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ABSTRACT. We study four g-series. Each of which is inter-
preted combinatorially in three different ways. This results in
four new classes of infinite 3-way partition identities. In some
particular cases we get even 4-way partition identities. Our
every 3-way identity gives us three Roders-Ramanujan Type
identities and 4-way identity gives six. Several partition identi-
ties due to Gordon (1965), Hirschhorn (1979), Subbarao (1985),
Blecksmith et.al. (1985), Agarwal (1988) and Subbarao and
Agarwal (1988) are obtained as particular cases of our general
theorems.

1 Introduction, definitions, notations and the main results
Let the sets S and T de defined by

§={-1,1,3,5,7,...,k}

T = {-2,0,2,4,6,...,}.

For |g] <1 and 1 <1 < 4, we define f¥(g) as follow:
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where and in what follows, (a; g)n is the rising g-factorial defined by (a; Qn =
[1326(1 — ag*)/(1 = ag™*").
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In the next section we shall show that each f¥(q) is a generating func-
tion of three different partition functions of which two are ordinary and
one involves color-partitions introduced by Argarwal and Andrews in [2].
This eventually will lead to four new infinite classes of 3-way partition iden-
tities. For certain values of k our general theorems yield 4-way partition
identities. To exhibit the importance of our theorems we obtain all results
of Hirschhorn [6), Agarwal [1] and some results of Subbarao (7], Subbarao
and Agarwal [8] and Blecksmith et.al. [9]. We first recall the following
definitions from [3].

Definition 1: A partition with “n + ¢ copies of n”, ¢ > 0, is a partition
in which a part of size n, n > 0 can come in n + ¢ different colors denoted

by subscripts: nj,n2, ..., Nq4e. Thus, for example, the partition of 2 with
“n 4 1 copies of n" are

21,214+ 04,1;+ 11,11 +1,+0;
29,22+ 04,12+ 13,124+ 11+ 0y
23,23 + 01,12 + 12,12 + 12 + 0.

Note that zeros are permitted if and only if ¢ is greater than or equal to
one. And, in no partition are zeros permitted to repeat.

Definition 2: The weighted difference of two parts m;, nj, m > n is
defined by m —n—1i—j.

In the next section we shall prove the following theorems:

Theorcm 1. For k € S, let A¥(v) denote the number of partitions of v
with “n copies of n” such that the weighted difference of each pair of parts
is greater than k, even parts appear with even subscripts and odd with
odd. Let B¥(v) denote the number of ordinary partitions of v of the type
by +b2+...bp,' where b; > bit, b —biy1 2 k+3if1<i< [P—2/2],
bps2 — bpt2ys2 2 1 if p is even, and bp_1)2 = bpyry2 2 k+21if pis
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odd. Let c%(v) denote the number of ordinary partitions of v of the type
citecyt---tey, wheree; —cipp 2 (k+3)/2if 1<i<t—2,¢1 > ¢ if
tiseven,and ¢i—y — ¢ 2 (k+1)/2 and ¢, > ¢y if t is odd.

Then

A¥(v) = B¥(v) = C¥(v), for all v. (1.7)

Theorem 2. For k € S, let A§(v) denote the number of partitions of v
with “n +1 copies of n” such that even parts appear with odd subscripts
and odd with even and the weighted differences of each pair of parts is
greater than k, for some i, i;4, is a part. Let B%(v) denote the number
of ordinary partitions of v of the type by + by + - -- + by, where b; > by,
bi—biy1 2 k+3if 1 <i < [(p—1)/2), bp > (k+3)/2 if p is even. Let C5(v)
denote the nu,mber of ordinary partitions of v of the type ¢;+ca+---+c;
such that cg; — cgi41 2 (k+3)/2if 1 i <[(t—1)/2) and ¢, > (k + 3)/2
if t is even.
Then

A%(v) = BE(v) = C¥(v), for all v. (1.8)

Thcorem 3. Let A%(v) denote the number of partitions of v with “n + 2
copies of n” such that the weighted difference of each pair of parts is greater
than k for some 4,4, 5 is a part and even parts appear with even subscripts
and odd with odd. Let B§(v) denote the number of ordinary partitions of
v of the type by +bz+- - -+b, such that b;_y > b;, bi—bip1 > k+3if1<i<
[(P—2)/2], bps2 ~b(p42)/2 2 k+2 if p is even and bip_1y/2 —bp1y/2 > k+4
if p is odd.

Lot C5(v) denote the number of ordinary partitions of v of the type
¢1+cy+ -+ +c such that

C2-1—cC2 21
ei-2—cz 2 (k+3)/2 1<i<|[t/2)

¢ 2 (k+3/2if tiseven and ¢,y — ¢, > (k+3)/2 if t is odd.
Then

A§(v) = B(v) = C¥(v), for all v. (1.9)
Theorem 4. For k T, let A§(v) denote the number of partitions of v with
“n copics of n” such that even parts appear with even subscripts and odd

with odd subscripts greater than 1 and the weighted difference of each pair
of parts is greater than or equal to k. Let Bf(v) denote the number of
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ordinary partitions of v of the type b + ba +...bp such that b; > bit1,
b > 2, bi—biy1 > (k+4) if 1 < i < [(p—2)/2] and bp—1)/2—bip+1)/2 2 k+2
if p is odd. Let C¥(v) denote the number of ordinary partitions of v of
the type ¢, + cz + -+ + c¢ such that ¢; 2 2, ¢z — C2i41 2 (k+4)/2 if
1<i<[(t-2)/2] and ci—1 — ¢ 2> (k+2)/2 if ¢ is odd.

Then

Ak(v) = B¥(v) = C§(v), for all v. (1.10)

Remark. We remark here that in the definitions of Bf(v) the difference
conditions are satisfied by about the “first half of the summands” where
as in the definitions of C¥(v) the difference conditions are satisfied by all
summands.

In the next section we give detail proof of Theorem 1 and shortest possible
proofs of the remaining theorems. wp(i, k; v) will denote the partition b+
by + -+ - + by enumerated by B (v) and 6(i, k;v) will denote the partition
¢, + ¢z + - -+ + ¢, enumerated by C¥(v). We shall write fH(z,9) (1 <i<4)
for the right-hand sides of (1.5) (3 < j < 6) with numerators multiplied by
2™ where 121 < g~1. Thus for example

&, grl+k+3)(n—1)/ 2)
n

k —
fi(z9) = ,.2 P (1.11)
Clearly,
FE(1,q) = fF(g), 1<i<4. (1.12)

Also, A%(m,v) will denote the number of partitions counted by A¥(v) into
m parts. Our method consists in proving that for each i all three partition
functions viz., A¥(v), B¥(v) and Cf(v) are generated by E(q).

2 Proofs

We shall complete the proof of each theorem in three steps, viz.,
Step L. Y20, A¥(v)g” = f£(q)

Step II. 302 BF(v)e” = £(q)

Step ITIL. %2, Ck(v)g® = f¥(q)

Proof of Theorem 1:
Step I We shall prove that

3 Af(v)g® = fi(a)- (2.1)

v=0
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We split the partitions enumerated by A¥(m, v) into three classes, viz,,
1

(i) those that do not contain 1; as a part,
(ii) those that contain 1; as a part, and
(iii) those that contain r,. (r > 1) as a part.

We now transform the partitions in class (i) by deleting 2 from each part
ignoring the subscripts (we note that this is possible under the assumption
that even parts appear with even subscripts and odd with odd subscripts).
The transformed partition will be of the type enumerated by A%¥(m, v —2m).
Next we transform the partitions in class (ii) by deleting the part 1; and
then subtracting k+ 3 from all the remaining parts ignoring the subscripts.
The transformed partition will be of the type enumerated by Af(m—-1,v—-
km — 3m + k + 2). Finally we transform the partitions in class (iii) by
replacing rr by (r —1)(,~1) and then subtracting 2 from all the remaining
parts. This will produce a partition of v ~1—-2(m —-1) = v - 2m + 1
into m parts. It is important to note here that by this transformation we
get only those partitions of v — 2m + 1 into m parts which contain a part
of the form r,. Therefore the actual number of partitions which belong to
class (iii) is obtained by subtracting those partitions of v — 2m + 1 into m
parts which are free from the parts like r (the number of such partitions
is Af(m,v — 4m + 1) by case (i)). Thus the number of partitions in class
(iii) is

Af(m,v —2m +1) — A¥(m,v —4m +1).

Since these three classes are mutually exclusive and exhaust all the par-
titions enumerated by A%(m, v), we get the identity.

Af(m,v) = Af(m,v —2m) + A¥(m - 1,v - (k+3)m+k+2)

+ Af(m,v - 2m + 1) — A¥(m,v —4m +1). (2.2)
Let
©0
hk(z: 9= Z Allc(m: ,v)zmqv- (2°3)
v,m=0

Substituting for A¥(m, v) from (2.2) in (2.3) and then simplifying we get

h*(z,q) = h*(2q%, q) + 2qh*(2¢**3,q)
+q W (z%, q) — g7 h5(2¢%, q). (24)
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Setting

hk(zs q)= Zak.n(Q)z“’ in (2'4)

n=0

(2.5)

and then comparing the coefficients of 2™ in the resulting expression, we

get

Qkn—1 (q)q(k+3)('n—- 1)+1
() = )T = )

(2.6)

Iterating (2.6) n times and observing that ax0(q) = 1, we find that

qn[ 14+ (k+3)(n—1)/2]

ak,n(Q) = ( @ Q)Qn
and so
o0 n k+3)(n—1)/2
h"(z,q) _ Z q [14+(k+43)(n—1)/2] '
(69
= f{:(za Q)'
Now

PIHOEDD) (Z} Af(m, v)) q’
v=0 v=0 \m=0

= ff(1,9)
= ff(q9)-
This proves (2.1).
Step II. We shall prove that

3" Bf(v)g* = fi(g).

v=0
Forsome s> 1, p=2sor 2s—1.

First suppose that p = 2s. Then my,(1, k;v) = by +bs +
1 <bgs S b1 <-+- < byy1, and

b, >2
bc—l 2(k+3)+2
bo—z > 2(k +3)+2
by > (s—1)(k+3) +2.
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We subtract 2, (k+3)+2, 2(k+3)+2,.. ., (s—1)(k+3)+2 from b,, b,_1, ..., ba,
by respectively and 1 from each of bs41,...,bgs. This produces a partition
of v—[s+{2s+(k+3)s(s—1)/2}] into almost 2s parts. Thus the partitions
of the type m2,(1, k;v) are generated by

25+8{1+(k+3)(s—1)/2)
(9:9)2s

q

Similarly, if p = 28 — 1, then w;—1(1,k;v) = b; + bp + -+« + bgy—; with
1<bgs—1 <bps2<:+- < b, and

ba—2 2 2(k + 3)
ba-3 2 3(" + 3)

by > (s = 1)k +3)

Subtracting (k + 3), 2(k + 3),...,(s — 1)(k + 3) from by_1,bs—2,..., b1,
respectively and 1 from each of b, bs41, b2s—1, We are left with a partition
of v — s[1 + (k + 3)(s — 1)/2] into almost 2s — 1 parts.

This shows that the partitions of the type w51 (1, k; v) are generated by

g°l1+(k+3)(s-1)/2)

(4:9)20-1
Thus
o0 0 25+a[1+(k+3)(s—1)/2]
Z Bf(v)g* =1+ ¢
~ o (9 9)2s

o 8(14+(k+3)(s—1)/2]

9 =
> (9)26-1 s,

s=1

This proves (2.9)
Step ITI. We shall prove that

3 Chw)e® = fH(a). (2.10)

v=0

Forsomes>1,t=2sort=2s-1.
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First suppose that ¢ = 2s. Then 62,(1, k;v) = e1 + c2 + - -+ + c25, With

cy 21
c2s—2 2 1+ (k +3)/2
c2s—4 2 1+ 2(k+3)/2

21+ (s—1)(k+3)/2
and
C25-122 i
cos-3 2 2+ (k+3)/2
255 = 2+ 2(k + 3)/2

c1>2+(s—1)(k+3)/2

We subtract 1, 1+ (k + 3)/2,1+2(k+3)/2...,1+ (s — 1)(k + 3)/2 from
C25,C25—2, - - - , C2 Tespectively, and 2, 2+ (k+3)/2,2+2(k+3)/2,...,2+(s—
1)(k+3)/2 from 251,253, . . ., €1 respectively. This produces a partition
of v — [{s + s(s — 1)(k + 3)/4} + {2s + 2(s — 1)(k + 3)/4}] into at most 2s
parts.

Thus like 72,(1, k;v) the partitions of the type 824(1, k;v) are also gen-
erated by
25+8[1+(k+3)(s—1)/2}

q
(:9)2
Similarly, if t = 2s — 1, then 83,_1(1,k;v) = ¢y +ca + -+ - + €251, With

c2-121
c2s—3 > 1+ (k+3)/2
c2s—5 2 1+ 2(k+3)/2

ca>1+(s-1)(k+3)/2
and
cos—2 2 (k+3)/2
254 = 2(k +3)/2
cos—6 = 3(k +3)/2

& > (s~ 1)(k+3)/2

Subtracting 1,1 + (k +3)/2,1 +2(k +3)/2,...,1+ (s — 1)(k + 3)/2 from
C25—1,C24—3, - - -, €1 Tespectively, and (k + 3)/2,2(k + 3)/2,...,(s — 1)(k +
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3)/2 from c;-2, 24, .., c2 Tespectively, we are left with a partition of
v — [{s + s(s — 1)(k + 3)/4} + s(s — 1)(k + 3)/4] into at most 25 — 1 parts.
Thus like m2,—1(1, k;v) the partitions §2,_1(1, k;v) are also generated by

qa[l+(k+3)(a- 1)/2]
(9:9)2s—1

Hence,
[~}
Y_Ciw)e® = fi(a).
v=0
This completes the proof of Theorem 1.

Proof of Theorem 2:
Step 1. We shall prove that

3 4w)e” = () (2.11)
v=0
From (2.8), we have

n(1+(k+3)(n—1)/ 2]

ft(2,9) - fF(24%,9) = Zq

“._.1 (q: Q)Zn—
qn(n+1)(k+3)/2 n
=z
q,g (4 9)2n+1 (=q)
Thus
f1(2:9) - FE(24; 9) = 2af£(2q; q). (2.12)
Define P(m,v) by
[3(z9)= ) P*(m,v)z"¢"
v,m=0
We see by coefficient comparison in (2,12) that
Af(m,v) = A¥(m,v — 2m) = P¥(m — 1,v —m). (2.13)

Equation (2.13) shows that P¥(m,v) equals the number of partitions of
v+ m+ 1 with “n copies of n” into m + 1 parts such that the weighted
difference of each pair of parts m;, n; is greater than k, for some i i
is a part and even parts appear with even subscripts and odd with odd.
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If we subtract 1 from each part of a partition enumerated by P*(m,v)
ignoring the subscripts, we see that the resulting partition is enumerated
by A5(m + 1,v). Thus P¥(m,v) = A§(m +1,v), and so

o0
Y Al(m+1,v)2"¢" = f5(z,9). (2.14)
m,v=0
Now

Y Akl =3 [ Ab(m, v)] &
=1

v=0 v=0"'m

)
= Z A';(m-l' 1,1))(]”

m,v=0
= f5(1,9)
= f5(a)
This proves (2.11).
Step 2. We shall prove that
0o
Y Bi()e® = f£(a). (2.15)

v=0

We write mos(2,k;v) = by + ba + + -« + bgs With (k+3)/2 < bas < bos1 <
- L bs-!-l: and

bs > (k+3)/2
byt 2 3(k +3)/2
be—z > 5(k + 3)/2

by > (28 —1)(k+ 3)/2.
It is casy to see that mp,(2, k; v) are generated by
2+a)(k+3)/2
(9:9)2

Similarly, writing 1r2,_1(2; kiv) = by + by + -+ + bos—y With 1 < bg,y <
b23—2 S ot .<_ bdt and

q¢

bs—1 2 (k+3)+1
by—2 > 2(k+3)+1

b .2”(3 —1)(k+3)+1
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and following the usual method we see that mg,1(2, k; v) are generated by
q(2e— 1+ (k+3)s(a~1)/2
(9:9)2s—1

Thus
s(s+1)(k+3)/2

q
Z 32 (wg" =1+ E (q, 9)2s

v=0
q(26 1)+(k+3)s(s—1)/2

(91 9)20—1 =/3(a)-

+3

s=1
Step 3. We shall prove that
(o o]
Y Ch(w)e® = f5(a).
v=0
We write 825(2, k;v) = ¢; +cg + + - - + c25, With
c2s 2 (k+3)/2
c2-1 2 (k+3)/2

252 2 2(k +3)/2
c25-3 2 2(k +3)/2

c2 2 s(k+3)/2
c 2 s(k+3)/2
Now it is easy to see that §,,(2, k;v) are generated by
q(.’+a)(k+3)/2
(9:9)2s
Similarly, we write 82,—1(2, k;v) = ¢; + c2 + « -+ + €241, With
c2s—1 21
2,2 214 (k+3)/2
c2s-3 2 1+ (k+3)/2

cos—4 2 14+2(k+3)/2
c25-5 2 1+2(k+3)/2

2 > 14 (s —1)(k+3)/2
1 > 14 (s — 1)(k+3)/2
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and see that 82,-1(2, k;v) are generated by
q(%—1)+8(f3—1)('=+3)/2
(43 9)2s-1
As in Step 2, we can show that

3" Ch)e® = £5(9)-

v=0

Proof of Theorem 3:
Step I. We shall prove that

3" Ak(v)g” = f5(a). (2.17)

v=0

Equation (2.12) can also be written as
fE(z9) - fE(24%,9) = 2af5(z, ). (2.18)

Define Q¥(m, ) by f§(2,4) = Loomoo @*(m, v)2™¢".
We sce by coefficient comparison in (2.18) that

A¥(m,v) — A¥(m,v —2m) = Q*(m—-1,v-1). (2.19)

Equation (2.19) shows that Q*(m, v) equals the number of partitions of v+1
with “n copies of n” into m + 1 parts such that the weighted difference of
each pair of parts m;, n; is greater than k, the even parts appear with even
subscripts and the odd with odd and for some 4, i; is a part. If we replace
this part i; by (i — 1)i4+1, we see that the resulting partition is enumerated
by A%(m + 1,v). This implies that

Q¥(m,v) = A§(m +1,). (2.20)
Therecfore
f: AS(m +1,v)2™¢" = E q”|1+(:-1:1)(k+3)/2] om
=0 mp 4, 9)2v+1
= f§(z,9). (2.21)
Now

Y A=Y [ 3 A(m, v)] &

v=0 v=0 “m=0

= ,,2; [2A§(m+ 1,v)] q’

= fff(ls Q)
= f3(9)-
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This proves (2.17).
Step II. We shall prove that

) Bi(v)q® = f5(q). (2.22)
v=0

We write m2,(3, k;v) = by + ba+- - -+ bas With 1 < boy < bog—y < -+ - < bpyy
and

b 2k+3
bs—l 2 2(" + 3)

by 2 s(k + 3)
By the usual argument it can be shown that mo,(3, k;v) are generated by
gorele+1)(k+3)/2
(2:9)2

Similarly, writing mo,—1(3,k;v) = by + b2 + -+ + bas—1, where 1 < bg,_; <
b28—2 <. Sba and

bo—z > 2+2(k +3)

b1 22+ (s~1)(k+3),
We see that m,—;(3, k;v) are generated by

g(2e—DH(e=1)[1+(k+3)/2)
(9;9)25-1

Therefore,

gorelet)(k43)/2

,;,BS(U)" -1+E (4 9)2

0 25—1+(s—1)[1+8(k+3)/2]

q —
+ Z (9:9)26-1 = fiG).

Step IIT. We shall prove that

> Ch@)® = fH(a). (2.23)

v=0
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We write
c2s 2 (k+3)/2
cos—2 = 2(k+3)/2
c2s—4 = 3(k +3)/2

c2 2 s(k+3)/2
and
c25-1 2 1+ (k+3)/2
cos—3 2 1+2(k+3)/2

1 >1+s(k+3)/2
By the usual argument it can be shown that §2,(3, k; v) are generated by
gorolet1)(k+3)/2
(g:9)2
Similarly, writing 62,—1(3, k;v) = ¢ +c2 + -+ - + c25—1, With
c2-121
C25-3 22+ (k+3)/2
c2s-5 2 2+ 2(k +3)/2

c>2+(s—1)(k+3)/2
and
c2s—2 2 1+ (k+3)/2
Cosq 2 1+ 2(k +3)/2
c2s—6 = 1+ 3(k +3)/2

c2>14+(s—-1)(k+3)/2.
We see that 62,—1(3, k; v) are generated by
q2s—1+(a-1){l+a(k+3)/2}

(9:9)261
Now as in step II, we can show that

Y Civ)e® = f5(v)

v=0

This completes the proof of Theorem 3.

46



Proof of Theorem 4:
Step 1. We shall prove that

PV HO T H O (2.24)
v=0

Dividing the partitions enumerated by A%(m, v) into the following three
classes:

(i) those that do not contain r, as a part,
(ii) those that contain 2; as a part, and
(iii) those that contain r.(r > 2) as a part.

and then using a simple combinatorial argument, one can prove the follow-
ing:

A§(m,v) = Af(m,v —2m) + A¥(m - 1L, v — (k +)m + k+2)

+ Af(m,v - 2m +1) — Af(m,v —am +1). (2.25)
Set
00
g(z9) = Y Af(m,v)2"g". (2.26)
m,v=0

Using (2.25) in (2.26), we get

9"(2, q) = g"(2¢%, @) + 24" (24", q)

+ 97 g% (24%,9) — ¢ g*(24", 9). (2.27)
Set
9*(z.9) =) Bralg)z". (2.28)
n=0

Then the coefficient comparison in (2.27) gives

q(k+4)('n— 1)+2
ﬁk,n(‘l) = (1 _ qzn)(l — qzn_l)ﬂk.n—l(q)' (2‘29)

Iterating (2.29) n times and noting that B 0(g) = 1. We get
q2n+'n(k+4)(n—l)/2
(4:9)2n

Br.a(g) = (2.30)
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Therefore

0 _In+n(n—1)(k+4)/2

Ry
o ma)=2, (3:9)2n

n=0

= f¥(z9). (2.31)

Now

S k) =Y [Z Ak(m, v)] &

v=0 v=0 “m=0
=g"(1,9)
= fé(1,q)
= f§(9)-

This proves (2.24).
Step II. We shall prove that

> Bi(v)e® = fi(9)- (2.32)
v=0

We Write 7, (4, k; v) = by +bg-+ - -+bog, Where 2 < by, < bayy < +++ < bppr
and

by > 2
boy = 2+ (k+4)
bos > 24 2(k +4)

by >2+(s—1)(k+4)
It can now be shown that wo,(4, k;v) are generated by

4s+8(a—1)(k+4)/2

q
(9:9)2s

Similarly writing mo,—1(4, k;v) = by + b2 + - -+ + bzs—1, where 2 < bps—1 <
bgs—2 < ¢+ < by, and

ba—l 2 k+4
bz > 2(k +4)

by > (s = 1)(k+4),
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We sec that ma,_1(4, k;v) are generated by
q2s+s (a=1)(k+4)/2

(9 9)25-1
Thus
oo 00 As+s(a—1)(k+4)/2
q
Af()g® =1+ -
; ; (Qs Q)za

D g28+2(s-1)(k+4)/2

q — fk
+§ @ 11

Step III. We shall prove that

) CE@)e® = f(a). (2.33)

v=0
We write 82,(4, k;v) = ¢; +c2 + - - - + co5, Where
c2s 2 2

Cas—2 = 2+ (kK +4)/2
Cas_s > 2+ 2(k + 4)/2

c2 22+ (s—1)(k+4)/2
and
C2s—122
c25-3 > 2+ (k+4)/2
C2s—5 22+ 2(k +4)/2

122+ (s=1)(k+4)/2
It can now easily be seen that 6,,(4, k;v) are generated by
glota(s=1)(k+4)/2
(4:9)2
Similarly, writing 83,—1(4, k;v) = ¢1 +¢2 + -+ - + c,—1, where
c25-2 214 (k+4)/2
C2s—q 2 1+ (k+4)/2

c221+(s=1)(k+4)/2
and
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Co-122
cos—3 > 1+ (k+4)/2
Cos—5 > 1+2(k+4)/2

a21+(s-1)(k+4)/2
we see that 62,—1(4, k;v) are generated by

g2e-+ola=—1)(k+0)/2
(9:9)20—1

As in step II, we can now show that

Y Ak()(e") = fi(a),

v=0

and the Theorem 4 is proved.

8 Particular cases

We shall discuss only those particular cases in which our theorems yield 4
way partition identities. We divide this section into four subsections and
discuss the particular cases of each theorem seperately.

8.a Particular cases of Theorem 1

Case I. When k= -1

Let Dl'l(v) denote the number of ordinary partitions of » into parts # 0,
+2, +6, £8, 10 (mod 20).
Then in view of the identity [5, (79)-(98)]

Z H (1 10n—2) (1 _ q10n—8)

r 4 (5 Q)2n e q)oo
(1- 20u 14 (1 — g2=6) (1 - ')

(3.a.1)

Theorem 1 gives the following 4-way partition identity:
AT'(v) = B;'(v) = C7'(v) = DT (v) (3.2.2)

As mentioned earlier each 4-way identity gives 6 identities in the usual
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sense.

AT'(v) = B\(v) (3.2.3)
ATl (v) = CTY(w) (3.2.4)
Arl(vw) = Dy '(v) (3.a.5)
B{'(v) = C{(v) (3.2.6)
Brl(v) = Dy '(v) (3.2.7)
Crl(v) = Di'(v) (3.2.8)

Identity (3.a.5) is due to the author (1, Theorem 1.1, p. 301, (3.a.7) is
due to Subbarao [7, Theorem 2.2, p. 432] (3.2.8) is originally due to Gorden
[4, Theorem 7] and was also proved by Hirschhorn [6, Theorem 1, p. 33
and Blecksmith et.al. [9, Theorem 8.1, r = 8, p. 748].

Case II When k=1

Let D}(v) denote the number of ordinary partitions of v into odd parts

then in view of the identity [5, (84)-(85), p. 161]

o0 qn2(n—l) hiacd qn(2n+l) bad 1
-—= - 1 =1 (3.&.9)
o @D (@2 o 1—g
we get the following 4-way identity from our Theorem 1:
A}(w) = Bl(v) = C}(v) = D}(v) (3..10)

A}(v) = D}(v) is Theorem 1.4 in [1].

3.b Particular cases of Theorem 2

Case 1. When k= -1

Let Dy 1(v) denote the number of ordinary partition of v into parts # 0,
&3, +4, £7, 10 (mod 20). Then in view of the identity [5, (94)]
ko qn(n+l)

= ! r — o10n-3 _ 10n—-7
n=0 (Q; Q)2n+1 - (q; q)°° !.;[1 (1 q ) (1 q )

(1 - q20n—16) (q20n—4) (1 - qIOn) ]

(3.b.1)
We get the following 4-way identity from oue Theorem 2:
A3'(v) = B;(v) = C5'\(v) = D; ' (v) (3b.2)
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Identity A5'(v) = D3'(v) is Theorem 1.2 in [1, p. 301]. Identity
B;'(v) = D7'(v) is due to Subbarao [7, Theorem 2.1, p. 432]. Iden-
tity Cy !(v) = D5 '(v) is due to Hirschhorn [6, Theorem 2, p.33] and was
also proved by Blecksmith et.al. [9, Theorem 8.1, r =7, p. 748].

Case II. When k=1

Let D}(v) denote the number of ordinary partitions of v into parts £ 0,

492 +3, £5, 8 (mod 16) then in view of the identity [5, (38)-(86)]
had q2n(n+1) 1

= ] _ 813} (1 — 85
n=o(‘1¥q)2n+1_(q;q)oonl;[1(l %) (1-4")

(1 _ q16n—l4) (1 _ qlﬁn—‘Z) (1 _ q8n)

(3.b.3)

we get the following 4-way identity from our Theorem 2:
Al(v) = Bl(v) = C}(v) = D}(x) (3.b.4)

Identity Al(v) = Dj(v) is Theorem 1.7 of [1]. We remark here that
Al(v) = A(v) of Theorem 1.7 in [1]. This can easily be seen by increasing
the subscripts in the partitions enumerated by Az(v) by 1.

Identity Bl(v) = D}(v) seems to be new, but has a striking resemblance
with Subbarao’s Theorem 2.4 in [7]. Identity C}(v) = Dj(v) is due to
Hirschhorn [6, Theorem 3, p. 33] and was also obtained by Blecksmith
et.al. [9, Theorem 8.1, r =5, p. 748].

3.c Particular cases of Theorem 3

We consider the case when k = —1.

Let D3 !(v) denote the number of ordinary partitions of v into parts #0,
+2, 44, £6, 10 (mod 20). Then in view of the identity [5, (96)).

f: "(n+2) __ 1 ﬁ (1 - g'4) (1 — ¢'°»=5)
n=1

(@ 9)2m+1 (690

n=0
- ¢®m18) (1 - q20n-2) (- 7°)
(3.c.1)
we get the following 4-way identity from our Theorem 3:
A37'(@) = By () = C5(v) = D5 () (3.:2)

identity A3'(v) = D3 '(v) is Theorem 1.3 of [1]. Identity C5'(v) = D3 Yv)
is due to Blecksmith et.al [9, Theorem 8.1, r =9, p. 748].
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3.d Particular cases of Theorem 4

Case I. When k= -2

Let D;%(v) denote the number of ordinary partitions of v into parts # 0,
%1, £8, +9, 10 (mod 20).
~ Then in view of the identity [5, (99)]

i grin+l) 1 ﬁ (1 - g1%-1) (1 — g10n-9)

@ (G0 ook
(1 - q20n—8) (1 - q20n—12) (1 - q10n)

(3.d.1)
We get the following 4-way identity from Theorem 4
A7%(v) = B;*(v) = C;*(v) = D%(v). (3.d.2)

Identity Az%(v) = D;%(v) Theorem 1.5 of [1]. Identity By 2(v) = D;%(v)
is due to Subbarao and Agarwal [8, Theorem 1.4, p. 211] and identity
C;%(v) = D7?(v) is due to Blecksmith et.al. [9, Theorem 8.1, r = 10, p.
748).

Case II. When k=0

Let DJ(v) denote the number of ordinary partitions of v into parts # 0,
*1, £6, £7, 8 (mod 16). Then in view of the identity [5, (39)-(83)]

=~ ¢ 1 _ 8n—1\ (1 _ 8n—T
2 = =) (1 - )
n=0 ® n=1

@ (@9
(l - qlﬁn—IO) (1 - q16n—6) (1 - q8n)

(3.d.3)
we get the following 4-way identity from Theorem 4
A3(v) = BY(v) = C§(v) = DY(w). (3.d4)

Identity BJ(v) = Dj(v) is believed to be new but is very similar to
Subbarao’s Theorem 2.3 in [7]. Identity C2(v) = D2(v) is due to Hirschhorn
[6, Theorem 4, p. 34] and was also obtained by Blecksmith et.al. [9,
Theorem 8.1, r = 6, p. 748].

4 Conclusion
The most obvious questions which arise from this work are
1. Is it possible to give 3-way correspondence for our Theorems 1-4?

2. For certain values of k we have interpreted fE(g) (1 i< 4) combi-
natorially in four different ways, is it possible to do this for general
value of k7
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