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Abstract

A subset S of an ordered set P is called a cutset if each maximal chain
of P has nonempty intersection with S; if, in addition, S is also an antichain
it is an antichain cutset. We consider new characterizations and generaliza-
tions of these and related concepts. The main generalization is to make our
definitions in graph theoretic terms. For instance, a cutset is a subset S of
the vertex set V of graph G = (V, E) which meets each extremal path of G.
Our principle results include (1) a characterization, by means of a closure
property, of those antichains which are cutsets; (2) a characterization, by
means of “forbidden paths” in the graph, of those graphs which can be ex-
pressed as the union of antichain cutsets; (3) a simpler proof of an existing
result about N-free orders; and (4) efficient algorithms for many related
problems, such as constructing antichain cutsets containing or excluding
specified elements or forming a chain. We include a brief discussion of the
use of antichain cutsets in a parsing problem for LR(k) languages.

1. Introduction

Several papers [Riv85b, Gin86, Hig86, Zah86, Riv87, Beh90] have inves-
tigated various characterizations and constructions related to antichains
and cutsets. We consider several new characterizations and generalizations
of these and related concepts. Our primary motivation is from a recent
application [And90] of antichain cutsets in computer science. The main
generalization, from the diagram approach [Riv85a, Riv89), is to make our
definitions in graph theoretic terms. For instance, a cutset is a subset S of
the vertex set V of graph G = (V, E) which meets each extremal path of
G. We conclude this section with a brief discussion of a new application of
antichain cutsets.
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Syntax-directed translation [Lew68] is a useful technique which has
found application in many formal language translation tasks (see [Pur80])
and for which additional uses are regularly described, e.g., [Ham92). In ad-
dition to these applications, one finds program illustration [Hen89, Pur89},
automatic compiler generation [And90], optimized data validation [Fin84],
construction of LR-attributed [Jon80] grammars and attribute-influenced
parsing [Wat79), and one-pass semantic analysis of programming languages
{Kos84]. One factor in the variety of applications of syntax-directed trans-
lation is that null nonterminal insertion in LR(k) languages [Knu65] pro-
vides a simple, direct means to implement many interesting syntax-directed
translation systems. (A null nonterminal is a symbol whose only transla-
tion string is the empty string.) The problem with such insertions is that,
although null nonterminals do not change the language generated by the
grammar, arbitrary insertion does not always preserve the parsing prop-
erties of the grammar. In particular, it is easy to construct an LR(k)
grammar which is no longer LR(k) after altering just one of its productions
by inserting a new null nonterminal.

It can be shown [And92] that positions in LR(k) productions which
may or may not be successfully used for null nonterminal insertion are
specified by antichain cutsets in graphs closely related to a graph repre-
senting the parsing automaton. Further, effective construction of such a
syntax-directed translation system, which may involve many different null
nonterminal symbols, can be reduced to a sequence of smaller problems re-
lying on finding chains of antichain cutsets, some of which include specific
vertices of the graphs and some of which exclude certain vertices. Although
there are other applications of antichain cutsets, e.g., decomposition of 0-1
matrices into a direct sum of permutation matrices [Bru91}, algorithmically
better methods exist for those problems. We believe this to be an important
example of a large-scale practical problem for which the use of antichain
cutsets provides a natural characterization and efficient solution.

2. Antichain Cutsets

Much of the terminology surrounding cuts is common to both the theory of
ordered sets and graphs, in particular networks. Unfortunately, this is often
with slightly different meanings. To avoid confusion as much as possible,
this section presents some of our terms in the context of relevant graph
theory notation [Har69).

Unless stated otherwise, G = (V, E) will denote a finite, directed graph
with vertez set V and edge set E. As usual, E* denotes transitive closure
while E* denotes reflexive, transitive closure. If (u,v) € E*, say u preceeds
(is a predecessor of) v. Vertex s is a source of G if and only if

v={

(s,v)EE"
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and vertex ¢ is a sink of G if and only if

V= U {v}.

(v, t)eE"

Note that a vertex which is a source and initial is the unique vertex which
is either a source or initial in the graph. A similar statement holds for a
final sink vertex, though in general a graph may have no vertex with these
properties.

A path in graph G is a walk with distinct vertices, a nontrivial walk
is of length at least one (counting edges) and a cycle is a nontrivial closed
walk with distinct vertices except for the first and last. Define path p in
graph G = (V, E) to be eztremal if it is a path from an initial vertexs € V
to a final vertex ¢t € V. Throughout this section, finite directed graph
G = (V, E) will be assumed to have initial source node s and distinct final
sink node ¢. Note that by adding or coalescing vertices, this assumption
may be made without loss of generality in all that follows. A C Visan
antichain in G if and only if v does not preceed v’ for all nodes v,v' € A.
Let 2A(E) be the set of antichains in graph G.

Given graph G = (V,E) and S, 8’ C V, define

S35 < Vs e S3s' € § (s,5') € E*.
Claim 2.1. 1 is a partial order for the set of antichains U(E) of graph
G = (V,E).

As nodes s and ¢ are distinct, each extremal path r = (voy+ vy Vnt1)
where s = vy, t = v,4; and (v;,vi+1) € E is nontrivial. Let V, =
{v1,--.,vn} be the (possibly empty) set of interior nodes of path r. Then
C C Visa cutset in G if and only if V, NC # @ for all extremal paths r.

Let €(E) be the set of cutsets in graph G = (V, E) and cutset C € ¢(E)
be a proper cutset if and only if no proper subset of C is a cutset in G,ie.,
C is minimal with respect to C. Note that neither s nor ¢ will be members
of any cutset in G and this is the only distinction from a disconnecting set
of nodes [For62].

Lemma 2.2. Cutset C in G = (V, E) is minimal if and only if for each
v € C there exists extremal path r such that V, NC = {v}

Proof. Since C is a cutset, for all v € C and for every extremal path r

VonC =V, N ({v}u(C\ {v}))
= (V,n{wh)U (V- n(C\ {v}))
# 0.
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Now each v € C is the only element in C on some extremal path, otherwise
C\ {v} is still a cutset which contradicts the assumption that C is minimal.
That is, for allv € C there exists extremal path 7 such that VN (C\{v}) =
0. So for all v € C there exists extremal path r such that

v.nC=V,.n{v} #0.

Then for allv € C
V.NC = {v}

for some extremal path 7. The converse is trivial. o

Antichain cutset K € 2(F) N €(E) is a proper antichain cutset as
antichain cutsets are always minimal. Let 2A€(E) be the set of antichain
cutsets in graph G = (V,E). The suffix € of AC is used to distinguish
antichain cutsets, whose elements are vertices, from the antichain discon-
nectors to be introduced in section 3, whose elements are edges and are
denoted AD(E).

Since 1 is a partial order for 2(E) it may be extended to a total
order and part of the method of section 4 orders elements from maximum
to minimum by repeated arbitrary selection from among the remaining
maximal elements. There are, however, interesting subsets of 2(E), in fact
subsets of AC(E), for which J is already a total order. These are the sets
of unilateral antichain cutsets, where two antichains are unilateral if no
member of one of the antichains is a predecessor of any member of the
other antichain.

Lemma 2.3. Unilateral antichain cutsets are comparable under J.

In particular, Lemma 2.3 asserts that any set of pairwise unilateral
antichain cutsets of an ordered set are linearly ordered. Unilateral antichain
cutsets are used in section 4 when constructing linearly ordered antichain
cutsets from unilateral antichains.

The next result shows that the elements of antichains partially ordered
by 3 are contained only in trivial strong components, though the graph
may have other nodes on cycles. This will be used in the next section to
reduce the size of the graph for which antichains are being constructed by
condensing cycles to strong components.

Lemma 2.4. If A,,A; € 2A(E) and A, 3 A, then a does not preceed
a, foralla; € A andas € A,.
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3. Ideals I

The definitions of section 2: antichain, cutset, etc., may all be altered
to apply to edges instead of vertices and doing so introduces the first of
two implementations for finding an antichain of edges which meets each
extremal path in G. Recall that unless stated otherwise, G = (V,E) will
be a finite, directed graph with initial source s and distinct final sink ¢.
A C E is an antichain (of edges) in G if and only if (u',v) ¢ E* for all
edges (u,u') € A and (v,v') € A. If V! C V, let V7 denote V \ V' and
(V',V7) denote (V' x V') E. Then (V', V") is defined to be a disconnector
in G if and only if V' contains each initial node and no final node of G.
Disconnector D in G is a proper disconnector if and only if no proper
subset of D is a disconnector in G, i.e., D is minimal with respect to C. Let
D(E) be the set of disconnectors and AD(E) denote the set of antichain
disconnectors in graph G = (V, E).

The first algorithm developed in this section will produce an antichain
disconnector. Subsequently, this method will be adapted to produce an
antichain cutset. The benefits of this approach are twofold. First, a uni-
form representation of antichain disconnectors and antichain cutsets may
be given which leads directly to a simple method of generation for either.
The second benefit is that it relates the conversion of an antichain dis-
connector into an antichain cutset and the removal of the excluded nodes
characterized by Lemma. 2.4.

For graph G = (V, E), E will denote the inverse of edge relation E.
1 CV is an ideal in E for graph G if and only if for all i and j

ifj € ZTand (i,j) € Etheni € ZI.

J(E) will denote the set of all ideals in E. Thus J(E) is exactly the set
of closed sets of vertices under E. Various consequences of the following
corollary will be used repeatedly.

Corollary 3.1. For the set of ideals J(E) of an arbitrary graphG = (V, E),
the following are equivalent:

() 1 € ¥(BE);

(33) ieI=s( U {i})cT;
(3,7)EE*

(4i5) i¢I=>( U {{jHnz=0.

) (t,5)€EE*
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Proof. Immediate from the definitions. o

Let J(s,t,E) be the set of Z such that Z € J(E)and s € I and
t ¢ Z. Next a connection between ideals and antichain disconnectors is
made.

Lemma 3.2. For graph G = (V, E),
(Z,T) € UD(E) ifand only if T € 3(s,t,E).

A direct consequence of Lemma 3.2 is the following.

Corollary 3.3. For graph G = (V,E), the map f:3(s,t,E) - AD(E)
given by f(I) = (Z,Z) is a bijection.

A strongly connected component or strong component of a graph G =
(V,E) is a subgraph G’ = (V', E') of G such that there is a path of E’
edges between each ordered pair of vertices from V'. For v,v' € V, let
v ~ v' if and only if v and v’ are in the same maximal strong component
of G. Since ~ is an equivalence relation, define the quotient graph G/~ as
usual. For v € V, let [v] denote the equivalence class of v under ~.

Lemma 3.4. For directed graph G = (V,E), let G = (V, E) be the quo-
tient graph G/ ~. Then the canonical homomorphism h: G — G/~ induces
a bijection f:AD(E) — AD(E).

Proof. Let (Y,Y) € %D(E) and

x={ W

[vleY
Clearly . .
(v,7) = (h(X), h(X)).
But

x=

[yleY
={z|z~yforyjeY}
={z|(z,y) € E* for [y €Y }.

So X € Z(E) and by Lemma 3.2, (X,X) € 2AD(E). Thus f is a surjection
from the antichain disconnectors of G to those of G.
Now

(w,z) € (X,X) € AD(E)
implies
[w] C X and [z] € X
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since X must be an ideal. Then
(w,z) € (X,X) € AD(E)

if and only if L )
([w],[z]) € (h(X),R(X)) € AD(E).

So h is an injection since
(h(X1), h(X1)) = (h(X2), h(X2))

implies _ .
(X1, X1) = (X2, X3).

[=]

To summarize, no edge in a nontrivial strong component of G may be

in an antichain disconnector in G and only edges in nontrivial strong com-

ponents are eliminated by condensing G. Therefore, at least some excluded

vertices may be removed and the graph reduced in size by condensing strong

components. E now represents the edge relation of a directed acyclic graph

and illustrates that the method can be used to find antichain disconnec-

tors in a graph with cycles. Also, by converting any undirected edges into

pairs of (oppositely) directed edges, the same result applies to undirected
or mixed graphs. This is made precise next.

Corollary 3.5. Given directed graph G = (V, E) with source s and distinct
sink t, let G = (V, E) be the quotient graph G/~. If3(s,t,E) C J(E) is
the subset of ideals such that s € T andt ¢ I forallT € J(s,t, E) then
there is a bijection between (s, t, E) and AD(E) induced by the canonical
homomorphism from G to G/ ~.

Proof. By Corollary 3.3 there is a bijection f: I(s,t, E) - QlD(E) By
Lemma 3.4 there is a buectlon g:UAD(E) - AD(E). Then h:I(s,t, E) -
AD(E) given by h = g~ o f is a bijection. a

Next, the method is adapted to finding, for graph G = (V, E) where
s,t € Vand (s,t) ¢ E, an antichain cutset £ C V wheres,t ¢ K. Before
proceeding, note the condition (s,t) ¢ FE is necessary because otherwise
there exists no cutset K in G such that s ¢ K andt ¢ K. The goal then
is to use the method of Corollary 3.5 to find an antichain disconnector and
ensure this determines an antichain cutset.

Given V, let P = {p} xV and Q = {g} x V. Forv € V, often
(p,v) € Pand (g,v) € Q will be denoted p, and g, respectively. Then
for graph G' = (V, E) satisfying the restrictions on s and ¢ above, define
graph G' = (V', E') such that py;,q; € V' and
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Figure 3.1. Example graph for Corollary 3.5.
v € V\{s,t} & puq € V' and (gy,ps) € E,

(i,j) € E <> (pi,q;) € E' and (g;,p:i) € E'.

The main effect of this transformation is to make the edges of G corre-
spond to vertices in nontrivial strong components of G’, and as such vertices
are eliminated by condensing strong components in G', no member of any
antichain disconnector in G corresponds to an edge of G.

Let 5 = [ps] be the source of G and t = [g] be the sink of G. So the
only edges in an antichain disconnector in G are those introduced into G’
to correspond to nodes of G. Thus, applying Corollary 3.5 to G’ yields an
antichain disconnector in G which corresponds to an antichain cutset in G,
as summarized next.

Theorem 3.6. Let G' = (V', E') be defined as above for G = (V, E) where
s,t € V and (s,t) ¢ E. If (U,U) C E is an antichain disconnector in

G = G'/~ then
{v|qw € [u] € Uandp, € ('] € U forsomeu,u' € V}CV
is an antichain cutset in G. If T C V is an antichain cutset in G then

(sl |v € T)CE
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is an antichain disconnector in G.

9 9

1

P Py
] ’

{ps,q],Pl,q3l
9, a,
\

P, A {pquz,q“}

n {pz.p4,qt}

(a) (b)

Figure 3.2. (a) modified graph G’ and (b) condensed graph G for graph
G of Figure 3.1.

The method is illustrated by example. Figure 3.2(a) shows the sample
graph of Figure 3.1 as modified by the construction prior to Theorem 3.6.
This shows that the original vertices have been “split” and these pairs
of nodes connected to pairs representing their successors in the original
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graph, making G'. In Figure 3.2(b), the strong components of G’ shown in
Figure 3.2(a) have been condensed to single vertices and relabled, making
G. Suppose, applying Corollary 3.5, we select ideal { [po] } U { [qo]} and
form antichain disconnector

{{ [pol; g0l }, { [ps], [p2]. [ps] }) € AD(E)
={(lgsh[ps) } CE

of G. Then by the construction in the proof of Lemma 3.4,

({ o, q1,P1,43,% },{P3,02,¢14,P2,P4,115,P5 }) € AD(E')
={(gm)} CE

is an antichain disconnector of G’. Likewise, according to Theorem 3.6,
{wvs} is an antichain cutset for G.

As another example, if the construction prior to Theorem 3.6 is applied
to the graph of Figure 6.3, any ideal which contains ¢, also contains p,.
This immediately gives that x is in no antichain cutset of a graph with a
subgraph isomorphic to Figure 6.3. We will examine this in more detail in
sections 5 and 6.

4. Antichain Lattice

Having reduced, by Corollary 3.5 and Theorem 3.6, the problem of finding
an antichain cutset to that of finding an ideal, next an algorithm for gen-
erating ideals is presented. Recall that an ideal Z € J(FE) is closed under
E. By Corollary 3.1, it is clear that

iez=> |J frez,
(i.j)eE"

ieI= |J {i}cT
(.)EE?

For U C V, the following program fragment generates an ideal Z € J(E)
such that U NZ = . If a suitable representation for E is chosen, the
algorithm runs in time O(|V| + |E|) and additional space O(|V]). Since
condensing the graph has similar complexity [Tar72], taken with Theo-
rem 3.6 this represents a significant improvement over the O(]V|®) existing
method [Riv87).
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Algorithm 4.1.

begin
I:=V;
for u € U do
=1\ U {u)
(u,u')eE+
end;
output(Z);
end.

Note that algorithm 4.1 produces a maximal ideal not containing the given
set U, i.e., only U and its successors are omitted. This means that if an
antichain cutset X containing a specific antichain A exists, algorithm 4.1
may be used with U = A to produce the ideal 7 used to generate K. This
property of algorithm 4.1 will be used in algorithm 4.3.

Finally, return to a problem mentioned earlier: construct a sequence of
antichain cutsets forming a chain given a partial specification of members of
the chain. More specifically, given directed graph G = (V, E) with s,t € V
and antichains A}, ..., A, C V, find a chain of antichain cutsets ; J--- 3
K. such that A; 3 IC for 1 € i < n. See section 2 for the deﬁmtlon of
relation 3.

An application for such a chain of antichain cutsets was described at
the end of section 1. In that application as in others, when the antichains
A; are unilateral it is desirable to produce antichain cutsets K; which are
unilateral. When this is possible, an injective mapping from the antichains
then induces an injective mapping from the antichain cutsets.

As sections 3 and 5 discuss finding an antichain cutset, the principles
by which a chain of antichain cutsets may be found are needed at this point.
To this end, consider the structure of ideals and antichains in more detail.
Let 2(FE) be the set of antichains in G, A€(E) the set of antichain cutsets
in G.

Claim 2.1 was that (%(E),3) is a partial order. In fact, Dilworth
[Dil60] showed it is a distributive lattice, which we get from claim 5.1
and the fact that (J(E),C) is a distributive lattice. It was shown that
(A€(E), D) is a linear order in Lemma 2.3, so the problem of finding a
chain of antichain cutsets containing a given set of antichains is really one
of finding a special extension of the given partial order to a linear order.
That is, extend the partial order ({Al, -+, An},3) of specified antichains
to a linear order ({ICl, -, KR Q) of antichain cutsets such that A4; J K;
forl1<i<n.

First, a definition will be useful. Given §' C S and binary relation R
on S, define

mazr(S’) = {s € §'| thereexistsnos’ € S’ suchthat s Rs'}.
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Then the following lemma suggests a particular order in which a chain
could be discovered.

Lemma 4.2. For Z € J(E), the following are equivalent:

(?) I € mazc(I(E));
(1) mazz(Z) € mazs(A(E));
(#id) (s € IAt¢I)=(I,I)=maz5(AD(E)).

Proof. (i) = (ii) by Theorem 5.3. (i) = (ii) by Lemma 3.2 and Theorem
5.3. (ii1) = (¢) by Lemma 3.2. o

For each 0 < 7 < n, algorithm 4.3 constructs a graph G; to find the
maximum (in 3) antichain cutset K; containing some maximum remaining
Ay. It does so by collapsing every ineligible vertex either to the initial or
final vertex where they may not be used by algorithm 4.1. As was observed,
algorithm 4.1 finds a maximal ideal in each G, so the chain of antichain
cutsets is produced from maximum to minimum element. Note that the
nodes adjacent to s are minimum in 2A€(E) and those adjacent to ¢ are
maximum in AC(E). Algorithm 4.3 is given in a form that does not require
the A; to be distinct and could be simplified if they were. For V' C V', the
restriction of edge set E to edges only involving vertices of V' is denoted
EV.

Algorithm 4.3.

Given directed graph G = (V, E) with source s € V,sinkt € V,
and (s,t) ¢ E and antichains A,, ..., A,, such that {s,t} N A4; = 0 for
1 £ i € n, algorithm 4.3 finds a chain of antichain cutsets X, 3 --- 3 K,
such that 4; AK; for1<i<n.

begin

A= {Al,...,An};

ir=n+1; Knqr:={v|(wt)€eE}

while A # 0 do

i:=1i-—1;
find k such that A; 2 A; for all A; € A;
remove Ay from A;
comment make G;;
V! = {s;}u (V\{v'| (v',v) € E* for some v € Ay });
By i= ({s:} x 4) U (E T V));
Vi == {t;} U (V/\ {v'| (v,v") € E* for some v € Kit1 });
By = (Kina x () U (E! [ Vi)
find maximum antichain cutset X C A in G; = (V;, E;);
output(K; := K);
end;

end.

108



By Lemma 2.3, the X; form a chain of antichain cutsets because

K Y@=
(v',v)'G—El"'

Suitably altered, the algorithm of [Ste86] can be used to generate all cutsets
in each of the above applications, rather than just the one cutset generated
by using algorithm 4.1.

5. Ideals II

There is, however, an alternative to the approach embodied in Corollary 3.5
in the case that an antichain cutset is desired. Corollary 3.3 established a
bijection between certain ideals and antichain disconnectors. For antichain
cutsets a more general bijection between antichains and ideals will be es-
tablished. Throughout recall that s denotes a source node and t a sink
node.

For 2A(E) the set of antichains in graph G = (V,E) and A € A(E),
define R

A={v | (v',v) € E* for somev € A}.

Clearly A € 3(E). Let partial order (%(E), J) be as is defined in section
2.

Claim 5.1. For all A;,A> € A(E)
A1 € A; if and only if A; O As.
The next result is required before showing that ideals and antichains

are in 1-1 correspondence.
Corollary 5.2. For all A;,A; € AU(E)

. v‘il =J&2 = A; = A,.
Proof.

4&1 = J&?

<=>A1 g./iz andﬁggfil
and by claim 5.1

<=>A1 Q.Az andAz;lAl

— Al = .Az.

=]
Since for any V' C V, maz (V') is an antichain in graph G = (V, E),
the following may be proved.
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Theorem 5.3. The mapping f:A(E) — I(E) given by f(A) = A is a
bijection.

Proof. Note that 7 = m@l’) for every T € 3J(E). The inverse is also
particularly simple as A = maz (A) for every A € 2(FE). This surjection
together with the injection of Corollary 5.2 establishes the result. o

Theorem 5.3 identifies an antichain for graph G = (V, E) with an ideal
of vertices in FE and shows that, to find an antichain cutset, no antichain
will be overlooked by restricting our attention to those generated by the
following method using ideals. Given graph G = (V, E) and nodes j,k € V,
define compatibility relation = by

jZk < (i,j) € E and (i,k) € E forsomei € V.

The next lemma gives a condition in which the set of maximal elements
of an ideal in a graph, which by Theorem 5.3 is equivalent to an antichain
in the graph, will also be a cutset in the graph. This condition may be
compared to the finite case of an existing result. Let N stand for the four
element ordered set {a,b,c,d} in which a < ¢, d < b, and d —< c¢ (that
is, if d < y < c then y = ¢). Say an ordered set is N-free if it contains
no subset isomorphic to N. Then for an ordered set in which all chains
are finite, every maximal antichain is an antichain cutset if and only if the
ordered set is N-free [Gri69)].

Lemma 5.4. For graph G = (V,E) and T € J(E) with s € Z and
t ¢ Z,

mazg(Z) is a cutset in G if and only if T is closed under E.

Proof. Assume maz(Z) is a cutset in G but Z is not closed under =. Then
thereexist i € Z,j € Z,and k ¢ Z such that (i,5) € E, (i,k) € E

and
( U #YNmaze(@)=0.
(k.k')EE"

This is becauses € Z,t ¢ T andsincek ¢ Zthen k' ¢ Zso k' ¢ mazg(T).
But sincei € Z,j € I, and (i,j) € E, i ¢ mazg(Z). Now by the
definition of mazg,

(#,i) € E* =i’ ¢ maz:(T).
Then there is a walk from s to Z, edge (¢, k), and walk from k to ¢ which

contains no element of maz(Z). But then maz:(Z) is not a cutset, a
contradiction.
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Otherwise, let Z be closed under Z but maz ;(Z) not be a cutset. Then
there exists a walk from s to ¢ which contains no element of maz z(Z). Since
s € T let i be a vertex of that walk such that ¢ € Z and there is edge
(i,k) € E wherek ¢ Z, which must hold for some k since t ¢ Z. Since
i ¢ mazs(T), there exists edge (i,j) € E wherej € Z. But (4,k) € E
and (i,j) € E wherej € ZTand k ¢ Z means Z is not closed under =,
a contradiction. o

The second method to find an antichain cutset is given below.

Algorithm 5.5

For graph G = (V, E) with s,t € V and (s,t) ¢ E:

1) add an undirected edge to E between each pair of nodes that have a
common parent. This ensures that ideals will be closed under Z;

2) find ideal Z € J(E) suchthat§ € Zandi ¢ ZforG = (V,E)=G/~;
3) then maz:(Z) € AC(E).

Taking advantage of transitivity in step 1), we need only add edges
between a node and its left sibling in a breadth-first traversal. Note that
step 2) need not be restricted to the maximal connected subgraph of G with
source § and sink #, though the resulting ideal will be smaller in general
if isolated vertices are removed from G. The advantage of algorithm 5.5
over that implied by Corollary 3.5 is that more cycles are introduced and
eliminated by 5.5, so that an ideal is constructed in a smaller graph. The
disadvantage, as a general method of constructing antichains which separate
initial from final nodes, is that it cannot find disconnectors.

Algorithm 5.5 gives another O(]V| + |E|) method for finding an an-
tichain cutset containing or excluding certain vertices. Finally, algorithm
5.5 gives a slight improvement when used with the method described in
[Riv87] to determine, for a subset K of an ordered set P, whether or
not K is a cutset of P. However, it should be noted that for finite P,
the case discussed, breadth-first search provides a O(|E|) alternative. For
most problems however, our methods are only as fast as existing methods
[M6h89].

Finally, this section concludes with a modification of Lemma 5.4. Let
(P,<) be a poset. I C P is an ideal if foreachz € Tandy € P, if
y <z theny € I. Ideal I is regular if sup C exists in I for each nonempty
chain C C I. Let ideal I be diffuse if each maximal chain C' C P meets I.
Similarly, ideal I is closed under Z provided for ally € I and z,z € P,
if z <yand £ < z then z € I. With the usual definitions of antichain
and cutset for ordered sets, the characterization of antichain cutsets can be
extended.

Theorem 5.6. Let (P,>) be an ordered set in which each ideal is regular.
Then for diffuse ideal I C P, K = {sup C' | maximal chainC C I} isa
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cutset in P if and only if I is closed under Z.

Proof. Assume K is a cutset in G but I is not closed under =. By transi-
tivity, let 2z ¢ I besuchthatz <zandz <yforsomey € I,z € P.
Since I isanidealz € Ibutz <ysoz ¢ K. Since I is diffuse and 2
is not in ideal I, let maximal chain C go from z to z without meeting K.
Then K is not a cutset, a contradiction.

Otherwise, let I be closed under = but K not be a cutset. Then there
exists a maximal chain C which meets I but does not intersect K. Let
z € I be an element of C. Since z is not maximal on C, for otherwise
€ K,let z ¢ I be such that 2 < z. But since I is regular, there is
€ K from some chain through z such that z < y. Theny € I and
¢ I so I is not closed under =. o

Note that in Theorem 5.4, the case for finite graphs, the condition on
diffuse ideals is insured by requiring the existence of source s. A slightly
weaker condition could be used, similar to [Gri69], by requiring each max-
imal antichain meet each extremal path but we will not pursue further
variations.

Ny

6. Exclusions

Methods were presented in sections 3 and 5 for finding antichain cutsets
in finite directed graphs. Section 4 presented a method for finding an an-
tichain cutset containing or excluding certain specified nodes of the graph.
Though Lemma 2.4 shows that no vertex in a nontrivial strong component
is contained in an antichain cutset, certainly there are acyclic graphs in
which some node which is neither initial nor final is not contained in any
antichain cutset. In fact, it is not difficult to find a finite example of such
a directed acyclic graph. Before proceeding therefore, it is appropriate to
characterize those nodes which do not appear in any antichain cutset. Con-
sider the construction of graph G' = (V', E') from G = (V, E) given prior
to Theorem 3.6. In this context, node £ € V is not contained in any an-
tichain cutset in G = (V, E) if and only if every ideal in E' which contains
gz € V' also contains p, € V'. Recall that R denotes the inverse of
relation R. Then since ideals in relation R are sets closed under IVQ, it is
clear that node z € V is not contained in any antichain cutset in G if and
only if (p;,p:) € E'*.

Next, a characterization of finite sets which are the union of antichain
cutsets is given.

Theorem 6.1. Node z € V is not contained in any antichain cutset in
graph G = (V,E) if and only if (z,z) € (E*E)*E*.

Proof. For x € V, without loss of generality consider the walk = in E
corresponding to a cycle v’ from p; to p; in E'. A cycle is a nontrivial

112



Figure 6.1. Graph for Theorem 6.1 proof.

closed walk with distinct vertices except for the ends.
(i) Cycle r' begins
PuisQuasPugs -+« 3 Puio g Qu;
for some ¢ > 1 where u; = z for the initial segment of #'. The corresponding
segment of r is
UL, U2y e oy Uim1, U

and (u;,u;) € E*+.
(ii) If r' continues to p,, then r is unchanged and case (i) is repeated.
(iii) Assume then that r' continues p,, where u; # v; so that r continues
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with (u;,v1) € E and again (i) is repeated. Thus, zero or more times, (1)
is followed by (ii) in ' and (z,w,) € (E*E)*. The final segment of 7’ is
a sequence described by (i) and ends

PwirQwzyPwas -+ -Gz Px

so (wy,z) € E*. Altogether then, (p;,p:) € E'" and (z,7) € (E+E)*E*
(see Figure 6.1). )

For transitive graphs, property (z,z) € (E*E)*E* of Theorem 6.1
reduces to the much simpler (z,z) € EEE.

¢ ) 3 4 -1 n

I 4 ) 3 4n-2 -1
Figure 6.2. Graph of generalized alternating-cover cycle.

Recall that for partially ordered set S, a chain in & is a totally ordered
subset ¢ C & and path p in graph G = (V, E) is extremal if p is a path
from an initial vertex s € V to a final vertex t € V. In the case
of an arbitrary graph, Theorem 6.1 characterizes nodes not contained in
any antichain which meets each extremal path. For another illustration
of Theorem 6.1, consider its application to a graph with some additional
structure. If G is the graph of a finite set V' with partial order relation £
and c is an extremal path in G, then the set of vertices of ¢ form a maximal
chain. When G is such a graph, Theorem 6.1 characterizes nodes which
are not contained in any antichain which meets each maximal chain. In
other words, when applied to the graph of a partial order, Theorem 6.1
characterizes nodes excluded from antichain cutsets in the order theoretic
sense.

Consider set G with partial order relation >. As usual, u > v if and
only if > v and u # v. Also, let u >— v if and only if v > v and there
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exists no w such that u > w > v and define —< similarly. For n > 1, define
subset {z,a;,¢c1,...,a,,¢n} C V to be a generalized alternating-cover cycle
(for z) [Riv85b] if and only if

C1 > T > ay,
C2 > 01,...,Cp-1 > Qn-2,Cp > Qn—|
and
€1 >— a1,C >— Q2,...,Ch >— Q.
If these are the only comparabilities among elements {z,a1,c1,...,an,¢n},

the graph of such a set is shown in Figure 6.2.

Lemma 6.2. IfG = (V, E) is the graph of a finite partial order & = (V,>)
and S C V is a generalized alternating-cover cycle,

z € S ifand only if (z,z) € (E*E)*E*.
Proof.

TES =S z>a, <> -—<e>a <>
< (z,a,) € E* A(an,cn) €EEA---
A(cs,a1) € E* A(ar,c1) € EA(ey,z) € EY
< (z,z) € (E*E)"E*.

Then the following has been obtained.

Corollary 6.3 [Riv85b]. In a finite ordered set, an element is contained
in an antichain cutset if and only if it is not contained in a generalized
alternating-cover cycle.

Proof. Theorem 6.1 and Lemma, 6.2. o

The O(|V|+|E|) complexity of Theorem 6.1 provides an efficient alter-
native to checking for the existence of generalized alternating-cover cycle.

As a final application of Theorem 6.1, let an ordered set be upper
levelled [Riv89) if it has a diagram in which, for each element, all upper
covers are on a horizontal level. A tree is a simple example of such a
structure. On the other hand, if the diagram is not upper levelled, then
some element a; has two upper covers = and ¢, which are forced to be at
different levels. Figure 6.3 shows a special case of a diagram which is not
upper levelled.

Since ¢; and c¢; are required by a» to be at the same level, and ¢, is
a cover of a, call element z a witness to a diagram which is not upper
levelled. That is, z comes between a; and what should be its cover c;.
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€ )

)

S

Figure 6.3. = witnesses a simple diagram which is not upper levelled.

1

Figure 6.4. r witnesses a diagram which is not upper levelled.
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Corollary 6.4. IfG = (V, E) is the diagram of a finite partial order G =
(V,2), z € V is a witness that G is not upper levelled if and only if
(z,z) € (E*E)*E+.

Proof. Corollary 2 [Pel87] and Lemma 6.2. o

Theorem 6.1 can also provide a connection between two apparently
unrelated structural results about ordered sets. A finite ordered set is
upper levelled if and only if it contains no alternating cover cycle (Corollary
2 [Pel87]). Rival [Riv89] notes that this echoes a rewording of Corollary
6.3: a finite ordered set is the union of antichain cutsets if and only if it
contains no alternating cover cycle [Riv85b). Theorem 6.1 indicates that it
is the presence of a distinguished element z on a special semi-walk which
characterizes both these results.
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