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ABSTRACT. Holey factorizations of Ky, u,,...., are a basic build-
ing block in the construction of Room frames. In this paper we
give some necessary conditions for the existence of holey fac-
torizations and give a complete enumeration for nonisomorphic
sets of orthogonal holey factorizations of several special types.

1 Introduction

The use of holes in designs is one of the most powerful tools in combinatorial
design theory. The purpose of this paper is to study designs called holey
factorizations. These objects are essentially one-factorizations of K, with
holes. They have been used implicitly in the construction of Room frames,
but have never been studied systematically,. We will give some general
necessary conditions for the existence of holey factorizations, will discuss
existence of holey factorizations of certain types and will give a complete
enumeration of all nonisomorphic sets of orthogonal holey factorizations of
several small types. We begin with the definitions. ,

Let V be a set of v vertices, and let {V4,... ,Va} be a partition of V,
where |V;| = v;. Let K, ., denote the complete multipartite graph with
vertices V and with parts {V},...,V,,}. These parts are called the holes
since Ku,,..vn = Ky \ Ui {z3lz,y € Vi}. A holey factor of K,,.. .,
missing hole V;, is a one-factor of the graph K,,,. .. \ V; (i.e. a set of
edges such that each vertex of Ky,.,....v. \ Vi is on exactly one of these edges
and there is no edge between any two vertices in the same hole). A holey
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factorization of K., ... ., is a partition of the edges of the graph into holey
factors such that for each 1 < i < n there are exactly v; holey factors
missing hole V;.

The type of a holey factorization with holes {V},Va,...,Vy} is the mul-
tiset {|Vi], |Val,...,|Val}. We will say that a holey factorization has type
T =t}'t3?...¢5* if there are u; Vj’s of cardinality ¢;, 1 < i < k. If a holey
factorization has type t® for some ¢ and =, then it is called uniform.

Holey factorizations represent a special case of a general object called
a frame (not to be confused with a Room frame). A frame is a group-
divisible design (X, G, B) whose block set admits a partition into holey
parallel classes, each holey parallel class being a partition of X \ G; for
some group G; € G. A holey factorization is a frame where every block has
size 2. For further information pertaining to frames in general see [12].

A holey factorization of type 1'3* is given in Figure 1. Note that the holes
W= {l}, Va = {2) 3n4}: Vs = {5!6)7}1 Vi = {8,9, a}: and V5 = {b,c,d}
are written on the left of each holey factorization in square brackets.

[1] {9c} {sb} {2d} {36} {(7a} {48}
3] {8b} f{ad} {5¢} {79} {16}
234] {1c} {9b} {5d} {6a} {78}
234] {59} {ac} {1b} {7d} {68}
567) {2a} {18} {9d} {4b} {3¢c}
567] {ab} {8d} {4c} {13} {29}
567) {8c} {1d} {2b} {49} {3a}
80a) {6d} {7¢} {3b} {12} {45}
89a] {6b} {17} {2c¢} {4d} ({35}
89a] {3d} {7b} {6¢c} {14} {25}
bed {58} {1a} {39} {27} {46}
bed) {69} {4a} {28} {37} ({15}
bed) {47} {5a} {38} {19} {26}

Figure 1: A holey factorization of type 1134

Two holey factorizations F and G, both of type T, are said to be orthog-
onal if

1. for any two edges of the underlying graph (say e, and e2), if ¢; and
es are in the same holey factor in F, then they are different holey
factors of G; and

2. any holey factor in F and any holey factor in G' which are missing
the same hole have no edges in common.
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Our interest in holey factorizations stems from their connection to Room
frames. The following theorem gives this connection. (For results on Room
frames see [4] or [5]).

Theorem 1.1 The existence of a pair of orthogonal holey factorizations of
type T is equivalent to the ezistence of a Room frame of type T.

The proof is simple. Given a Room frame of type T, the rows and the
columns are both holey factorizations of type T. Clearly the row holey
factorization and the column holey factorization are orthogonal. This con-
struction can be reversed also.

In Figure 2 we give a Room frame of type 1!3% to help clarify the above
connection. Note that the rows of this frame contain the holey factors in
the holey factorization given in Figure 1.

9c| [5b[2d 36 7a|48
8blad 5¢c 79116
1c| 9 5d 6a|78

2a2|18]9d 4b| 3¢

8c 1d|2b[49 3a
6d 7c 3b 12 45
6b 17 2c|4d 35
3d|7b]6¢c 14 25
5811a|39 27|46
69|4a 28137 15
47|5a 38]19]26

Figure 2: A Room frame of type 1134

Another connection which we wish to point out is given in the following
theorem. Note that in order for a holey factorization of type 1 to exist,
then necessarily n must be odd; each factor consists of (n —1)/2 edges.

Theorem 1.2 The ezistence of a holey factorization of type 1" is equiva-
lent to the existence of a one-factorization of Knt.

Proof: Given the holey factorization F, say each holey factor fi is missing
the vertex z;. Add the new vertex oo to the graph and let h; = f; U
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{zi,00}. Then {hy,ha,...,hn} is a one-factorization of the graph Kp+1.
This construction is easily reversed. (]

Results on one-factorizations of Ky, can be found in [10] or [20].

This paper is organized a follows: Section 2 describes some necessary
conditions for the existence of a holey factorization of type T, in Section 3
we prove the existence of many types of holey factorizations, and in Section
4 we discuss some results on the enumeration of nonisomorphic holey fac-
torizations with small types, and of sets of orthogonal holey factorizations
of types 2% and 2°.

2 Necessary conditions for existence

A holey factorization must have at least three holes; if a holey factorization
had two holes, then a factor missing hole V; would need to contain edges
connecting pairs of vertices in the other hole. The following theorem applies
to holey factorizations with exactly three holes.

Theorem 2.1 If a holey factorization has ezactly three holes, then neces-
sarily all the holes must be of the same size. -

The proof follows immediately from the observation that the edges in any
of the factors missing hole V; must form a matching between the vertices
in the remaining two holes. The following is & necessary parity condition.

Theorem 2.2 If there exists a holey factorization of type t't5”...00",
then t; = v (mod 2) for each i where v = Y1 (ti X u;) is the number of
vertices in the underlying graph.

Proof: Since for each i there must be a holey factor on v —¢; vertices, then
v — t; must be even. Thus ¢; = v (mod 2). 0

The next theorem gives a condition on the sizes of the holes.

Theorem 2.3 If there exists a holey factorization on v vertices of type
T = tytots. . .tn, then v > 2t; + t;, for any i and j,

Proof: Let V; be a hole of size ¢; and let V; be a hole of size ¢;. A holey
factor missing V; must pair up the vertices in V; with a subset of vertices
from G — V; - Vj. Thus §; < v -t —¢j. a

Theorems 2.2 and 2.3 are probably close to being sufficient conditions for
the existence of holey factorizations. However we exhibit below an infinite
class of holey factorizations that is allowed by the previous three theorems
yet can not exist. We thank R. M. Wilson for helpful discussions concerning
the next theorem.
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Theorem 2.4 There ezists a holey factorization of type a®tytats .. . tx where
a=t;+i2+t3+ .-+ if and only if there exists a holey factorization of
type titotz ... tx.

Proof: Let U; and U; be the two holes of size a and let V}, V3, V3,... Vi
be the holes of sizes ¢y,t5,t3,...,tk, respectively. Now note that the
2a holey factors missing either U; or Uz must contain every edge from
V1, V2, V3,... Vi to Uy and Up. Thus, ignoring the edges between U; and
Uz, the holey factors missing the holes Vi, V,, V3, ... Vi constitute a holey
factorization of type ¢itats...¢. Thus, if there exists a holey factoriza-
tion of type a%t;¢at3. .. ¢k, then there exists a holey factorization of type
titats ... tk.

Conversely, begin with a holey factorization of type a% which exists by
Theorem 3.1 below. Use Theorem 3.6 to fill in one hole of size a with
a holey factorization of type ¢itats...tx. The resulting frame has type
a®titats ... tx. a

Corollary 2.5 There does not exist a holey factorization of type a2blc! if
b+c<a.

Proof: If b+c¢ < a, then this holey factorization does not exist by Theorem
2.3. If b+ c = a, it does not exist by Theorem 2.4 since there is no holey
factorization of type b'cl. a

Theorem 2.4 provides an infinite class of nonexistent holey factorizations
which satisfy the necessary conditions of Theorems 2.2 and 2.3. Essentially,
given a type T (|T'| = t) for which no holey factorization exists, Theorem
2.4 states that there also does not exist a holey factorization of type ¢2T'.
This process can then be repeated to show that there does not exist a holey
factorization of type (3t)%t2T, etc. For example, since there is no holey
factorization of type 22, there is no holey factorization of type 4222. This
in turn implies that there is no holey factorization of type 1224222, There is
also never a holey factorization of type t2abc where a+b+c=t and a # b,
since holey factorizations of type abc exist only if a = b = ¢ (Theorem 2.1).

The next theorem extends Theorem 2.3 to the case of d orthogonal holey
factorizations. The case of d = 2 was originally proven in [17).

Theorem 2.8 If there exists a set of d orthogonal holey factorization on v
vertices of type T = t1tat3. .. ty, then v > (d+ 1)t + t;, for any i and j.

Proof: Let V; be a hole of size ¢; and let V; be a hole of size t; (containing
the vertex z). Also let {Fy, Fs,...Fy} be a set of d pairwise orthogonal
holey factorizations. Since the holey factors missing V; must contain an
edge on the vertex z, and since all of the holey factors in F}, Fp,... and
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F; which are missing hole V; contain no edges in common, we deduce that
there must be at least d x ¢; vertices other than the vertices in V; or V;. So
dxt; <v—t; —t;j and hence v > (d+ 1) + ¢;. o

3 Existence of holey factorizations

In this section we will briefly discuss the existence of holey factorizations
of certain specified types. Two particular types of Room frames have been
extensively studied by researchers; these are frames of type A" and of type
1%-%y!, There have been numerous papers concerning the existence of these
frames over the past 15 years. Recently, both spectra (for Room frames)
have been essentially determined [19]. In contrast to the apparent difficulty
in finding the spectra of the frames of these types, the first two theorems
of this section give complete answers to the spectra of holey factorizations
of these types. The remainder of this section will discuss some holey fac-
torizations of other types.

The first result concerns uniform holey factorizations (type h*). The
proof can be found in [12] (Theorem 1.4). Note that the conditions are
necessary by Theorem 2.2.

Theorem 8.1 (Rees-Stinson) There exists a holey factorization of type h*
if and only if u > 3 and h(u — 1) =0 mod 2.

Holey factorizations of type 1*~Vv! correspond to one-factorizations of
Ky+1 which contain sub one-factorizations of Ky+1. This problem has also
been solved completely.

Theorem 3.2 (Cruse [1]) There exists a holey factorization of type 1!
if and only if u and v are odd and u > 2v + 1.

Since the existence of a Room frame of type T implies the existence of a
holey factorization of type T' (via Theorem 1.1), results on the existence of
Room frames apply to holey factorizations also. We summarize the list of
known frames in the following theorem.

Theorem 3.3 There exist Room frames (and hence holey factorizations)
of the following types

1. 153° for alla+b = 5,7 or9, ezcept for (a,b) = (2,3),(3,2),(4,1),(5,0),
(5,2) or (6,1), (5]

2. 2°4% foralla+ b€ {6,7,...,14,31,42,43,44} or if a+b > 48, [5]

3. 2"u! if and only if u is even and n > u+1, except possibly for 21918!.
(6] [19]
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The following three constructions are recursive constructions for holey
factorizations.

If T is the type t}*¢32 ... t% and m is an integer, then mT is defined to be
the type (mt;)“: (mtz)¥2...(mt,)"». The following recursive construction
is referred as the Inflation Construction. It essentially “blows up” every
hole by use of a Latin square of order m (thought of as a one-factorization
of K, ). We leave the details to the reader.

Construction 3.4 Suppose there ezists a holey factorization of type T and
suppose that m is a positive integer, then there exists a holey factorization
of type mT.

An interesting fact to note in the above construction is that m can be any
positive integer. In the analogous theorem for frames there is a restriction
that m 3 2 or 6. v :

The Fundamental Holey Factorization Construction follows immediately
from the Fundamental Frame Construction [17).

Construction 3.5 (Fundamental Holey Factorization Construction)
Let (X,G, A) be a group divisible design having type T, and let w : X —
Z+ U {0} (we say that w is a weighting). For every A € A, suppose there
i3 & holey factorization having type {w(z) : = € A}. Then there is a holey
Jactorization of type {3 .o w(z): G € G}.

The final recursive construction that we present here is a Filling in the
Hole Construction. The proof is immediate.

Construction 3.6 Suppose that there ezists a holey factorization of type
T = 't ...t3~ and a holey factorization of type S = sP's32...s¥m
where t; = 30 (8 X v;), then there ezists a holey factorization of type
R B OV

There are many more recursive constructions that can be used to con-
struct holey factorizations. Essentially, any recursive construction for Room
frames will work for holey factorizations. This includes the Filling in the
Holes and Fundamental Construction above, as well as the use of holey
transversals, and the use of frame starters and intransitive frame starters.
It is beyond our scope to discuss these additional constructions here. The
interested reader is referred to (5}, [17], [18], and [19].

The next two theorems follow from Theorem 3.3, where the missing cases
were constructed using a modification of the hill-climbing algorithm for
one-factorizations (described in [4]) to holey factorizations. This algorithm
is extremely fast and effective in constructing holey factorizations. Files
containing these factorizations are available from the authors.
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Theorem 8.7 There exists a holey factorization of type 13 for alla+b €
{5,7,9}.

Theorem 3.8 There exists a holey factorization of type 2°4° if and only
if a+b > 4 with (a,b) # (2,2) or if (a,b) = (3,0) or (0,3).

Note that the conditions in Theorem 3.8 are necessary by Theorems 2.1
and 2.2. The holey factorizations of types 2% and 42 exist by Theorem 3.1.
The remaining holey factorizations which were missing from Theorem 3.3(2)
were again constructed by the authors using the hill-climbing algorithm for
holey factorizations.

We have also generated holey factorizations for other small orders by use
of the hill-climbing algorithm for holey factorizations. We record these in
the next theorem.

Theorem 3.9 There exist holey factorizations of the following types: 246!,
2362, 2263, 2164, and 23416!.

In the next theorem we will be concerned with holey factorizations of
type 2"u!. From Theorems 2.2 and 2.3 we have that necessarily u must be
even and n > $u+ 1. From Theorem 3.3(3) there is a holey factorization
of type 2"ul! if n > u+ 1. In the theorem below we will show essentially
that if n > 2u, then there exists a holey factorization of type 2"ul,

Theorem 3.10 There ezists a holey factorization of type 2™u! if
1L.n> -21-u+1, u=2mod {andn iskeven,
2. n> %u and u= 0 mod 6,
S n> §-(u+2) and u =4 mod 6, and
4.n2 %(u+4) and u =2 mod 6.

Proof: Statement 1 follows from Theorem 3.2 and Theorem 3.4 with
m=2.

To prove statement 2, give weight 2 to every point in the first three
groups of a transversal design TD(5,t), give weights 2, 4 or 6 to every point
in the fourth group and give weight 6 to every point in the last group.
(Note that ¢ # 2,3,6,10). Apply Construction 3.5, using the fact that
holey factorizations of type 246!, 234!6! and 2262 all exist by Theorem 3.9.
Now fill in the first three groups with holey factorizations of type 2¢. Also
fill in the fourth group with a holey factorization of type 2% for ¢ < a < 3t.
Thus for every 4¢ < s < 6t we have constructed a holey factorization of
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type 2°(6t)'. Let u = 6t to get that there is a holey factorization of type
2°u! for all 2u < s < u, except for the cases 2/12! for 8 < i < 12, 218! for
12 <i <18, 236 for 24 < i < 36, and 260! for 40 < i < 60.

To handle the case u = 36, first begin with transversal designs TD(5,12).
Give weight 1 to every point in the first three groups, give weight either 1 or
3 to the points in the fourth group and give weight 3 to every point in the
last group. Apply Construction 3.5, using the fact that holey factorizations
of type 123572 exist for a = 3,4 by Theorem 3.7. The construction now
proceeds as above by filling in the first four groups with holey factorizations
of type 2° for 6 < a < 18. The case u = 60 is done similarly beginning
with a TD(5,20). All of the missing cases for u = 12 and u = 18 (includ-
ing 21918!) were constructed on the computer by use of the hill-climbing
algorithm. The final result now follows from Theorem 3.3(3).

Statement 3 is proven in a similar manner. Now give all the points in
the last group of the TD(5,t) weight 6 except for one point which receives
weight 4. The proof is then the same as above. Again the exceptional cases
occur when ¢ = 2,3,6,10. The cases for ¢t = 2 and ¢ = 3 (u = 10 and
u = 16, respectively) were handled by the computer. For t = 6 and ¢ = 10
(u = 34 and u = 58, respectively) use the same construction as above for
u = 36 and u = 60 except in the last group give weight 1 to exactly one
point,

Statement 4 follows this same pattern. Here we give all the points in
that last group weight 6 except for one point which receives weight 2. The
proof is again the same as above where once more the exceptional cases
occur when ¢ = 2,3,6,10. The cases for t =2and ¢t = 3 (u = 8 and u = 14,
respectively) were handled by the computer. For ¢t = 6 and ¢ = 10 (u = 32
and u = 56, respectively) use the same construction as above for u = 36
and u = 60 except in the last group give weight 1 to exactly two points. O

4 Enumerating nonisomorphic holey factorizations

In this section we will enumerate the nonisomorphic holey factorizations
of types 23, 33, 2 and 2°. In addition we will enumerate nonisomorphic
sets of orthogonal holey factorizations of type 25. We begin by defining
isomorphic holey factorizations.

Two holey factorizations F and H of a graph G, say F = {1, f2,... , fx},
H = {hy,h,,..., hi}, are called isomorphicif there exists a map ¢ from the
vertex-set of G onto itself such that {fi¢, f29, ..., fi¢} = {hy, he,... , hi}.
Here f;¢ is the set of all the edges {z¢,y¢} where {z,y} is an edge in f;.

The exact number of nonisomorphic one-factorizations (OFs) of K, is
known only for even n < 12. It is easy to see that there is a unique one-
factorization of K, K, and K. There are exactly six for Kg; these were
found by Dickson and Safford [2] and a full exposition is given in [21]. In
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1973, Gelling [7] proved that there are exactly 396 isomorphism classes of
OFs of Kyg. Recently, Dinitz, Garnick, and McKay [3] determined that
there are 526,915,620 nonisomorphic OFs of K)2.

It is easy to check that there is a unique holey factorization of each of
the types 1!, 13 and 15. The automorphism group of each of the six one-
factorizations of Kg is transitive on points (see [21]). Thus by deleting a
point to form a holey factorization of type 17, we see that there are also
exactly six nonisomorphic holey factorizations of this type.

In the next theorem we will count the number of distinct holey factor-
izations of type t3. The underlying graph here is K; ;.. Let V;,V;, and V3
be the three holes. The number of distinct ways to pick the holey factors
missing hole V; is obviously the number of distinct one-factorizations of
K. This in turn is the number of distinct latin squares of side ¢ with the
first column fixed. We get the following theorem.

Theorem 4.1 The number of distinct holey factorizations of type t3, with
fized holes, is [L(t))3, where L(t) is the number of distinct Latin squares of
order t with the first column fized.

Since L(2) = 1 and L(3) = 2, then it follows that there is a unique holey
factorization of 23 and 8 distinct holey factorizations of type 33.

Theorem 4.2 There are 2 nonisomorphic holey factorizations of type 33.

Proof: Without loss of generality, one can fix the first six factors, as
well as one edge in the seventh factor, in a holey factorization of type 33.
There are two choices for the second edge in the seventh factor, and that
choice determines the rest of the factorization. Thus, there are at most two
isomorphism classes of holey factorizations of type 33; representatives, A
and B, of the classes are shown in Figure 3, where the holes are indicated
as triples in square brackets. If we choose any three holey factors f, g,
and k from A such that each of the three is missing a different hole, then
FUgUh forms either three disjoint triangles, or a single 9-cycle. However,
if we choose any three holey factors f, g, and h from B, again such that each
is missing a different hole, then f|JglJh forms a triangle and a disjoint
6-cycle. Thus, A and B are nonisomorphic, and there are two equivalence
classes of 32 holey factorizations. (]

In order to count holey factorizations on a larger number of holes we use
the computer. We construct nonisomorphic holey factorizations by use of
an orderly algorithm; it generates the nonisomorphic holey factorizations
of type T in a lexicographic order defined in the following way. First, if
F = {f1, f2,...,fn} is a holey factorization, then we must have f; < f; for
all i < j. Then we say that F > H = {hy,ha,... ,hn} if there is some k,
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A: [123]475869  B: [123] 4758 69
[123] 48 59 67 [123] 48 59 67
[123] 49 57 68 [123] 49 57 68
[456] 17 28 39 [456] 17 28 39
[456] 18 29 37 [456] 18 29 37
[456] 19 27 38 [456] 19 27 38
[789] 14 25 36 (789] 14 26 35
[789] 15 26 34 [789] 15 24 36
[789] 16 24 35 [789] 16 25 34

Figure 3: The two nonisomorphic holey factorizations of type 33

1 < k < n, such that f; = h; for all i < k and f; > hx. We define a similar
ordering on partial holey factorizations consisting of fewer than n factors.
The algorithm builds up each factorization by adding one factor at a
time and rejects a partial factorization if it is not the lowest representative
(lexicographically) of all the partial factorizations in its isomorphism class.
In this way, the algorithm generates only the lowest representative of any
isomorphism class of factorizations and as such never generates any holey
factorizations which are isomorphic to each other. This approach saves both
time and space over algorithms which first generate distinct (but possibly
isomorphic) factorizations and then use methods to winnow isomorphs.
This type of algorithm has been used in other combinatorial searches in-
cluding enumerating Latin squares [11], strong starters [8], one-factorizations
of small graphs [13, 15, perfect one-factorizations of K14 [14], and Howell
designs of small order [13]. Our algorithm below is essentially the one that
was described in (3] to count the nonisomorphic one-factorizations of K.
However, our algorithm here reduces the search space by assuming a first
fixed factor consisting of the hyper-edges that correspond to the holes.

Theorem 4.3 There are 2 nonisomorphic holey factorizations of type 2%
and, for a fized set of holes, there are 40 distinct holey factorizations of
type 24,

Using the orderly algorithm we generated the lexicographically lowest
representatives of the two isomorphism classes of holey factorizations of
type 2¢. The computation required about .1 seconds at a rate of 20 mips.
The two factorizations are shown in Figure 4.

We determined the orders of the automorphism groups by counting the
number of permutations that mapped a factorization onto itself while check-
ing that the factorization was the lexicographically lowest representative of
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1: [12)354768 % [12)354768

|Aut] =12 [1 2] 36 48 57 |Aut| =48  [1 2] 38 46 57
[3 4] 15 28 67 [34] 1528 67

[3 4] 17 26 58 [34] 17 26 58

[5 6] 14 27 38 [5 6] 13 27 48

[5 6] 18 24 37 [5 6] 18 24 37

[7 8] 1325 46 [78] 14 25 36

[78]16 2345 [78]16 23 45

Figure 4: The two nonisomorphic holey factorizations of type 2!

its isomorphism class. We checked the results by using nauty [9] to deter-
mine the order of the automorphism group of the line graph corresponding
to the factorization. If we label the nonisomorphic holey factorizations of
type 2 as F;, 1 < i < 2, then the number of distinct holey factorizations
of type 24, with fixed holes, can be computed as

2o
Z [Aut(F)]

We checked this result by fixing the holes, and using backtracking to gen-
erate all distinct factorizations.

Theorem 4.4 There are TA7 nonisomorphic holey factorizations of type 28
and, for a fized set of holes, there are 2,253,312 distinct holey factorizations
of type 25.

Again, we used the orderly algorithm to generate the lexicographically
lowest representatives of the isomorphism classes of holey factorizations
of type 25. The computation required about 20 minutes at a rate of 20
mips. The file containing these 747 holey factorizations is available from
the authors.

We computed the orders of the automorphism groups in the same ways
as for the 24 factorizations. We computed the number of distinct holey
factorizations of type 25, with fixed holes, as

747
51925
= 2,253,312
Z [Aut(F)|

where {F;|1 < i < 747} is the set of nonisomorphic holey factorizations of

type 25. Checking this result with backtracking required 5.5 hours of cpu
time at 20 mips.
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We now turn our attention to nonisomorphic sets of orthogonal holey
factorizations. There does not exist a pair of orthogonal holey factorizations
of type 2 [16]. We will show below that there are pairs (in fact triples) of
orthogonal holey one-factorizations of type 25.

Two sets of orthogonal holey factorizations F' and H of type T, say
F = {F,F, ..., F}, H = {H\,H,,...,H,)}, are called isomorphic
if there exists a map ¢ from the vertex-set of G onto itself such that
{F1¢, F29,... ,Fy¢} = {Hy,Ha,... ,H,}. When s = 2, this corresponds
to the notion of isomorphic Room frames of type T

We extend the ordering used for holey factorizations to an ordering of sets
of holey factorizations. First, if F = {F}, F3,... , F,} is a set of orthogonal
holey factorizations, then we must have F; < F; for all i < j. Then we say
that F > H if there is some ¢, 1 < ¢ < s, such that F; = H; for all § < ¢
and F; > H,. Using this ordering we obtained the following results.

Theorem 4.5 1. There are 64 nonisomorphic sets of two orthogonal
holey factorizations of type 25.

2. There are 28 nonisomorphic sets of three orthogonal holey factoriza-
tions of type 25.

3. There are no nonisomorphic sets of four orthogonal holey factoriza-
tions of type 25.

We generated the 64 mutually orthogonal pairs of factorizations in the
following way. Let F;, 1 < ¢ < 747 be the lexicographically lowest noniso-
morphic factorizations as described in Theorem 4.4. We attempted to pair
each Fi, 1 < ¢ < 747, with each possible permutation of Fj, i < j < 747.
We checked each successful pairing to see if it was the lexicographically
lowest such pair in its isomorphism class.

The Appendix displays the 64 pairs as Room frames of type 25. We
counted the sets of three and four orthogonal holey factorizations in a simi-
lar way. The Appendix also lists the sets of three orthogonal factorizations
of type 25,
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Appendix: Nonisomorphic sets of orthogonal holey factorizations
of type 2°

The 64 sets of two orthogonal holey factorizations of type 25 are displayed
below as Room frames. Beneath the index of each Room frame is the pair of
indices of the constituent holey factorizations. For example, Room frame 1
is derived from holey factorizations 1 and 690. The first holey factorization
of each pair, which yields the rows of the Room frame, is always in canonical
(lexicographically lowest) form; the second holey factorization, yielding the
columns, is not necessarily in canonical form.

79[68] |35]24 63[7 35[24
6978 31 25 6978 34 28]
59]48 17]06 5948 17|06
16]07|58 |49 58|49]16]07]
1: |26 19[08] |37 2: |26 19[08]37] |
1 [ [27[18]03 36| | 1 27[18]09
39/04]15]28 39|04[15] |28
690 38 29 05[14 650 38 29 [05]14]
57]46] |13[02 57|46] [13[02
47[56 03 12 47|56 03 12
68]79 351 [24 79]68 351 |24]
78 34 |25 7816934l |25] |
59[48 17|06 5948 17{06
16[07]49]58 16075849
3: [26] [19]08 37 4: 26 19|08] |37
1 27 18[09]36 1 27|18[09 36] |
39[04[15] [28 39 28 04[15
690 38 29 05[14 630 38| |05]14]|29
57|46 [13]02 46|57 [13]02
47|56 03 12 47|56 03 12
79]68[35 24 [79[35 24
7869 34[25] | 78[69 34|25
5948 17|06 5948 17|06
16[07]49 49|58[16]07
5: [26] [19]08 37 6: [26] [19]08 37
1 127 18]09]36 1 27 i8]09] |36
39 28 04|15 39 28 0415
690 [38[ |0B[14] |29 630 38| [05]14
46[57] [13]02 46[57| |13]02
47|56 03 12 47156 03 12|
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68[79 35] |24 7968 35] 124
69[78| [34] |25 78[69[3a[ [25
59[48 17|06 5948 17|06
49|58[16]07 16[07|58[49
15: [26] [19]08 37| | 16: [26 19j08] |37
2 [ |27 18[09] |36 2 [ 127|18]069 36
39[04[15|28 39 28 04|15
680 38 29 05[14 690 38| |05|14|29
4756 13]02 47|56 13[02
57|46]03 12 46|57|03 12
7968 38 24 68[79]35 24
69|78]34] [25 7869 34|25
59[48 17]06 59[48 17]06
58[49[16]07 49|58[16]07
17: [26 19]08[37 18: [26] [19]08 37
2 [127]18]09 36 2 27 18[09] |36
39 38 04|15 39 28 0415
690 [38]|05[14] |29 690 |51 fos[1a[z
47}56 13|02 47|56 13|02
46(57|03 12 46|57[03 12
79[68] [24]35 79 68[24]35
69 78 34]28 [69[78 25|34
59 17[06] |48 59 48[17[06
49 58| |16]07 49 16]07[58
19: [26]37] o8 19 20: [26[37] [o8 19
2 8 09|27(36 2 18 09|36]27
38[04[15]39 28 39 0415
680 38 29 05|14 690 (38 [05]14] |29
47|56 02|13 47|56 02[13
B7[46 03|12 46[57 03[12
68]79[24]35 79]68 24[35
[69]78 3425 (69|78 34|25
59]48 17|06 59[48 17|06
58(49/16]07 16]|07[58[49
21: [26|37 19|08 22: [26[37 19|08
2 18|09 37|36 2 18|09 36|27
04]15]39]28 04|15]28]39
746 3829 05|14 746 38|29 05|14
47|56 02[13 47(56 02]13
57|46 03]12 57[46({03|12
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49 15[ |38 02 58] [14]39 02
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The 28 sets of three orthogonal holey factorizations of type 25 are listed
below in the following way. First, the index of the triple is given as #i, for
1 < i < 28. Beneath the index of the triple is the parenthesized index of
the Room frame that yields the first two factorizations of the triple. The
third holey factorization is fully listed with the holes bracketed. Beneath
the index of the Room frame are the indices of the three factorizations; as
with the Room frames, only the first factorization is necessarily in canonical
form. Thus, for example, triple number 6 consists of Room frame 8 (which
in turn consists of canonical factorization 1 together with a factorization
isomorphic to canonical factorization 746) and the fully listed factorization
which is isomorphic to canonical factorization 746.

[01
[01
[23
F#1:
0 s
[45
690 (o
690 {67

28 36 49 57
29 37 46 58
05 19 47 68
08 14 56 79
02 17 38 69
06 12 39 78
03 18 24 59
09 13 25 48

[89] 04 16 27 35
[89] 07 15 26 34

#2:

(2)

690
690

88

[01] 28 36 49 57

[01
23

45
45
67
67

89

29 37 46 58
05 19 47 68

23] 08 14 56 79

0216 39 78
07 12 38 69
03 18 24 59
09 13 25 48
04 17 26 35

89] 06 15 27 34
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1
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746

[01] 28 36 49 57
[01] 29 37 46 58
[23] 05 18 47 69
[23] 09 14 56 78
[45] 02 17 39 68
[45] 06 12 38 79
[67] 03 19 25 48
[67] 08 13 24 59
[89] 04 16 27 35
[89] 07 15 26 34

[01) 28 36 49 57
[01] 29 37 46 58
[23] 04 18 56 79
[23] 09 15 47 68
[45] 02 17 38 69
[45] 06 12 39 78
[67] 03 19 25 48
[67] 08 13 24 59
[89] 05 16 27 34
[89] 07 14 26 35

01] 27 39 46 58
01] 28 36 49 57
[23] 05 19 47 68
23] 08 14 56 79
45] 02 17 38 69
45 06 13 29 78
[67] 03 18 24 59
[67] 09 12 35 48
89] 04 16 25 37
89] 07 15 26 34

01] 27 39 48 56
01] 28 36 47 59
23] 05 18 46 79
23] 09 14 57 68
45] 03 16 29 78
45) 07 12 38 69
[67] 02 19 34 58
[67] 08 13 25 49
[89] 04 17 26 35
[89] 06 15 24 37
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#8:
(10)
1

690
690

#10:

(12)
1

746
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01] 28 36 49 57
01] 29 37 46 58
23] 04 19 56 78
23] 08 15 47 69
45] 02 17 39 68
45] 06 12 38 79
[67] 03 18 24 59
67] 09 13 25 48
89] 05 16 27 34
89] 07 14 26 35

[01] 27 39 46 58
[01] 28 36 49 57
[23] 05 19 47 68
[23] 08 14 56 79
[45] 03 16 29 78
[45] 07 12 38 69
[67] 02 18 34 59
[67] 09 13 25 48
[89] 04 17 26 35
[89] 06 15 24 37

[01) 27 39 48 56
[01] 29 36 47 58
[23] 04 19 57 68
23] 09 15 46 78
45] 03 16 28 79
45] 07 12 38 69
67) 02 18 35 49
67] 08 13 24 59
89] 05 17 26 34
89] 06 14 25 37

01) 27 39 48 56
01] 28 36 47 59
23] 04 18 57 69
23] 09 15 46 78
[45] 03 17 29 68
[45] 06 12 38 79
67) 02 19 34 58
67] 08 13 25 49
89] 05 16 24 37
89] 07 14 26 35
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01] 28 36 49 57
01] 29 37 46 58
23] 05 19 47 68
23] 08 14 56 79
45] 02 17 38 69
45] 06 12 39 78
[67] 03 18 24 59
[67] 09 13 25 48
89] 04 16 27 35
89] 07 15 26 34

[01] 28 36 49 57
01] 29 37 46 58
23] 05 18 47 69
23] 09 14 56 78
45] 02 16 38 79
[45) 07 12 39 68
[67] 03 19 25 48
[67] 08 13 24 59
[89] 04 17 26 35
[89] 06 15 27 34

[01] 28 36 49 57
[01] 29 37 46 58
[23] 04 18 56 79
23] 09 15 47 68
45] 02 16 39 78
45] 07 12 38 69
[67] 03 19 25 48
[67] 08 13 24 59
89] 05 17 26 34
89] 06 14 27 35

[01] 27 39 46 58
[01] 28 36 49 57
23] 05 19 47 68
23] 08 14 56 79
45] 03 16 29 78
45] 07 12 38 69
[67] 02 18 34 59
[67] 09 13 25 48
[89] 04 17 26 35
[89] 06 15 24 37

#12:

(14)

690
690
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2

746
746

[01] 28 36 49 57
[01] 29 37 46 58
[23] 05 18 47 69
[23] 09 14 56 78
[45] 02 17 39 68
[45] 06 12 38 79
[67] 03 19 25 48
[67] 08 13 24 59
[89] 04 16 27 35
[89] 07 15 26 34

01] 28 36 49 57
01] 29 37 46 58
23] 04 19 56 78
23] 08 15 47 69
45] 02 17 39 68
45) 06 12 38 79
67] 03 18 24 59
[67] 09 13 25 48
89] 05 16 27 34
89] 07 14 26 35

[01] 27 39 46 58
01} 29 36 48 57
23] 04 19 56 78
23] 09 15 47 68
45] 03 17 28 69
[45] 06 12 38 79
[67] 02 18 34 59
[67) 08 13 25 49
89) 05 16 24 37
89] 07 14 26 35

[01] 27 39 46 58
[01] 28 36 49 57
23] 05 19 47 68
23] 08 14 56 79
45] 02 17 38 69
[45] 06 13 29 78
67) 03 18 24 59
67) 09 12 35 48
89] 04 16 25 37
(89] 07 15 26 34




#19:

(23)
2

746
746

#21:

(33)
52

58

#23:

(34)
52
58
52

#25:

(40)

58

[01] 27 39 46 58
[01] 28 36 49 57
[23] 05 18 47 69
[23] 09 14 56 78
[45] 03 17 29 68
[45] 06 12 38 79
[67) 02 19 35 48
[67] 08 13 24 59
[89] 04 16 25 37
[89] 07 15 26 34

[01] 28 39 46 57
[01] 29 38 47 56
[23] 04 16 58 79
[23] 05 17 49 68
[45] 02 18 37 69
[45] 03 19 26 78
[67] 08 13 24 59
[67] 09 12 35 48
[89] 06 15 27 34
[89] 07 14 25 36

[01) 28 39 47 56
[01] 29 38 46 57
[23] 04 16 58 79
[23]) 05 17 49 68
[45] 02 18 37 69
[45] 03 19 26 78
[67] 08 12 34 59
[67) 09 13 25 48
[89] 06 14 27 35
[89] 07 15 24 36

[01] 28 39 46 57
[01] 29 38 47 56
[23] 04 16 58 79
[23] 05 17 49 68
[45] 02 19 36 78
[45] 03 18 27 69
[67) 08 12 34 59
[67) 09 13 25 48
[89] 06 15 24 37
[89] 07 14 26 35

91

#20:
(24)

746
746

#22:
(33)
52
55

#24:
(37)
55
58

#26:
(40)

58

[01
[o1
[23
[23
l45
[45
[67
[67

27 39 46 58
28 36 49 57
04 18 56 79
09 15 47 68
03 16 29 78
07 12 38 69
02 19 35 48
08 13 24 59
[89] 05 17 26 34
[89] 06 14 25 37

[01] 28 39 47 56
01] 29 38 46 57
23] 04 16 58 79
[23] 05 17 49 68
45] 02 18 37 69
45] 03 19 26 78
67) 08 13 24 59
67) 09 12 35 48
89] 06 15 27 34
[89] 07 14 25 36

[01) 28 39 47 56
[01] 29 38 46 57
[23] 04 16 58 79
[23] 05 17 49 68
[45] 02 19 36 78
[45) 03 18 27 69
[67] 08 13 24 59
[67] 09 12 35 48
89] 06 14 25 37
89] 07 15 26 34

01) 28 39 47 56
01) 29 38 46 57
[23] 04 16 58 79
23] 05 17 49 68
45] 02 19 36 78
[45] 03 18 27 69
[67] 08 12 34 59
[67] 09 13 25 48
[89] 06 15 24 37
[89] 07 14 26 35

—




#27.
(41)
58
58
58

01] 28 39 46 57
01) 29 38 47 56
23] 04 17 58 69
23] 05 16 49 78
45] 02 18 36 79
45] 03 19 27 68
[67] 08 13 24 59
[67] 09 12 35 48
89] 06 14 25 37
89] 07 15 26 34

92

#28:
(41)
58
58
58

01] 28 39 47 56
01] 29 38 46 57
23] 04 17 58 69
23] 05 16 49 78
45 02 18 36 79
45] 03 19 27 68
67) 08 13 24 59
67) 09 12 35 48
89] 06 14 25 37

89] 07 15 26 34



