Domination Parameters Of Star Graph

S. Arumugam and R. Kala
Department of Mathematics
Manonmaniam Sundaranar University
Tirunelveli-627 009
India

ABSTRACT. The *n*-star graph S_n is a simple graph whose vertex set is the set of all n! permutations of $\{1, 2, ..., n\}$ and two vertices α and β are adjacent if and only if $\alpha(1) \neq \beta(1)$ and $\alpha(i) \neq \beta(i)$ for exactly one $i, i \neq 1$. In the paper we determine the values of the domination number γ , the independent domination number γ_i , the perfect domination number γ_p and we obtain bounds for the total domination number γ_t and the connected domination number γ_c for S_n .

1 Introduction

By a graph we mean a finite, undirected, connected graph without loops or multiple edges. Terms not defined here are used in the sense of Harary [7].

Akers and Krishnamurthy introduced the n-star graph S_n in [3]. The vertex set of S_n is the set of all n! permutations of $\{1, 2, ..., n\}$ and two vertices α and β are adjacent if and only if $\alpha(1) \neq \beta(1)$ and $\alpha(i) \neq \beta(i)$ for exactly one i, $i \neq 1$. The n-star graph has been proposed as an attractive alternative to the n-cube with many superior characteristics [2]. Day and Tripathi [8] have compared the topological properties of the n-star graph and the n-cube. In this paper we determine the values of the domination number γ , the independent domination number γ_i and the perfect domination number γ_p for the star graph S_n . We also obtain bounds for the total domination number γ_t and the connected domination number γ_c .

Let G = (V, E) be a graph. A subset S of V is called a *dominating set* if every vertex in V - S is adjacent to at least one vertex in S. A dominating set S is called a *perfect dominating set* if every vertex in V - S is adjacent to exactly one vertex in S [5]. A dominating set S is called an *independent dominating set* if no two vertices of S are adjacent. A subset S of V is called

a total dominating set if every vertex in V is adjacent to some vertex in S. A dominating set S is called a *connected dominating set* if the subgraph induced by S is connected.

The domination number γ of G is defined to be the minimum cardinality of a dominating set in G. In a similar way, we define the perfect domination number γ_p , the independent domination number γ_i , the total domination number γ_t and the connected domination number γ_c .

A domatic partition of G is a partition of V(G), all of whose classes are dominating sets in G. The maximum number of classes of a domatic partition of G is called the domatic number of G and is denoted by d(G) [6]. In a similar way we define the perfect domatic number $d_p(G)$, the independent domatic number $d_i(G)$ and the total domatic number $d_i(G)$.

A graph G is called domatically full if $d(G) = \delta(G) + 1$, which is the maximum possible order of a domatic partition of V where $\delta(G)$ is the minimum degree of a vertex of G [4]. A dominating set in a graph is called *indivisible* if it is not a union of two distinct dominating sets of G. The minimum number of classes of a partition of V(G) into indivisible dominating sets is called the adomatic number of G and is denoted by ad(G) [4].

We use the following theorem.

Theorem 1.1 [1]. For any graph G of order p and maximum degree Δ , we have $\gamma \geq p/(\Delta+1)$.

2 Main Results

Theorem 2.1. $\gamma(S_n) = \gamma_i(S_n) = \gamma_p(S_n) = (n-1)!$ for all n.

Proof: Since S_n is (n-1)-regular it follows from Theorem 1.1 that $\gamma(S_n) \ge (n-1)!$. Also $S = \{\alpha \in V(S_n)/\alpha(1) = 1\}$ is a dominating set of S_n which is independent and perfect and |S| = (n-1)!. Hence it follows that $\gamma(S_n) = \gamma_i(S_n) = \gamma_p(S_n) = (n-1)!$.

Corollary 2.2. $d(S_n) = d_i(S_n) = d_n(S_n) = ad(S_n) = n$.

Proof: Let $A_i = \{\alpha \in V(S_n)/\alpha(1) = i\}$, i = 1, 2, ..., n. Clearly $V(S_n) = \bigcup_{i=1}^n A_i$ and each A_i is a minimal dominating set which is independent, indivisible and perfect. Hence the result follows.

Corollary 2.3. S_n is domatically full.

Lemma 2.4. For any connected graph G of order p and maximum degree Δ , $\gamma_t \geq p/\Delta$.

Proof: Let S be a γ_t set in G. Since each vertex in S dominates at most $\Delta - 1$ vertices in V - S, the result follows.

Theorem 2.5. $\gamma_t(S_n) = n!/(n-1)$ if n is even and $n!/(n-1) \le \gamma_t(S_n) \le \frac{(n-1)!(n-1)}{(n-2)}$ if n is odd.

Proof:

Case (i) n=2m.

Define $A_i = \{\alpha \in V(S_n)/\alpha(1) = i, \alpha(2) = i+1\}$ if i is odd and $A_i = \{\alpha \in V(S_n)/\alpha(1) = i, \alpha(2) = i-1\}$ if i is even. We claim that $A = \bigcup_{i=1}^{2m} A_i$ is a total dominating set of S_n . For odd i, each vertex of A_i has exactly one adjacent vertex in A_{i+1} so that $\langle A \rangle$ has no isolated vertices. Now let $\alpha \in V(S_n) - A$ and $\alpha(2) = i$. Let α' be the vertex obtained from α by interchanging $\alpha(1)$ and i+1 if i is odd and $\alpha(1)$ and i-1 if i is even. Clearly $\alpha' \in A$ and is adjacent to α . Hence A is a total dominating set of S_n . Also |A| = n!/(n-1). Hence $\gamma_i(S_n) \leq n!/(n-1)$. Also, by Lemma 2.4, $\gamma_i(S_n) \geq n!/(n-1)$ so that $\gamma_i(S_n) = n!/(n-1)$ when n is even. Case (ii) n = 2m+1.

We define sets A_i and B_i for i = 1, 2, ..., 2m as follows:

$$A_i = \{\alpha \in V(S_n)/\alpha(1) = i, \alpha(2) = i+1\}$$
 if i is odd and

$$A_i = \{\alpha \in V(S_n)/\alpha(1) = i, \alpha(2) = i - 1\}$$
 if i is even.

$$B_i = \{\alpha \in V(S_n)/\alpha(1) = i, \alpha(2) = 2m+1, \alpha(3) = i+1\}$$
 if i is odd and

$$B_i = \{ \alpha \in V(S_n) / \alpha(1) = i, \alpha(2) = 2m + 1, \alpha(3) = i - 1 \}$$
 if i is even.

Let $A = \bigcup_{i=1}^{2m} (A_i \cup B_i)$. Clearly $\langle A \rangle$ has no isolated vertices. Also $\bigcup_{i=1}^{2m} A_i$ dominates all vertices with $\alpha(2) = j$ (j = 1, 2, ..., 2m) and $\bigcup_{i=1}^{2m} B_i$ dominates all vertices with $\alpha(2) = 2m + 1$ so that A is a total dominating set of S_n and $|A| = \frac{(n-1)!(n-1)}{(n-2)}$.

Hence $\gamma_t(S_n) \leq \frac{(n-1)!(n-1)}{(n-2)}$. Also by Lemma 2.4 $\gamma_t(S_n) \geq n!/(n-1)$ and the theorem follows.

Corollary 2.6. $d_t(S_n) = n - 1$ if n is even.

Proof: For j = 2, 3, ..., n we define

$$A_{ij} = \{\alpha \in V(S_n)/\alpha(1) = i, \alpha(j) = i+1\} \text{ if } i \text{ is odd and } A_{ij} = \{\alpha \in V(S_n)/\alpha(1) = i, \alpha(j) = i-1\} \text{ if } i \text{ is even.}$$

Let $A_j = \bigcup_{i=1}^n A_{ij}$. Then $\{A_2, A_3, \ldots, A_n\}$ is a partition of V into minimal total dominating sets and hence $d_t(S_n) = n - 1$ if n is even. \square

Theorem 2.6. $\frac{n!}{n-1} \le \gamma_c(S_n) \le 2(n-1)!$.

Proof: Define

$$A_1^{(n)} = \{ \alpha \in V(S_n) / \alpha(1) = 1 \}$$
 and $A_{i1}^{(n)} = \{ \alpha \in V(S_n) / \alpha(1) = i, \alpha(2) = 1 \}$ for $i = 2, 3, ..., n$.

Let $D_n = A_1^{(n)} \cup (\bigcup_{i=2}^n A_{i1}^{(n)})$. Clearly D_n is a dominating set of S_n . Let $X_n = \bigcup_{i=2}^n A_{i1}^{(n)}$. One can see that $\langle , X_n \rangle$ is a connected subgraph of S_n . Thus D_n is a connected dominating set of S_n and $|D_n| = 2(n-1)!$ so that $\gamma_c(S_n) \geq 2(n-1)!$. Also by Lemma 2.4, $\gamma_c(S_n) \geq \frac{n!}{n-1}$.

References

- B.D. Acharya, H.B. Walikar and E. Sampathkumar, Recent developments in the theory of domination in graphs, Mehta Research Institute, Allahabad, MRI Lecture notes in Math. 1 (1979).
- [2] S.B. Akers, D. Harel, and B. Krishnamurthy, The star graph: An attractive alternative to the n-cube, Proc. Intl. Conf. on Parallel Processing, (1987), 393-400.
- [3] S.B. Akers and B. Krishnamurthy, A group theoretic model for symmetric interconnection networks. Proc. Intl. Conf. on Parallel Processing, (1986), 216-223.
- [4] Bohdan Zelinka, Domatic number and bichromaticity of a graph, Lecture Notes in Mathematics, Dold and Eckmann, Ed., Lagow (1981), 1018.
- [5] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, *JCISS*.(to appear).
- [6] E.J. Cockayne, S.T. Hedetniemi, Towards a theory of domination in graphs, *Networks* 7 (1977), 247-261.
- [7] F. Harary, Graph Theory, Addison Wesley, Reading Mass, 1969.
- [8] Khaled Day and Anand Tripathi, A Comparative study of topological properties of hypercubes and star graphs. Technical report TR 91-10, Computer Science Department, University of Minnesota (1991).