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ABSTRACT. It is shown that the maximal number of pairwise
edge disjoint forests, F, of order six in the complete graph K,
and the minimum number of forest of order six, whose union is
K, are L%‘;—‘(}}lj and [%3&;—2], n > 6, respectively and e(F) is
the number of edges of F. (|z] denotes the largest integer not
exceeding: z and [z] the least integer not less than z). Some
generalizations to a multiple copies of that forests and of paths
are also given.

1. Introduction

Graphs in our context are undirected, finite, and have no multiple edges or
loops. We refer to [4] for the basic definitions.

We denote by P(n, H), the packing number, namely, the maximal num-
ber of pairwise edge disjoint graphs H, in the complete graph K, and by
C(n, H), the covering number, namely, the minimum number of graphs H
whose union is K.

As usual |z will denote the largest integer not exceeding = and [z] the
least integer not less than z.

In [6]-[9] it was proved that:

P(n,T) = ["g:T;)l) J (1)
d
" Cn,T) = [M] for n > @)
) = 28(T) ) 2 N,
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where T was any tree of order less than equal seven, e(T) is the number of
edges of T and ny was a constant determined in the various cases.

Definition: A graph H is said to have a G-decomposition if it is the union
of edge disjoint subgraphs each isomorphic to G. We denote this fact by
G| H.

The G-decomposition problem, for H = K, is to determine the set of
naturals N(G), such that K, has a G-decomposition if and only if n €
N(G).

Note that G-decomposition is actually an exact packing and covering.

In the proof of our problems of packing and covering, we make use of
results obtained by Bialostocki and Roditty [2] for 3K2, and by Yin and
Gong [12] for the rest of the forests of order six.

We denote H = U:=1 G; when the graph H is the union of ¢ edge disjoint
graphs G;,i=1,2,...,t.

The packing and covering results which will be discussed in details in the
remainder of the paper, can be summarized in:

Main Theorem: (Packing and Covering).
(a) P(n,F)= [12(3(}.-152], n > 6 and F any forest order six.

(b) C(n,F) = [325;-‘(-}}2], n > 6 and F any forest order six.

Further we shall give some results concerning multiple copies of paths
and the forgets of order six.

The relevant forests to our problems are:

(i) F1 = 3K, the matching consists of three edges.
(ii) Fo = 2P, two vertex disjoint path of order three, denoted[(z, ¥, z)
(u,v,w)].

(iii) F3 = K;3U K,the star with three edges with a vertex disjoint edge,
denoted [(z; v, 2, w)(u, v)].

(iv) Fs = P4 U Kj, the path on three edges with a vertex disjoint edge,
denoted [(z,y, z, w)(u, v)].

2. Results

Notation: The vertex set of K, is defined to be Z,, and addition of
vertex labels are done mod n. By K,,(t) we denote the complete ¢-partite
graph in which each color class is of size m. Also we define: V(K24) =
{a,b} U {0,1,2,3}, V(K34) = {a,b,c} U {0,1,2,3}.
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We start with F. In [2] we have a general theorem concerning F1, namely,
Theorem 2.1. The necessary conditions for a graph G to have a Fi-
decomposition:

e(G) = 3k, 3)
A(G) <k, ()

are also sufficient if e(G) > 15.
Remark 1:

1. In [12] we find that N(F;) = {n|n=0,1 (mod 3), n > 6}.

2. In [2] one can find the list of all the exceptional graphs, namely, graphs
satisfying conditions (3) and (4) but have no Fj-decomposition. The
algorithm for finding those graphs is described there.

Now we are ready to prove the Main Theorem for F.
Theorem 2.2. The Main Theorem is valid for Fi.
Proof: By Theorem 2.1 and Remark 1 (1) we have to prove only the case
whenn =3m+2, m > 2. Let G = Ksmi2\e, where e is any edges of

K3m42. Then by Theorem 2.1, G has a F)-decomposition, leaving e as a
nonpacked edge for the covering. a

In fact we can have a general result than Theorem 2.2, namely, the Main
Theorem is valid for ¢tK,. Indeed, using the well-known Hamilton cycle
decomposition ([4] p.89) and a result due to Alon [1], we get:

Theorem 2.3. The Main Theorem is valid for tKs.

Before proving the main theorem for F, we prove some general results
concerning ¢P3. First recall a theorem of Caro and Schénheim [3],

Theorem 2.4. Necessary and sufficient condition for a graph G to have
a P3-decomposition is that each component of G has an even number of
edges.

A simple lemma in which the proof is omitted is:
Lemma 2.5. tP3 | K4(t).

As a consequence of Lemma 2.5 we have,
Theorem 2.6. tP3 | Ky; Kapys.

Proof: Let Ky, = tK4UK4(t). Hence, tK4 has an obvious t P3-decomposition
(since P3 | K4 by Theorem 2.4), and so does K4(t) by Lemma 2.5. For
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Kse41 we give the direct construction of the decomposition, namely, the
4t + 1 copies of tP; are:
[(0,4¢t,2t)(1,4¢ — 1,2t +1),(2,4t — 2,2t +2),..., (¢ — 1,3t + 1,3t - 1))
(mod(4t + 1))(¢ = 1).

O
Lemma 2.7. tPs | Kia2t; Kt 41)c,2ta, Where a,b, c,d are positive integers.

Proof: We shall prove the lemma in the case a = b = ¢ =d = 1. The
general result follows immediately from that case.

Contract the color classes of size 2t into a color class of size ¢ by con-
tracting two vertices to one, so that we have K2, — G1 = Ki ¢, Ke41,2¢ —
G3 = Kit1,, where each edge in G1,G2 is a K in the original graph.
Hence, by a result of Alon [1] (see also [5]), we have t K2-decomposition of
G4, G2 which is a t Ps-decomposition of the required graphs. a

Now we are ready for,
Theorem 2.8. tP; | Kytmj Katm+1, m 2 1, an integer.

Proof: We use induction upon m. For m = 1 it was proved in Theorem
2.6. Assume we have proved it for all w < m — 1. Let,

Kam+j = Kagim-1) U Karpjaem—-1) U Kagy5,7 =0, 1.

Then using the induction hypothesis together with Theorem 2.6 and Lemma
2.7, we are done. [m]

Remark 2: Theorem 2.8 is generalization of a result obtained in [12] for
t =2 (for t = 1 we have Theorem 2.4).
Now we are ready to prove the Main Theorem for F5.

Theorem 2.9. The Main Theorem is valid for Fs, forn > 7.

Proof: For n =7 we have P(7, F2) =5, C(7, F3) = 6, as the following F»-

packing of K7 shows: [(2,1,5)(0,4,3)], [(2,3,0)(1,4,5)], [(1,6,4)(2,0,5)],

[(2,6,5)(0,1,3)), [(0,6,3)(4,2,5)]. The edge (0,5) is left for the covering.
Now by Theorem 2.8, for ¢ = 2, we have to prove the Main Theorem for

the cases: n=8m+73,5=2,3,...,7. Let,

K8m+j = Kgmn U Kj,8m v Kj. (5)

By Theorem 2.8 and Lemma 2.7 (for t = 2), F2 | Kgm; Kj,8m-
Denote the vertices of K; by 8m,8m +1,...,8m+75 —1.

Observe that by Theorem 2.4, K; has either a P3-decomposition or a
Ps-packing leaving one non-packed edge.

We prove now according to the various cases of j.

58



J=2: The single edge K3 in (5) is left for the covering.

Jj=3: Take any copy of F; from the decomposition of Ks,, with some
component Pj, say, (v, u,w). Replace this component by (8m, 8m +
1,8m +2), so that the packing is accomplished, leaving the subgraph
(u,v,w) U (8m, 8m + 2) non-packed for the covering.

j=4: We use the same idea as in the previous case, by taking some
copy of F» from the decomposition of Kg,,. Since P3 | K4 such that
there are three copies of P3 in K}, we replace one of the components
of F; by one the P;’s and the other component with another copy of
the P3’s, leaving exactly one P; non-packed, for the covering.

J=5: Using the same idea as in the previous case, by taking now two
copies of F; from the decomposition of Kjg,, and replacing the appro-
priate components by others from the P3-decomposition of K5. This
procedure leaves again one non-packed P; for the covering.

J=6: Observe that G = K¢\K;,2U K3, is connected with even number
of edges. Hence by Theorem 2.4, P; | G, and we have six copies of
Pj in that decomposition. Thus, choose three copies of Fy from Kg,,
and to each of two of the six P3-copies of G, the same way as we did
for j = 5. This completes the packing. The graph K; 2 U K> is left
for the covering.

j=8: Take the F»-packing and covering of K from above and we are
done.

This completes the proof of the theorem. a
Remark 3:

1. For n = 6 one can easily see that P(6, F;) = 3, which proves the
packing, but C(6, F3) = 5.

2. Using similar ideas as in the proof of Theorem 2.9 we can prove the
validity of the Main Theorem for ¢tPs, t even, say ¢ = 2k, in particular
cases, namely, n = 4tm + 7, 2t < j < 4¢ — 1. Put, Katmij = Kygm U
K;,4mUK;. By Lemma 2.7 and Theorem 2.8 tP3 | Ky¢m; Kjatm- Now
take the kP3-packing of, K; and only in the case where the number of
kP3 components in K is also even. For each two kP3 components in
K; take some tP3; component in K4:m and match the two halves of it
with the two mentioned components. Thus, the packing is completed
and the subgraph left in K; for the covering is good as well for Ky;,.

(]
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Before proving the Main Theorem for F3 we start with some preliminary
results from which we derive also some general results concerning tF3, ¢ > 1.

We start with a simple and almost straightforward lemma, where the
proof is omitted:

Lemma 2.10. tF3 | Koo atb; K3ec,atd, Where a, b, c, d are positive integers.
Theorem 2.11. tF3 | Kg;; Kse41-

Proof: Let, Kg; = tKgU Kg(t). From [12] we have F; | K3, thus tF | tKs.
To have tF; | Kg(t), contract in each color class two vertices to obtain from
Ks(t) a graph G = K3,\M, where M is a complete matching and each
edge in G is K, 4 in Kg(t). Then we have ¢K; | G where each K3 is K44
in Kg(t). Hence, the result follows using Lemma 2.10.

For Kg;+1 take the tK, 4-decomposition presented as follows:

(0;1,2,3,4),(5; 10, 11,12,13), (8;17, 18, 19, 20),
o (Bt —-1;7t— 4,7t —3,7t— 2,7t —1), (mod(8t+1)),t>2,

For t = 1 take only the first term.

If ¢ is even we match the components in pairs, say, A and B such that
in order to get tFy-decomposition we take from A a K} 3 together with an
endedge of B the remaining parts from A and B give also a F;. In case
of t > 3 odd we separate each time three components say, A, B, and C,
such the remaining ¢t — 3 components are of even number so that we may
apply the procedure described above. For the three copies of K 4 we match
them as follows, A —» B — C — A, namely, K, 3 from A with an endedge
from B, the remaining of B with an endedge of C, and so on. Thus, we
accomplish the ¢ F-decomposition of Kgg1 O

Theorem 2.12. tF3 | Kgim; Kgim+1, m 2 1 an integer.

Proof: For Kg:m we use induction upon m. For m = 1 we have proved it in
Theorem 2.11. Assume we have proved the theorem for all w < m —1. Let
Kgim = Kgym—1) U Kst,8¢(m—1) U Kae.- Then by the induction hypothesis
Lemma 2.10 and Theorem 2.11 we have the required decomposition. For
Kgim+1 we take a tmF3-decomposition promised by Theorem 2.11. Since
each component gives m copies of tFy we are done. 0

Remark 4: Theorem 2.12 is a generalization of a result obtained in [12]
fort=1.

Now we prove the Main Theorem for F3.
Theorem 2.13. The Main Theorem is valid for F3,n > 7.

Proof: First we start with n = 7. Let the packing of K7 be [(0 + j;1 +
52+45,3+5)4+55+7) 7 =012, [(6;1,2,3)(0,5)), [(4,0,3,6)(1,5)].
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The edge (3, 5) is left for the covering. Let Ksm+; 3=2,8,...,7 be as in
(5)- By Theorem 2.12 (for ¢ = 1) and Lemma 2.10, F | Kgm; K gm.-

Denote the vertices of K; by 8m,8m+1,...,8m+3j — 1. We prove now
according to the various cases of j.

j=2: The single edges in (5) is left for the covering.

J=38: Take some copy of F3 from the decompositions of Kgy, with the
single edge say (u,v). Replace that edge by the edge (8m,8m + 1).
The packing is left with no changes and the subgraph [(8m,8m +
2,8m + 1)(u,v)] is left for the covering.

j=4: Take some copy of F3 from the decomposition of Kz, say, [(z; 9,
z,w) (u,v)]. Instead of the single edge take (8m,8m + 1), and the
edge (u,v) together with (8m + 2;8m + 1,8m, 8m + 3) created a new
F3, leaving (8m + 1,8m + 3,8m) for the covering.

J=5: Take two copies of F3 from the decomposition of K., say, (z;y,
z,w) (u,v)], [(a;b,c,d)(e, f)]. With the edges of K5 we create the
following new F3’s. [(z;y, z,w)(8m, 8m+1)}, [(a; b, ¢, d)(8m+1,8m+
2)], [(8m;8m+2,8m+3,8m+4)(u, v)), [(8m+3;8m+1,8m+2, 8m+
4)(e, f)]. We are left with the non-packed Ps: (8m+1,8m+4,8m+2)
for the covering.

j=6: Let be a F3-packing of Ke: [(8m;8m +1,8m + 2, 8m + 3)(8m +
4,8m+5)], [(8m+1;8m+2,8m+3, 8m+4)(8m, 8m-+5)], [(8m+5; 8m+
1,8m + 2,8m + 3)(8m, 8m + 4)], leaving the triangle (8m + 2,8m +
3,8m +4) nonpacked. Take some copy of F3 from the decomposition
of Kgm, say, [(z;y, 2, w)(u,v)]. Instead the edge (u,v) take the edge
(8m + 2,8m + 3), so that we are left with the nonpacked subgraph
(8m +2,8m +4,8m + 3)(u, v) for the covering.

Jj=T7: Take the packing and covering of K7 from above.

This completes the proof of the theorem. a

Remark 5: Partial resutls concerning ¢ F3-packing can be obtained using
the same ideas as in Remark 3, for tF5.

We start with some preliminaries concerning F;. The following Lemma
has a simple and straightforward proof.

Lemma 2.14. F; | K3a 45; Kuc,ad; K3e+4 f.ag Where a,b, ¢, d, g are positive
integers and e, f are integers with at most one being zero.

Corollary 2.15. tFy | K3t 4s; Ka 4.
Theorem 2.16. tF, I Kg:; Kgeq1.
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Proof: The proof is based upon the proof for ¢ = 1 and the same arguments
as in the proof of Theorem 2.11. Again we use for Kg, the same ideas as in
Theorem 2.11. For Kg.41 take the ¢tPs-decomposition presented as follows

(0;4,1,3,2), (8;8t,9,8: — 1,10), (11; 8t — 2,12, 8 - 3,13),
., (3t +2;6t +4,3t + 3,6t + 3,3t +4), (mod(8+1)),t>2,

For t = 1 take only the first term.

If t is even we match the components in pairs, say, A and B such that
in order to get tFy-decomposition we take from A a P, together with an
endedge of B the remaining parts from A and B give also a Fy. In case of
t > 3 odd we separate each time three components, say, A, B, and C, such
that the remaining ¢ — 3 components are of even number so that we may
apply the procedure described above. For the three copies of P5 we match
them as follows, A » B — C — A, namely, P; from A with an endedge
from B, the remaining B with an endedge of C, and so on.

Thus, we accomplish the ¢ Fy-decomposition of Kg;.1. O

Corollary 2.17. tFy | Kgim; Kstm+1-
Now we are ready for the proof of the Main Theorem for Fy.

Theorem 2.18. The Main Theorem is valid for Fj.

Proof: The proof will take care of several cases according to the various
values of n.

n Packing Remain for Covering
6 [(0, 1,3,4)(2,5) (mod 6) (2,0,4)u(1,5)
7 {(1,0,2,6)(3,4)], [(1,2,4,0)(5,6))
((2,3,5,1)(0, 6)], [(4, 1,3, 6)(2,5)] (4,6)
[(4,5,0 3) (1,8)]
8m,8m +1  Fj-decomposition [12]
10 (o, 1.3 )(5,9)] (mod 10) (3,8)
[(2,5,1,6)(4,9)], [(7,2,0,9)(4,8)]
13 {(0,1,3,6)(7,11)] (mod 13)

[(0 J, 547, 10+, 2+5)(6+4, 12+5)](mod 13)

0,1,2
[(12 5, 11,4)(1, 7)}, [(1, 9, 2,8)(3, 10)]
[(6,0,8,3)(4, 10)]

(3,9,9)

Let Kgm+; be as in (5). We shall use (5) in all cases of j but j = 2,5.
Observe that in the cases of j # 2,5 we have a result of [12] and Lemma
2.14 Fy | Kgm; Kjgm-
j=2: Let,
Ksmi2 = Kgm-1) U K10,8(m-1) U K10,m 2 2.
Then by the table the packing and covering of Kg(m—1), K10 is com-
pleted and by Lemma 2.14 we have the decomposition of Kg g(m—1)-
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j=8: Take some copy of F; from the decomposition of Kg,y, say, (z; v,
z,w) (u,v)] and replace the edge (u,v) by (8m,8m + 1). Hence, the
packing is not changed and we are left with (8m+1, 8m+2, 8m)U(u, v)
for the covering.

Jj=4: Take again some copy of F; from the decomposition of Ky, say,
[(z,9,2,w) (u,v)] and with the edges of K4 we create the following
two Fy’s: [(z,y, 2, w)(8m, 8m+1)), [(8m+1, 8m+2,8m, 8m+3)(u, v)),
leaving (8m + 1,8m + 3,8m + 2) for the covering.

j=5: Let,
Kem+s = Kg(m_1) U K13 8(m—1) U K13,m > 2.

Then by the table the packing and covering of Kg(m-1), K13 is com-
pleted and by Lemma 2.14 we have the decomposition of K- 13,8(m—1)-

J=6,7: Take the packing and covering of K and K7 from the table
and we are done.

This completes the proof of the Theorem. O

Final Remark

A complete version of the paper in which a detailed proofs are represented
is in [10].
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