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ABSTRACT. Let n,s be positive integers, and let r = 1 + 1/s.
In this note we prove that if the sequence {2 (r)}3%, satisfies
ra,(r) = Y0 (Dax(r), n > 1, then an(r) = nay(r)[(n -
1)1/(s +1)(log r)" +1/r(s + 1)). Moreover, we obtain a related
combinatorial identity.

1 Introduction

Let r be a real number with r > 1, and let A(r) = {am(r)}S.; be a
sequence which satisfies the initial values ag(r), a1(r) and the recurrance

n

ran(r) =3 (:)ak(r), n>1. 1)

k=0

When ag(1) = 0 and a,(1) = 1, A(1) is the usual Bernoulli sequrnce.
Therefore, A(r) is called a generalized Bernoulli sequence for > 1. In this
note we give an explicit formula for a,(r) as follows:

Theorem 1. If r =1+ 1/s, 8 is a positive integer and ao(r) = 0, then we
have
(n— 1) +
(s+1)(ogr)* " r(s+1)]°’
where [z] denote the greatest integer not greater than z.
By the above theorem, we obtain a combinatorial identity as follows:

n>1, 2)

on(r) = nan() |
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Theorem 2. For any positive integers n,s withn > 1,

ritret-oo+Ty gntratotra
1
SO DI G e

r1+3Argtctnra=n
rg20,8=21,2,...,m

_[ n! 8 ]
= |G+ Dloe+ /o) T G+ 102)°

where

ritrete+ra _ (mtret--+ 1)
4,72, ..., n rilrol. .. ry!

for any nonegative integers ry,r2,...,Tyn.

2 Proof of Theorem 1

We see from (1) that (2) holds for a,(r) = 0. It suffices to consider the case
that a;(r) # 0. Let A(r, z) be the expontial generating function of A(r).
Since ag(r) = 0, we get from (1) that

rA(r,n) — (r — ay(r)z = e A(r, z),

whence we obtain

Alr,z) = L= Doz

(4)

Since r = 14 1/s, by (4), we get

1 riz  ai(r)z e™* J
soy=lE e e & 27 ol § L (S0),

3=0

It implies that

_nay(r knt
s-ll-(l) 2 rk ? )

For any nonnegative integer I, let fi(z) = z!/r*. Then fi(2) is a con-
tinuously differentiable function in the interval [0, c0) and the integration
J{° 1f/(2)|dz is existed. By Euler’s sum formula (see [1]), we have

= had 1 (o] * l ']
> filk) = [ ez -G + [ - Py, ©

284



where {z} is the fractional part of 2. Since

-l L (logr)
/f;(z)dz = r*(logr)1 g 3! 7 +0,

where C is an integral constant, we get

U 1 J
/ fi(z)dz (log,.)u-l E (ogr) ()
On the other hand, since |{z} —1/2| < 1/2, we have
osI[(-preE sy [a@=g5. @

Substitue (7) and (8) into (6), we get

1 kit 1 P
r(logr)H'l Z=:o ( ogr) < ; A<t - r(logr)l+l Eo (ogr) . ©

We see from (5) that

on(r) = 2AE) 3 IO (10)

Therefore, by (9) and (10), we get

(log r) a,.(r) n, nl (log r)d
r(logr)“ Z <(s+1) a,(r) "— r(logr)® Zo - (1)

Notice that 1 < r < 2,0<logr <1, r=Y_2  (logr)™/m! and

m=0

2(log ) Z (log 1r')J z (logr)J

Jj=n
We get from (11) that

nl 2 an(r) < n!
(logr)" ai(r) ~ (logr)»

Since ag(r) = 0, we find from (1) that

+ 2. (12)

n-1 n
r)=s r), n>1 13
) =53 (7)astr (13)
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Since a;(r) # 0, we see from (13) that a,(r)/a1(r) is a positive integer for
any n > 1. When n = 2, we have ay(r)/e;(r) = 23 = 0 (mod 2s). For
n > 2, we assume that

a.(r) =0 (mod ts), t=2,...,n—1. (14)
ay(r)

By (13) and (14), we get

an(r) 2 [n)a(r) -1\ na(r) _ |
a;(r) = sz (k)#(r) = az (k - 1) ka:(r) =0 (mod ns).

k=1

k=1

Thus, by the deductive method, we have an(r)/a;1(r) =0 (mod ns) for any
n > 1. Notice that the difference of both sides of (12) is less than ns. From
(12), we obtain (2). The theorem is proved.

3 Proof of Theorem 2
We get from (4) that

(r=1)ai(r)z
(r=1)=-302, =/l

By the properties of Bell’s polynomial (see [2]), if r=1+1/sand sis a
positive integer, then from (15) we get

A(r,z) =

oo
1412+t rn gntrateetrn
a(r)z | 1+ Z Z (" )
cesy A 2., n
n=1 r1 +22r°’-‘|-..l.+;"”=" 1,72, n (l!) (2]) (nl)
ri20,i=1,2,..0yn

.A(T, a") =

(15)

whence we obtain

E (7'1 +ro4--- 4+ rn) gntratetra

an(r) = nla(r) @y ... @

r142rgtetarp=n T137T2y 0 yTn
ri20,4=1,2,...,n

n>1. (16)
Put ¢,(r) = 1. By Theorem 1, we get (13) by (16). The theorem is proved.
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