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ABSTRACT. In this paper we consider a random walk in a plane
in which a particle at any stage moves one unit in any one of
the four directions, namely, north south, east and west with
equal probability and derive the joint and marginal distribu-
tions of certain characteristics of this random walk by using
combinatorial methods.

1 Introduction

Let us consider a random walk in a plane (i.e., a two-dimensional simple
symmetric walk) in which a particle starting from the origin moves at any
stage one unit in any one of the four directions, namely, north, south, east
and west with equal probability. In this random walk, since every path of
length d in the plane has the probability (1/4)%, the determination of the
distribution of any characteristic of the walk when the particle starting from
(0,0) reaches a fixed point (a, b) after d steps needs the knowledge of the
number of paths corresponding to the characteristic under consideration
and the number of all paths of length d from (0, 0) to (a, b). DeTemple and
Robertson (1984) and DeTemple, Jones and Robertson (1988) have derived
distributions of some characteristics of this random walk. Later Cséki,
Mohanty and Saran (1990) and Saran and Rani (1994) have derived some
distributions related to the boundaries y — z = k; and y + z = k». In this
paper we consider the above mentioned two-dimensional symmetric random
walk and derive the joint and marginal distributions of some characteristics
related to the boundary y—z = k (k > 0), namely, arrivals, positive arrivals,
touchings, crossings, index of the ith arrival, length of the interval between
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the ith and the jth arrivals, thus generalizing and extending the earlier
work in this direction.

2 Notations
We introduce the following symbols.

Eqapa: a path of length.d from (0,0) to (a, b).

N(a,b;d;k,r): the number of Eqp4 paths reaching the line y —z = k
exactly r times, i.e., having exactly r arrivals.

N~ (a, b;d;k,r): the number of Eq b4 paths never crossing the line y—z =
k and reaching it from below exactly r times.

N+(a, b;d; k,r): the number of Eg 4 paths reaching the line y —z =k
from above exactly r times (known as positive arrivals).

N*(a, b;d;k,r): the number of E,,q paths crossing the line y—z =k
exactly r times.

N(a, b;d;k,r;i,d;): the number of paths of type N(a,b; d; k,r) where the
ith arrival occurs in dy steps.

N—(a,b;d;k,r;i,d1): the number of paths of type N—(a,b;d; k,T) where
the ith touch occurs in d; steps.

N+(a,b;d; k,r;i,d;y): the number of paths of type Nt (a,b;d;k,7) where
the ith positive arrival occurs in d; steps.

N*(a,b;d; k,r;i,d1): the number of paths of type N*(a,b;d;k, ) where
the ith crossing occurs in d; steps.

N(a, b;d;k,r;i,dy; j,d3): the number of paths of type N (a,b;d; k,7;4,d,)
where the length of the interval between the ith and the jth arrival
is da.

N—(a,b;d;k,r;i,dy;j,da): the number of paths of type N~(a,b;d; k,T;i,d)
where the length of the interval between the ith and the jth touch is
ds.

N+(a,b;d; k, r;i,d1;j,d3): the number of paths of type Nt(a,b;d;k,r;i,d;)
where the length of the interval between the ith and the jth positive
arrival is dz.

N*(a, b;d;k,r;i,di;j,da): the number of paths of type N* (a,b;d; k,7;14,d1)
where the length of the interval between the ith and the jth crossing
is da.
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3 Some auxiliary results
Some useful results needed in the sequel are quoted from Csski, Mohanty
and Saran (1990) and Saran and Rani (1994).

(i) Fora>b

a-b d d
N7 (a,b;d;0,0) = 3 (d—;—b) (4—54,5)

whered > a+bandd—a—b=0 (mod 2).
(ii)

1 d-1 d
N~ (a,q;d;0,1) = 1 (15_2) (d—22a)

= the number of paths of length d from
(0,0) to (a,a) lying entirely below the line
y = z except at the end point.

(iii) Fora>b—k, k>0andr >1

d—r+1 d
N~ (a,b;d; k, 1) = a l:i-i-—Z:-:-lr 1 (d—¢+b—22k—2r+2) (4_;_,,) .

When k = 0, the starting point is counted as a touch.
(iv) Fora>b—k,k>0andr >1
N(a,b;d; k,7) = 2" !N~ (a,b; d; k, 7).
When k = 0, the starting point is counted as an arrival.

(v) Fork>0andr >1
d+1 d
k+14+2r [ 4 i o d—k—2z
* P —_
N*(a, b+ zydik,r) = T ( - =3

(vi) Fora>bandr>1

d+1 d
N‘ (a') b; d) 0, 7') = a l:i‘:.ll'*' 2r ( d—a;b—2r) ( d—;‘b) .
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(vii) Forr 21

d d
N*(a,a;d;0,7) = 4(r: 1) (“‘2(2'“)) <"‘22°) .

(viii) Fora>b—k,k>0andr >0

d+1 d
N*(a,b;d; k,r) = a—b+2k+2r+1 (d—a+b—2r—2k) (d—a—b) '

d+1 2 2

When k = 0, the starting point is counted as a positive arrival.

4 Joint distributions

Theorem 1.

(a) Fora>b—k, k>0,r>1,d —k2>2(:-1),d >2( —1) and
d—dl—dg—a+b—k22(7‘—j)

o (imN)G-ir—jta-btk)
N (a’b,d’k’r’t’dh",dz)_(dl—i+1)(d2—j+i)(d—d1—dg—r-}-j)

dy—i+1 da—j+i
dy —k—2i+2 da—2j42i
d—dy —da—r+j d
( d—dy—da—a+b~k—2r42j ) ( d—a—b )
2 2 (1)

(b) Fork=0,a>b,r>1,dy >2,dy >2(j—i) and d—dy —dp—a+b >
2(r -J)

iG—i)r—j+a—b)
(dy—i)(d2—F+i)(d—d1 —dz —7+7)

d1 —t dz—j-l-!'
dy—2 dg—25+2i
d—dy—da—r+j d
( d—dy —da—a+b—2r+2j ) ( d—a—b )
2 2 )
2

Proof: Let the path, as envisaged in (1), touch the line y — z = k for the
ith time at the point (z;,k + z,) in d, steps and, for the jth time at the

N~(a,b; d; k,7;4,dy; 5, d2) =
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point (z2, k + z2) in d; + d; steps, respectively, where d; — k =0 (mod 2)
and dz = 0 (mod 2). Then the required number of paths is given by

N'(a., b; d1 kir; iv dl;j! dz)
= ZZN‘(zl,k+zl;d1;k,i)
] I3
N~ (z2 — 21,22 — 1;d2;0,5 — )
N7 (a-z2,b-k—z3;d —dy — dy;0,7 - j)

(d1—k)/2 (d2+2z1)/2 k4i_1

d—-i+1

z=—(d1+k)/2 za=—(d2-22,)/2

d dy—i+1 .
dy —k—2z, dy —k—2i+2 J—t
2 2 dp —j+1i

dnzii2i | ((da—terroe, | T—j+a—b+k
2 2 d—dy—dp—r+j

d—dy—da—r+j d—d; —dz
d—dy —da~a+b—k—2r425 ) ( d—d) —da2 —a—b+k+2x, )
I

2 2

by (iii) of Section 3. Since both d; and d; — k are multiples of 2, therefore,
on substituting u = (d + 2z1)/2 and v = (d; — k)/2 and using repeatedly
the Chu-Vandermonde identity

2627 ®

it leads to (1). Proceeding in a similar manner, as for k > 0, one can easily
establish (2).

Deductions:

A. Summing (1) over d; from 2j —2ito d—d; —a+b—k — 2r +25 and
using the convolution identity in Mohanty ((1979), p. 25), we get (1)
in Saran and Rani (1994).

B. Summing (2) over dz from 2j —2i to d — dj — a + b — 2r + 25, we get
(2) in Saran and Rani (1994).
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Theorem 2.

(a) Fora>b—k,k>0,r21,d1—k22(i—1),d222(j—i)and
d—dl—d2—0+b—k_>_2(r—j)

(k+2i—1)(25 —26) (a—b + k + 1 + 2r—25)
(di + 1)da(d—d1—d2 +1)

d; dl:+2}'+2 d: ?’-{—2'
h—k—2% 3 —4) T4t
d—dy—da+1 d
d—dy —da—a+b—k—2r+2j d—a—b

(b) Fork>0,r>1,dy—k>2(i—1),dy22(j—i)andd—d; —dz 2
20r—j+1)

N*(a,b;d; k,r;4,d135,d2)=

(k +2i — 1)(2f — 20)(2r — % +2)
(dy +1)da(d —dy —da)

di+1 da
( dy—k—2i+2 ) ( da—2j+21 )
2 2
(5
d—dy—da d
d—dy —da—2r+2j-2 d—2a—k

(c) Fora>b,r>1,d 2%, dy > 2(j—1i) and d—dy —dz —a+b 2 2(r—j)

2i(2j — 2i)(a — b+ 1 + 2r — 2j)
dida(d — dy —dz2 + 1)

- dp Dyt
dy —2i 2—25+28
d—dy—da+1 d
d—dy —da—a+b—2r+2j d—a—b

(d) Forr>1,dy 22,dy >2(j —i) and d —dy —dp 2 2(r —j +1)
2i(2j — 2i)(2r — 25 +2)
didz(d — dy — da)

d d‘z da ?'-{-2‘
h —2i —2j+2i
d—dy—da d
d—dy —da—2r+2j-2 d—2a

N'(a,a-}-k;d; ky";i,dﬁ.'i,dc) =

N*(a,b;d;0,7;4,d1;73, dp) =

N‘(d, a;d;o,f;i,dl;j,dg) =
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Proof: Let the path as envisaged in (4) cross the line y — z = k for the
ith time at the point (z,,k + z,) in d; steps, and for the jth time at the
point (z2, k + z2) in d; + da steps, respectively. Then the required number
of paths is given by

N*(a,b;d;k, 1;1, d1; 5, da)
=D Y N'(mk+zdiski-1)

z1 Z3
N*(z2 — 1,22 — Z1;d2;0,5 —i — 1)
N*(a — z2,b — k — z2;d — dy — dy; 0,7 — j)

_ (d1—k)/2 (da+221)/2 k+1+2 -2
- di +1

z1=—(d1+k)/2 =za=—(d2—2z,)/2

dy+1 d . .
diohois2 | [ dimkoze, \ 2 —20—242
2 2 da

(@—2j~:§i—2+2) (43—2::+2:n ) a—b+k+1+2r—2j

2 2 d—dy—do+1
d—dy—dy+1 d—dy—dz
( d—d; —da—a+4-b—k—2r+2j ) (d—dl —da—a—b+k+2z, )
2 2 !

by (v), (vi) and (vii) of Section 3. Simplifying the above expression in a
similar manner as in Theorem 1, it leads to (4).

Likewise (5) to (7) can be established.
Deduction:

Summing (4) to (7) each over dy, we get, respectively, results (3) to (6)
of Saran and Rani (1994).

Similarly the following two results can easily be obtained by using similar
arguments:

Theorem 8.

(8) Fra>2b—k,k>0,r>1,di—k>2(i—1),dy >2(j 1)
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andd—dy —dp —a+b—-k > 2(r—3j)

N(a,b;d; k, r;,d1; 5, d2)
(k+i-1)g—-i)e—d+k+r—-7)
(di—i+1)(dz -5 +i)d—di —dp —7+])

dy—i+1 d:’;§+‘2t
dy—k—2i+2 —2j+2i
d—dy—da—r+j d
d—dy—da—a+b—k—2r4+2j5 d—a—b

(b) Fora>b,7 >1,d; > 2i,dp > 2(j—i) and d—dy —dy—a+b > 2(r—3)

= 21'—1

L i(j —i)(a—b+r—j)
. g . . =9r
N(asbl d:o:rxi,dlsJadZ) (dl —i)(dz -3 +i)(d—d1 —dy —r+j)

ik (it
1—28 —25+2i
d—dy—da—7+j d
d—dy ~d3 —a+b—2r4-2j d—a—b

Theorem 4. Fora>b—k,k>0,r>1,d; —k > 2i, dy > 2(j — i) and
d—dy —dp —a+b—k>2(r—j)

(k +2i)(a — b+ k + 2r — 25 + 1)(2j — 2§)
dida(d —dy —dz +1)

a0 \ [ ap-ths
1—K—2Z8 - 14
d—dy —da+1 d
d—dy—da—a+b—k—2r+2j d—a—b

When k = 0, the starting point is counted as a positive arrival.
Deductions:

N+(a: ba d;k’r; i’ dl;j)d2) =

A. Summing (8) and (9) each over dp, we get, respectively, results equiv-
alent to (7) and (8) of Saran and Rani (1994).

B. Summing (10) over da, we get a result which is in agreement with
(16) in Saran and Rani (1994).
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