 (mod 3) and v # 6 (see [1]). For an MTS(v) = (X, B)
define
B~'={B™! = (2,y,2); B = (z,5,2) € B}.

Obviously, (X,B~!) is also an MTS(v), which is called the converse of
(X, B). If there exists an isomorphism mapping f from (X, B) to (X,B~1),
then the MTS(v) = (X, B) is called self-converse and denoted by SCMTS

(v) = (X, B, f). To prove a system (X, B, f) is self-converse we only need
to show that f(B)~! € B for any B € B.
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For what orders do self-converse MTS exist? The problem was posed
by C.J. Colbourn and A. Rosa in their survey (as open problem 5, see [2]).
N.P. Carne [3] settles the problem when n = 0,4 (mod 12). In this paper,
we will complete the existence spectrum of SCMTS(v).

For convenience, we define some terminology. Let (X, B, f) be an SCMT
S(v). For z € X, if f*(z) = z but f*(z) # = when s < k, then denote
ps(z) = k. When py(z) = 1, we call z a fized point of the SCMTS(v). If
there exists an SCMTS(u) = (Y, A,g) suchthat Y C X, ACBand g =
fly, then the sub-system is called a sub-SCMTS(u) of the SCMTS(v).
An SCMTS(v) is called

A-type if py(z) < 2 for any z € X and |{z € X;pp(z) =1}| 2 2;

B-type if ps(z) < 2 for any z € X and there are a sub-SCMTS(4) and
another fixed point, which is not contained in the sub-SCMTS(4);

C-type if py(z) < 2 for any = € X and there is a sub-SCMTS(3), in

which three points are all fixed.
Note: MTS(3) and MTS(4) are all unique (up to isomorphic), i.e., MTS(3)
= {{a,b,c), {c, b,a)} and MTS(4) = {(u,v, 8), (u, 3, t), (u,¢,v), (v,¢,5)}. But
as self-converse system, MTS(3) has six mappings, i.e. all permutations
on {a,b, c}; and MTS(4) has twelve mappings, i.e. all permutations in the
form (*)(*)(*,*) or (*,*,*,*) on {u,v, s,t}. Here, the mapping f in C-type
sub-SCMTS(3) is stipulated for identical mapping, and the mapping g in
B-type sub-SCMTS(4) can be only the form (*)(*)(*,*) by py(z) < 2 for
any z. Obviously, by definition, C-type implies A-type.

2 Casev=1, 38 and 4 (mod 6)

Theorem 1. For v = 1,3 (mod 6) there exists an SCMTS(v), which is
C-type.

Proof: It is well known that there exists a Steiner triple system STS(v) =
(X, A) for v =1,3 (mod 6). Let B = {(z, ¥, 2), (2,9, z); {z,, 2} € A} and
f be an identical transformation on X. Then (X, B, f) is an SCMTS(v).
Obviously, this system is C-type. O

Lemma 1. If there exist both SCMTS(m) and SCMTS(n) then there
exists an SCMTS(mn). Furthermore, when SCMTS(m) is A-type, if
SCMTS(n) is A-type (or C-type) then the obtained SCMTS(mn) is A-
type (or C-type) too.

Construction: Let X be a m-set and Y be a n-set. Given SCMTS(m) =
(X, A, f) and SCMTS(n) = (Y,B,g). Construct a cyclic triple system J
on the set X x Y as follows:

part 1. {(z,u), (y,v), (z,w)) with (z,y,2) € A and (u,v,w) € B. This
gives mn(m — 1)(n — 1)/3 cyclic triples.
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part 2. ((z,u),(z,v), (z,w)) with {(u,v,w) € B and z € X. This gives
mn(n — 1)/3 cyclic triples.

part 3. {(z,u), (y,u), (2,u)) with (z,9,2) € A and u € Y. This gives
mn(m — 1)/3 cyclic triples.

Define mapping F: X x Y — X x Y such that F(z,y) = (f(z), g(y)) for
ze€ Xandye€Y. Then (X x Y, J, F) is an SCMTS(mn) as expected.

Proof: The system J contains
mn(m —1)(n - 1)/3 + mn(n — 1)/3 + mn(m — 1)t3 = mn(mn - 1)/3

cyclic triples, just the number as expected. Forany z #y€ X,u#v €
Y, each ordered pair ((z,u),(z,v)) appears in one block of part 2, each
ordered pair ((z, u), (y, u)) appears in one block of part 3 and each ordered
pair ((z,u), (y,v)) appears in one block of part 1. Thus (X x Y, J) is an
MTS(mn).

The triple B = {(z,u), (y,v), (2,w)) € J implies both {z,y,2) € A
and (u,v,w) € B. Thus (f(2), f(v), f(z)) € A and (g(w),9(v), 9(u)) € B,
thereby ((f(2), g(w)), (f (%), 9(v)), (f(z), 9(w))) = (F(z,w), F(y,v), F(=x, u))
appears in part 1, i.e., F(B)~! € J. The triple B = {(z, u), (z,v), (z,w)) €
J implies z € X and (u,v,w) € B. Thus {g(w), g(v),g(u)) € B, thereby
((f(z), g(w)), (f(z), 9(v)), (f (z), 9(u))) = (F(z,w), F(z,v), F(z,u)) appears
in part 2, i.e,, F(B)™! € J. Similar for the triple ((z,), (v, ), (2, u)).
Therefore (X x Y, J, F) is an SCMTS(mn).

If py(z) < 2 and py(u) < 2, i.e. f2(z) =z and g%(u) = u, for any z € X
and u € Y, then F%(z,u) = (f%(z),9%(u)) = (z,u), i.e. pp(z,u) <2, for
any (z,u) € X xY. Suppose (X, A, f) is A-type, which has a fixed point z,.
If (Y, B, g) is also A-type, in which g(uo) = uo and g(vo) = vo, then (zo, uo)
and (zo, vo) are fixed points of (X xY, J, F). If (Y, B, g) is C-type, in which
there exists a sub-SCMTS(3) = {(a,b, ¢}, {c,b,a)} and g(a) = a, g(b) =
b, g(c) = ¢, then both {(zo, a), (zo, b), (zo, c)) and {(zo, ), (o, b), (0, a))
appear in part 2 of (X x Y, J, F) and F(zo, a) = (2o, a), F(zo, b) = (xo, b),
F(z, ¢) = (zo,¢). (m}

Theorem 2. For v = 4 (mod 6) there exists an SCMTS(v), which is
A-types, and is still B-type when v > 4.

Construction: Let v = 6t +4 = 3(2t + 1) + 1, Zo4y = {0,1,...,2t},
Z3 = {0,1,2} and oo ¢ Za;4+1 X Z3. Construct a cyclic triple system B on
the set X = {00} U(Za¢+1 X Z3) as follows (The element (z, 1) in Zo¢yq X Z3
is denoted by z;, briefly):

part 1. U{MTS(4) on set {oo} U ({z} X Z3);z € Zp¢11};
part 2. ((z+ )i, (z — )i, Tit1) Withz € Zgy, 1 <y <tandie Zs;
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part 3. {(z — )i, (z + )i, Ti—1) With z € Z¢y1, 1 <y <tandi€ Zs.
Define mapping f on X as follows:

J(o0) = 00, f(zo) = zo, f(z1) = z2 and f(x2) = z; for any = € Zp¢41.
Then (X, B, f) is an SCMTS(6t + 4) as expected.
Proof: The system B contains

4(2t + 1) + 36(2t + 1) + 3t(2t + 1) = (6t +4)(6t + 3)/3

cyclic triples, just the number as expected. Obviously, all ordered pairs
(00, x;), (xi,00) and (xi, ;) are contained in triples of part 1, where z €
Zy41 and i # j € Z3. Now, let us consider any ordered pair P = (u;,v;),
u ?’-’ v € Zot41,8,J € Z3.

i) When P = (u;,v;), there is unique £ € Zg4 such that u + v = 2z.
Ifu—z<tletu—z=y, thenu=2z+y, v=z—yand P appears
inpart 2. fu—z > ¢, thenz—u=y <t thisu=z—-y,v=z+y
and P appears in part 3.

ii) When P = (u,v41), ifu—v=y <tthenu=2z,v=z—-yand P
appears in part 3; ifu—v >t letv—u=y, thenu=z-y,v=2
and P appears in part 2.

iii) When P = (u;,%—1), fu—v=y<tthenu=z+y,v=zand P
appears in part 3; ifu —v > ¢, letv—u=y, thenu=z,v=x+y
and P appears in part 2.
Thus the system (X, B) is an MTS(6t + 4).

Under the mapping f, oo and all zg are fixed points, and ps(z;) = 2,
ps(z2) = 2 for any z € Zy41. Obviously, each MTS(4) in part 1is a
sub-SCMTS(4). And the mapping f gives the following correspondences:

(= + v)o, (z — ¥)o, 1) +— the converse of {(z — y)o, (z + ¥)o, z2),

((z + ¥)1, (z — y)1,72) —— the converse of {(z — )2, (z + y)2, Z1),

«z + y)2! (z - y)Zr 370) «— the oonversg of ((:1: - y)ls (z + y)l,-'vo),
Thus, the system (X, B, f) is an A-type SCMTS(6t + 4). Furthermore,

when t > 1, besides a sub-SCMTS(4) in part 1 there is another fixed
point, thereby the system is still B-type. a

Corollary. If there exists an SCMTS(v) then there exist SCMTS(3v),
SCMTS(4v) and SCMTS(12v). And if the SCMTS(v) is A-type (or C-
type) then the SCMTS(kv) above is the same type too, where k = 3,4,12.

Proof: There exists a C-type SCMTS(3) which is also A-type, by Theorem
1. There exists an A-type SCMTS(4) by Theorem 2. Thus there exists
an A-type SCMTS(3 x 4) by Lemma 1. Thereby, the conclusion holds by
Lemma 1. a
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8 Case v=0 (mod 18)
Lemma 2. There exists an A-type SCMTS(18).
Construction: Let X = {a,b,c,d} U Z;4. Define mapping X — X as

follows: f(a) = a, f(b) = b, f(c) = d, f(d) = c and f(i) = 13 — i for
i € Zy4. The cyclic triple system B consists of the following triple:

part 1. MTS(4) on {a,b,c,d}.

part 2, (a,4,13 — ) and (b,i,i+ 8), i € Z14.

part 3. (c,4i,i+4) and (4,9—4,13—4),0<i<4and 10 <i < 11.
part 4. (c,i,i+11) and (d,2 4,13 —4), 5 <i <6.

part 5. (c,i,i+3) and (4,10 —4,13 i), 7<i < 9.

part 6. (c,12,13), (c,13,9), (d,0,1), (d,4,0).

part 7. (i,i+3,i+8), (i, i4+10,i+1), (13—i,5—4,10—3), (13—i, 12—i, 3~-i),
i=0,11.

part 8. (i,i+7,i+2) and (13— 4,11 —4,6 —4), i = 0,5,7, 12.

part 9. (j,j+i,j+2i) and (13—2i—j, 13—i—j,13—j5), wherei = 1,5 =1, 3;
i=2j=3i=6;=03i=9j=1;i=11,j=2andi=13,
j=4,86.

part 10. (5,6,9), (0,2,9), (1,11,4), (2,7,4), (8,4,7), (13,4,11), (12,9,2),
(11,9, 6).

Proof: Firstly, (X, B) is an MTS(18) affirmatively, but this verification is
tedious, which is deleted. For any triple B, it is easy to see that f(B)™!
appears in the same part. Obviously, f2(z) = z holds for any z € X and
a, b are fixed points. a

Theorem 3. For v = 0 (mod 18) there exists an SCMTS(v), which is
A-type.

Proof: Let v =18¢, ¢ > 1. Use induction method on t. When ¢ = 1, there
exists A-type SCMTS(18) by Lemma 2. Suppose there exists an A-type
SCMTS(18r) for any r < t. Let us consider the next order v = 18¢t. When
t=3r+1,v=18(3r +1). Since 3r+1=1 or 4 (mod 6), there exists an
A-type SCMTS(3r + 1) by Theorem 1 or 2. Since there exists an A-type
SCMTS(18) by Lemma 2, thus there exists an A-type SCMTS(18(3r+1))
by Lemma 1. When ¢t = 3r + 2, v = 18(3r + 2) = 9(6r +4). There exist
both A-type SCMTS(9) and SCMTS(6r + 4) by Thorem 1 and 2, thus
there exists an A-type SCMTS(9(6r +4)) Lemma 1. Finally, when t = 3r,
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v = 18 - 3r = 3. 18r. By induction hypothesis, since r < ¢, there exists an
A-type SCMTS(18r), thereby there exists an A-type SCMTS(3 - 18r) by
Corollary. ]

4 Stronger SCMTS(6k +4)

Lemma 3. If there exists an A-type SCMTS(n + 1) then there exists a
C-type SCMTS(3n + 1).

Construction: Let X = {00} U (Zn X Z3), o0 € Zn X Z3. By known
condition, there exists an A-type SCMTS(n+1) = ({o0}UZy, A, f), which
contains two fixed points co and 0, and ps(z) < 2 for any z € Z, \ {0}.
Now, construct a cyclic triple system B on the set X as follows:

part 1. {(z,%), (v,1), (2,1)) with (z,y,2) € A and i € Z3. (Whenever co
appears for z, y, z, omit the second coordinate i.)

part 2. {(z,0), (3,1), (2,2)) with z,y,2 € Z, andz +y+2=0.
part 3. ((f(2),2),(f(¥),1),(f(z),0)) with z,y,2 € Zn and = +y + 2 =0.

Define F(o0) = oo, F(z,i) = (f(z),i) for any (z,i) € Zn x Z3. Then
(X,B, F) is an SCMTS(3n + 1) as expected.

Proof: B contains 3. ﬂ'{"—l +n?+n2 = 3n(3n+1)/3 triples, just the num-
ber as expected. All ordered pairs (oo, (z, 1)), ((, ), ) and ((z, ), (v, 1))
appears in cyclic triples of part 1. For ordered pair P = ((z,1), (¥, %+ 1)),
thereis z € Z, such that z4+y+z = 0, then P appearsin triple {(z, 1), (v, i+
1): (zsi - 1» of part 2. For P = ((:B, i), (y:i - 1))) let u = f(.’t), v= f(y)t
w = —(u+v) and z = f(w). Since f(u) = f*(z) = z and f(v) = f2(¥) =,
thus P appears in triple {(z,1), (¥, % — 1), (2, + 1)) of part 3.

Triple A = ((z,3), (¥, %), (2,)) € Bimplies A = (z,y,2) € A, 50 f(A)~1 =
(F(2), F@), f(z)) € A, thereby ((f(2),i), (f(¥), %), (f(=),7)) € part 1, ie.
F(A)™! € B. Triple B = {(z,0),(,1),(2,2)) € B impliesz+y+ 2z =0,
so {(f(2),2), (f(¥),1), (f(z),0)) € part 3, i.e. F(B)~! € B. For the triple
C = {(z,2), (,1),(2,0)) € B, let u = f(z), v = f(y) and w = f(2), then
fuw) = fi(z) = z, f(v) = f2(y) = y and f(w) = f3(z) = z. Thus,
C= «zt 2)’ (y, 1)’ (z’ 0» = ((f(u)s 2): (f(v)a 1)! (f(w)! 0» € B implies u +
v +w = 0 and ((w,0), (v, 1), (4, 2)) = {(f(2),0), (f(¥), 1), (f(2), 2)) € part
2, that is f(C)"! € B.

Finally, since £(0) = 0 and 040+0 = 0, thus F(0,4) = (0,i), i € Z3 and
the (X, B, f) contains a sub-SCMTS(3) = {{(0,0), (0,1), (0, 2)), {(0,2), (0, 1),
(0,0))} by part 2 and part 3 . And for any element (z,i) € Z, x Z3,
F%(z,) = (f(z),4) = (z,4), thus pr((z,4)) < 2. The element oo is an-
other fixed point. Thus, (X, B, F) is C-type. (|
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Lemma 4. If there exists a B-type SCMTS(n + 4) then there exists a
C-type SCMTS(3n + 4), for n > 0.

Construction: Given a B-type SCMTS(n +4) = ({u,v, 8,t} U Z,, A, f),
which contains a sub-SCMTS(4) on the sub-set {u,v,s,t}, and satisfies
ps(z) < 2 for any z € Z,, where z = 0 is fixed point. Construct a cyclic
triple system B on set X = {u,v, 8,t} U (Z, x Z3) as follows:

part 1. sub-SCMTS(4) on {u,v,s,t}, say D.

part 2. {(z,1),(y,1), (2,1)) with (z,y,2) € A\ D and i € Z3. (whenever
u, v, 8,¢ appears for z,y, 2, omit the second coordinate 1.)

part 3. ((z,0), (1,1), (2,2)) and ((f(=), 2), (f (), 1), (f(2), 0)) withz,y,z €
Znand z4+y+2=0.

Define F(u) = f(u), F(v) = f(v), F(s) = f(s), F(t) = f(t) and F(z,i) =
(f(z), i) for any (z,i) € Z, x Za. Then (X, B, F) is an SCMTS(3n+4) as
expected.

Proof: It is not difficult to show that (X, B) is an MT'S(3n +4), similar to
Lemma 3. If B is a triple from {u, v, s,t}, then F(B)~! = f(B)~! appear in
part 1. As sub-SCMTS(4) of A, D is also a sub-SCMTS(4) of B, thereby
pr(z) < 2 for 2 = u,v,s,t. Other statements of the proof are almost the
same to that in Lemma 3. 0

Lemma 5. If there exists a C-type SCMTS(n + 3) then there exists a
C-type SCMTS(3n+ 3).

Construction: Given a C-type SCMTS(n + 3) = ({a,b,c} U Z,, A, f),
which contains a sub-SCMTS(3), D = {{(a,b,0),{c,b,a)}, and satisfies
ps(z) <2 for any z € Z,. Let us construct a cyclic triple system B on set
X = {a,b,c} U(Z, x Z3) as follows:

part 1. D.

part 2. ((z,9), (3,1), (2,9)) with (z,y,2) € A\ D and i € Z3. (Whenever
a, b, c appears for z,y, 2, omit the second coordinate ¢.)

part 3. ((x! 0)! (y: l)’ (zs 2» and «f(z)v 2): (f(y): 1)1 (f(.'B), 0)) withz,y,z €
Zoandz+y+2=0

Define F(a) = a, F(b) = b, F(c) = c and F(z,i) = (f(z),%) for any
(x,%) € Zn x Zs. Then (X, B, F) is an SCMTS(3n + 3) as expected.

Proof: Similar to Lemma 3 and Lemma 4. v a

Lemma 6. There exists a C-type SCMTS(v) for v = 4 (mod 6) and
v>4,

Proof: Let v = 6k + 4, all possibilities are classified as follows.
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Casel. k =3t,t > 1, then v = 18t + 4 = 3 x 6t + 4. There exists a
B-type SCMTS(6t + 4) by Theorem 2, thus there exists a C-type
SCMTS(3 x 6t +4) by Lemma 4.

Case 2. k=3t+1, then v = 18t + 10 = 3 x (6t + 3) + 1. There exists an
A-type SCMTS(6t+ 3+ 1) by Theorem 2, thus there exist a C-type
SCMTS(3 x 6t +3)+ 1) by Lemma 3.

Case 3. k=3t +2, then v = 18t + 16.

Subcase 1. ¢t = 2s, then v = 36s + 16 = 4(9s + 4). There exists a
C-type SCMT S(9s+4) by Theorem 1 (when s odd) or Case 1 (when
s even), thus there exists a C-type SCMTS(4(9s + 4)) by Corollary.

Subcase 2. t = 2s+1, then v = 365+34 = 3(12s-+11)+1. If there exists
an A-type SCMTS(12s+ 12) then there exists a C-type SCMTS(v)
by Lemma 3.

Below, we will discuss the existence of A-type SCMTS(12s+12). Firstly,
since there exist C-type SCMTS(18p+4) and SCMTS(18p+10) by Case
1 and Case 2, thus, by Lemma 5, there exist C-type

SCMTS(54p + 6) and SCMTS(54p + 24). *)

Now, we can get the existence of A-type SCMTS(12s + 12) (classified by
s§=6m+1i, i€ Z):

(i) 72m+ 12 = 12(6m + 1): by Theorem 1 and Corollary.
(ii) 72m+ 24, let m=3p +i (i € Z3):

216p + 24 = 4(54p + 6) by (*) and Corollary;
216p + 96 = 4(54p + 24) by (*) and Corollary;
216p+ 168 =54(4p+3)+6 by (*).
(iii) 72m + 36 = 4(18m + 9): by Theorem 1 and Corollary.
(iv) 72m + 48 = 12(6m + 4): by Theorem 2 and Corollary.
(v) 72m + 60 = 4(18m + 15): by Theorem 1 and Corollary.
(vi) 72m + 72 = 4(18m + 18): by Theorem 3 and Corollary.

This completes the proof. a
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5 The spectrum of SCMTS(v)

Theorem 5. There exists an SCMTS(v) ifand only if v =0or 1 (mod 3)
and v # 6.

Proof: The necessity is obvious due to the spectrum of MTS(v). When
v =1 or 3 (mod 6) and v =4 (mod 6), the sufficiency holds by Theorem
1 and Theorem 2. When v = 0 (mod 6), if v = 18t the conclusion has
already been given by Theorem 3; if v = 18t + 6, ¢ > 1, there exists a C-
type SCMTS(6t +4) by Lemma 6, thus there exists an SCMTS(18t + 6)
by Lemma 5; if v = 18t + 12 = 3(6¢ + 4), then the conclusion can be gotten
by Theorem 2 and Corollary. ()
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