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ABSTRACT. Let D be a symmetric digraph and A a finite group.
We give a formula for the characteristic polynomial of a cyclic
A-cover of D. This is a generalization of a formula for the
characteristic polynomial of a regular covering of a graph. Fur-
thermore, we discuss cyclic abelian covers of D.

1 Introduction

Graphs and digraphs treated here are finite simple. Two vertices are called
adjacent if they are joined by an edge (arc). The adjacency matriz A(G)
of a graph (digraph) G whose vertex set is {v1,...,v,} is a square matrix
of order n, whose entry a;; at the place (3, j) is equal to 1 if there exists an
edge (arc) starting at the vertex v; and terminating at the vertex vj, and
0 otherwise. The characteristic polynomial ®(G; ) of a graph or a digraph
G is defined by ®(G; ) = det(AI - A(G)).

Schwenk [11] studied relations between the characteristic polynomials of
some related graphs. Kitamura and Nihei [7] discussed the structure of
regular double coverings of graphs by using their eigenvalues. Chae, Kwak
and Lee [4] gave the complete computation of the characteristic polynomials
of K> (or K)-bundles over graphs. Kwak and Lee [8] obtained a formula for
the characteristic polynomial of a graph bundle when its voltage assignment
takes in an abelian group. Sohn and Lee [12] showed that the characteristic
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polynomial of a weighted K> (or K2)-bundles over a weighted graph G can
be expressed as a product of characteristic polynomials of two weighted
graphs whose underlying graphs are G. Mizuno and Sato [9] established
an explicit decomposition formula for the characteristic polynomial of a
derived graph covering of a graph G with voltages in any finite group, i.e.,
any regular covering of G.

Cheng and Wells [2] introduced cyclic triple covers of a complete symmet-
ric digraph KD, and discussed isomorphism classes of cyclic triple covers
of KD. Mizuno and Sato [10] defined cyclic p-tuple covers of a symmetric
digraph D, where p is prime, and obtained a formula for the number of
k-cyclic p-tuple covers of D with respect to a group I' of automorphisms of
D, for any k € GF(p)*.

Let D be a symmetric digraph, A a finite group and g € A. In Section
2, we introduce cyclic A-covers of D as a generalization of regular graph
coverings of a graph and cyclic p-tuple covers of a symmetric digraph, and
give an decomposition formula for the characteristic polynomial of a g-
cyclic A-cover of D. In Section 3, we consider the case that A is an abelian
group, and examine the structure of g-cyclic A-covers of D. Furthermore,
we establish another formula for the characteristic polynomial of g-cyclic
A-cover of D.

For propositions concerning the representation of groups the reader is
referred to [1].

2 Cyclic A-covers of symmetric digraphs

Let D be a symmetric digraph and A a finite group. A function a: A(D) —
A is called altemnating if a(y,z) = a(z,y)~! for each (z,y) € A(D). For
g € A, a g-cyclic A-cover Dy(a) of D is the digraph defined as follows:

V(Dy4(a)) = V(D) x A, and ((u, k), (v,k)) € A(Dy(e)) if and only if
(u,v) € A(D) and k~1ha(u,v) =g,
where V(D) and A(D) is the vertex set and the arc set of D, respectively.
The natural projection 7: Dy(a) — D is a function from V(Dy(c)) onto
V(D) which erases the second coordinates. A digraph D’ is called a cyclic
A-cover of D if D' is a g-cyclic A-cover of D for some g € A. In the case
that A is abelian, Dy(a) is called simply a cyclic abelian cover.

A graph H is called a covering of a graph G with projection m: H —» G
if there is a surjection 7: H — G such that 7|n@y: N(@') = N(v) is a
bijection for all vertices v € V(G) and v € #~1(v). When a finite group II
acts on a graph (digraph) G, the quotient graph (digraph) G/1I is a simple
graph (digraph) whose vertices are the II-orbits on V(G), with two vertices
adjacent in G/II if and only if some two of their representatives are adjacent
in G. A covering 7: H — G is said to be regular if there is a subgroup B



of the automorphism group Aut H of H acting freely on H such that the
quotient graph H/B is isomorphic to G.

Let G be a graph and A a finite group. Let D(G) be the arc set of the
symmetric digraph corresponding to G. Then a mapping a: D(G) — A
is called an ordinary voliage assignment if a(v,u) = a(u,v)™! for each
(u,v) € D(G). The pair (G.a) is called an ordinary voltage graph. The
derived graph G* of the ordinary voltage graph (G, a) is defined as follows:

V(G*) = V(G) x A and ((u, k), (v,k)) € D(G®) if and only if (u,v) €
D(G) and k = ha(u,v),
where V(G) is the vertex set of G. Similarly to the case of a cyclic A-cover
of a symmetric digraph, the natural projection w: G* — G is defined. The
graph G is called a derived graph covering of G with voltages in A or an
A-covering of G. The A-covering G* is an |Al-fold regular covering of G.
Furthermore, every regular covering of a graph G is an A-covering of G for
some group A (see [5]).

The pair (D, a) of D and « can be considered as the ordinary voltage
graph (D, a) of the underlying graph D of D. Thus the 1-cyclic A-cover
Dy(e) corresponds to the A-covering D®. Furthermore, if p is prime, A =
GF(p) and k € A, then the k-cyclic A-cover Di(a) is the k-cyclic p-tuple
cover of D (see [10]).
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Figure 1. A symmetric digraph

Now, we give an example. Let D be the symmetric digraph of Figure 1
and A = Z3 = {0, 1, —1} (the additive group). Furthermore, let a: A(D) —
Z3 be the alternating function such that a(1,2) = 0, a(2,3) = 1 and
a(3,1) = —~1. Then the 1-cyclic Z3-cover (or 1-cyclic 3-tuple cover) D;(a)
is shown in Figure 2. Arrange the vertices of D;(c) in three blocks:

(1’ 0)’ (2’ 0): (3: 0), (lr 1)’ (2: 1)1 (33 1)’ (11 _1)1 (2’ _1)1 (3a _1)'



We consider the adjacency matrix A(D;(a)) under this order. Then A(D;(a))
is given as follows:

A(Di(e)) =

O~ OO0OO0Q0

—ooooOoHOOO
o N e e
o~ococoocoor~oO
cor~rocoo+~OO
cooor+—~OOO
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-0 O
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(1,-1)

Figure 2. The 1-cyclic Zs-cover D(a)



The block diagonal sum M; + ...+ M, of square matrices My,..., M,
is defined as the square matrix

M; 0

0 M,
IfM; = My = --- = M, = N, then we write soN = M; } ...+ M,.
Furthermore, if M = --- = Mg, = Ny, My, 41 = -+ = Mg 44, =
No,.... My 4,41 = -+ =M, = N, (a1+02+“'+at =850 20,

1 <i<t), then we write a; oNy +agoNa+...fa;oN; =M; +...+ M,.
For a square matrix B, we define &(B; ) := det(AI — B). The Kronecker
product A @ B of matrices'A and B is considered as the matrix A having
the element a;; replaced by the matrix a;;B.

Theorem 1. Let D be a symmetric digraph, A a finite group, g € A and
a: A(D) — A an alternating function. Furthermore, let py = 1, p3,...,ps
be the irreducible representations of A, and f; the degree of p; for each 1,
where fi = 1. For h € A, the matrix A, = (ag,‘,)) is defined as follows:

0 {1 if a(u,v) = h and (u,v) € A(D),

W " 10 otherwise.

Then the characteristic polynomial of the g-cyclic A-cover Dy(c) of D is

t fe
®(Dy(a); A) = 2(D; M) - [| {@ (Z pi(h) ® Ahg;A) } :

i=2 heA
where ® is the Kronecker product of matrices.
Proof: Set V(D) = {vi,...,vm} and A = {1 = g1,92,...,9,}. Arrange
vertices of Dy(a) in n blocks:
(vla l)t seey (vm: 1); (vlsg2)’ [ERX] ('vm’ 92); cee) ('Ul’gn); ey (vm;gn)-

We consider the adjacency matrix A(Dy(a)) under this order. For h € A,
the matrix P, = (pg.') ) is defined as follows: '

(h) _ 1 ifgh= gi»
bl 0 otherwise.

Suppose that pg.‘) =1, ie., gj = gih. Then ((u, ), (v, g;)) € A(Dy(a)) if
and only if (u,v) € A(D) and gj_lgia(u,‘ll) =g, ie, ofu,v) = gi_lgjg =
9. 'gihg = hg. Thus we have

A(Dy(a)) = Z Pp® Ay,
heA



Let p be the right regular representation of A. Then we have p(k) = P),
for h € A. Furthermore, there exists a regular matrix P such that

P 1p(R)P = (1) + fao pa(R) + ...+ fe 0 pe(h) for each h € A,
where ¢ is the number of distinct irreducible representations of A. Putting
B = (P ®L)A(Dy(a))(P @ Inm),

we have

B=Y {()+ fropa() ...+ feo pe(h)} ® A
heA .

Note that A(D) = Y, 4 Ang. Therefore it follows that

t IZ]
(D,(a); ) = 8(B; N) = 8(D; 1) - [ {@ (Z p3(h) ® Ang; A) } .
h

=2
a
Corollary 1. &(D;))|®(Dyfa); A).
Let D be the symmetric digraph corresponding to a graph G. Then, note
that A(D) = A(G).

Corollary 2 (9, Theorem 1). Let G be a graph, A a finite group and
a: A(D) — A an ordinary voltage assignment. Let p;, f; be as in Theorem
1. Then the characteristic polynomial of the A-covering G* of G is

t fi
(G*N) =2(G;N) - [] {‘1> (Z pi(h) ® Ah;)\) } .
h

=2

8 Cyclic abelian covers of symmetric digraphs

Let D be a symmetric digraph, A a finite abelian group and A* the character
group of A. For the mapping f: A(D) — A, a pair Dy = (D, f) is called
a weighted symmetric digraph. Given any weighted symmetric digraph Dy,
the adjacency matrix A(Dy) = (afuy) of Dy is the square matrix of order
|V(D)| defined by
Gfuy = Guy * f('ur 'U)'

The characteristic polynomial of Dy is that of its adjacency matrix, and is
denoted ®(Dy; M) (see [12]).



Corollary 3. Let D be a symmetric digraph, a an alternating function
from A(D) to a finite abelian group A, and g € A. Then we have

B(Dg(a);N) = [ @(Dxig)-1(x0ayi N)-
XEA*

Proof: Each irreducible representation of A is linear, and these constitute
the character group A*. By Theorem 1, we have

O(Dy(a);N)=8(D;2)- [ @ (AZ x(h)Ahg;")\) :

xEA*\{1} €A
Since

D x(h)Ang =Y x(97)x(hg)Ang = A(Dx(g)-1(xom))s
A "

it follows that
O(Dyg(a);N) = [ @(Dx(g)-1(xoa)iN)-
XEA*
O
For example, we consider the 1-cyclic Zs-cover D;(a) of Figure 2. By
Corollary 3, we have
<I>(D1(a), N=A-32-2)(A3=3¢A-2)(X2 -3¢2A-2)
= (A8 —3x=2)(A% +32% - 4X3 4+ 9A% — 6) +4)
=29-62°-152% 38,

where ¢ = (-1 + V/3i)/2.

Corollary 4. Let D be a symmetric digraph with m vertices, A = {g)
a cyclic group and ord(g) = n the order of g. Let 1: A(D) — A be the
function such that 1(u,v) = 1 for each (u,v) € A(D). Furthermore, set
¢ = exp(2ni/n). Then we have

n—1
&(Dy(1); ) = ¢~ D/2 [T (D; ¢*N).
k=0

Proof: For g* € A, the character x; corresponding to g* is defined by
xx(¢7) = (¢*¥). By Corollary 3, we have

n-1

B(Dy(1); X) = J[ B(D¢-»(xno1)i A)-
k=0



Since 1(u,v) = 1 for each (u,v) € A(D), we have {~*(xx 0 1))(u,v) =
¢ xe(1) = (% -1 = ¢ for each (u,v) € A(D) and each k. Then the
adjacency matrix A(D¢-x) = (ac-x ) is given as follows:

{c—k if (u,v) € A(D),
a(-k'w =

0 otherwise.
Therefore it follows that
®(D¢-k; A) = det(\ — (¥ A(D)) = (T™5®(D;¢*N).

Thus the result follows. a

We shall examine the structure of a cyclic abelian cover of a symmetric
digraph. Let D be a symmetric digraph, A a finite abelian group, g € A
and a: A(D) —A an alternating function. The right action of A on the
g-cyclic A-cover Dy(a) of D is defined as follows:

(u, k)* = (u, hk)

for each h € A and (u, k) € V(Dy(a)). Since a 1-cyclic A-cover of D is an
A-covering of the underlying graph D, we state the structure of nonunit-

cyclic A-cover of D. For convenience’ sake, we identify the 1-cyclic A-cover
Dy(a) with the A-covering D of D.

Theorem 2 (The Structure Theorem). Let D be a symmetric digraph,
A a finite abelian group, g # 1 € A and a: A(D) — A an alternating
function. Let ord(g) = n and H = (g) the subgroup of A generated by
g. Furthermore, let §: A(D) — A/H be the alternating function such that
B(z,y) = az,y)H for each (z,y) € A(D), and D the underlying graph of
D. Then the g-cyclic A-cover Dg(a) of D is the g-cyclic H-cover (DP )g(1)
of the A/H-covering DP of D.

Proof: Let (z,y) be any arc of D. We shall examine the structure of
the induced subdigraph (x~!({z,y}))p,(a). Let |A/H| = m and {h; =
1,hs,...,hm} the representatives of all (right) cosets of H in A. Set
a(z,y) = c. Then ((z,h), (y,k)) € A(Dy(a)) if and only if k~1hc = g,
ie., k = hcg~!. Fhrthermore, ((w, k), (z,k)) € A(Dg()) if and only if
k~lhe ! = g, ie, k= hclg~!. Foreachi =1,...,m and ¢ € H,
((z, hig?), (v, k)) e A(Dy(ax)) lf and only if k = h‘-gjcg‘1 = hicg'"1, etc.
Thus we have

((z, hig®), (y, hicg® 1)) and ((y, hicg’), (2, hig”™")) € A(Dy(a)).

for each i =1,...,m and ¢’ € H. Therefore, for i =1,...,m, we obtain a

10



dicycle or a union of two dicycles as follows:

((z, ha), (9, hicg™), (x, hig™2), (g, hicg ™), ..., (9, hicg), (z, b)) (n: odd);
((, hs), (v, hicg™?), (z, hig™2), . .., (¥, hicg), (z, b))
U ((.'D, h'ig_l)1 (y: hic.q_z)s (zv hig_s)z ceey (yr th), ($, hig_l))(n: even)'

Now, we consider the quotient digraph Dy = Dy(a)/H. Set H; = Hh;
(1 < i < m). Then we have

A((w—l({z’ y}»DH) = {((za Hi): (y! CHi))a ((yv CH;'), (:B, Hl))ll <i< m}

However, in the A/H-covering D? of D, ((z, H;), (v, K)) € D(DP) if and
only if K = H;B(x,y) = HicH = HhicH = c¢(Hh;) = cH;, for each i =
1,...,m. Thus we have ((z, H;), (y,cH;)) and ((y, cH) (x, H;)) € D(DP)
(1 € i £ m). Therefore it follows that Dy((a)/H = D8,

Next, we consider the g-cyclic A/H-cover (Dﬂ)g(l) of DB. Two vertices
((z, Hy), 9°), ((y, cH;), ) are adjacent in (DP)4(1) if and only if k' ¢71 = g,
i.e., h = g'~!. Thus we have

(((, Hi), ), (9, cH:), 7 71)) € A((DP)(1))

foreachi=1,...,mand j =0,1,...,n — 1. Identifying ((y, cH;),g’) with
(¥, hicg?), etc, we have _

(=, hug”), (v, hicg? 1)) € A((DP)y(1))
for each i and j. Hence it follows that Dy(a) = (DP),(1). O

Corollary 5. &(DP; \)|®(Dy(a); ).
Finally, we shall apply Theorem 2 for the characteristic polynomial of a
cyclic abelian cover of a symmetric digraph.

Corollary 6. Let D be a symmetric digraph, A a finite abelian group,
g# 1€ Aand a: A(D) — A an alternating function. Set |V(D)| = t,
ord(g) = n, |A| = nq and H = (g). Furthermore, let B: A(D) —» A/H
be the alternating function such that 8(z,y) = a(z,y)H for each (z,y) €
A(D). Then the characteristic polynomial of the g-cyclic A-cover Dy(ax) of
Dis

n—1
B(Dy(a);A) = ¢ [ @(Dyosi¢*N),

k=0 xx€(A/H)*
where (A/H)* is the character group of A/H and { = exp(2mi/n).
Proof: By Theorem 2, Corollaries 3,4 and the fact that D? = Dy(8). O

11



Acknowledgement

The authors would like to thank the referees for their insightful comments
and suggestions.

References

[1] M. Burrow, “Representation Theory of Finite Group”, Academic
Press, New York, (1965).

[2] Y. Cheng and A.L. Wells, Jr., Switching classes of directed graphs, J.
Combin. Theory Ser. B 40(1986), 169-186.

[3] D.M. Cvetkovié, M. Doob and H. Sachs, “Spectra of Graphs”, Aca-
demic Press, New York, (1979).

[4] Y. Chae, J.H. Kwak and J. Lee, private communication.

[5] J.L. Gross and T.W. Tucker, Generating all graph coverings by per-
mutation voltage assignments, Discrete Math. 18(1977), 273-283.

[6] J.L. Gross and T.W. Tucker, “Topological Graph Theory”, Wiley-
Interscience, New York, (1987).

[7] T.Kitamura and M. Nihei, On the structure of double covering graphs,
Math. Japonica 35(1990), 225-229.

[8] J.H. Kwak and J. Lee, Characteristic polynomials of some graph bun-
dles II, to appear in Linear and Multilinear Algebra.

[9] H. Mizuno and I. Sato, Characteristic polynomials of some graph cov-
erings, to appear in Discrete Math.

[10] H. Mizuno and I. Sato, Isomorphisms of cyclic p-tuple covers of sym-
metric digraphs, submitted.

[11] A.J. Schwenk, Computing the characteristic polynomial of a graph,
Lecture Notes in Mathematics, No. 406, Springer-Verlag, 1974; 153-
172.

[12] M.Y. Sohn and J. Lee, Characteristic polynomials of some weighted
graph bundles and its applications to links, submitted.

12



