Characteristic polynomials of some covers of symmetric digraphs

Hirobumi Mizuno

Department of Computer Science and Information Mathematics
University of Electro-Communications
1-5-1, Chofugaoka, Chofu, Tokyo 182
Japan

Iwao Sato

The Tsuruoka Technical College Tsuruoka, Yamagata 997 Japan

ABSTRACT. Let D be a symmetric digraph and A a finite group. We give a formula for the characteristic polynomial of a cyclic A-cover of D. This is a generalization of a formula for the characteristic polynomial of a regular covering of a graph. Furthermore, we discuss cyclic abelian covers of D.

1 Introduction

Graphs and digraphs treated here are finite simple. Two vertices are called adjacent if they are joined by an edge (arc). The adjacency matrix A(G) of a graph (digraph) G whose vertex set is $\{v_1, \ldots, v_n\}$ is a square matrix of order n, whose entry a_{ij} at the place (i,j) is equal to 1 if there exists an edge (arc) starting at the vertex v_i and terminating at the vertex v_j , and 0 otherwise. The characteristic polynomial $\Phi(G; \lambda)$ of a graph or a digraph G is defined by $\Phi(G; \lambda) = \det(\lambda \mathbf{I} - \mathbf{A}(G))$.

Schwenk [11] studied relations between the characteristic polynomials of some related graphs. Kitamura and Nihei [7] discussed the structure of regular double coverings of graphs by using their eigenvalues. Chae, Kwak and Lee [4] gave the complete computation of the characteristic polynomials of K_2 (or $\overline{K_2}$)-bundles over graphs. Kwak and Lee [8] obtained a formula for the characteristic polynomial of a graph bundle when its voltage assignment takes in an abelian group. Sohn and Lee [12] showed that the characteristic

polynomial of a weighted K_2 (or \overline{K}_2)-bundles over a weighted graph G can be expressed as a product of characteristic polynomials of two weighted graphs whose underlying graphs are G. Mizuno and Sato [9] established an explicit decomposition formula for the characteristic polynomial of a derived graph covering of a graph G with voltages in any finite group, i.e., any regular covering of G.

Cheng and Wells [2] introduced cyclic triple covers of a complete symmetric digraph KD, and discussed isomorphism classes of cyclic triple covers of KD. Mizuno and Sato [10] defined cyclic p-tuple covers of a symmetric digraph D, where p is prime, and obtained a formula for the number of k-cyclic p-tuple covers of D with respect to a group Γ of automorphisms of D, for any $k \in GF(p)^*$.

Let D be a symmetric digraph, A a finite group and $g \in A$. In Section 2, we introduce cyclic A-covers of D as a generalization of regular graph coverings of a graph and cyclic p-tuple covers of a symmetric digraph, and give an decomposition formula for the characteristic polynomial of a g-cyclic A-cover of D. In Section 3, we consider the case that A is an abelian group, and examine the structure of g-cyclic A-covers of D. Furthermore, we establish another formula for the characteristic polynomial of g-cyclic A-cover of D.

For propositions concerning the representation of groups the reader is referred to [1].

2 Cyclic A-covers of symmetric digraphs

Let D be a symmetric digraph and A a finite group. A function $\alpha \colon A(D) \to A$ is called alternating if $\alpha(y,x) = \alpha(x,y)^{-1}$ for each $(x,y) \in A(D)$. For $g \in A$, a g-cyclic A-cover $D_g(\alpha)$ of D is the digraph defined as follows:

 $V(D_g(\alpha))=V(D)\times A$, and $((u,h),(v,k))\in A(D_g(\alpha))$ if and only if $(u,v)\in A(D)$ and $k^{-1}h\alpha(u,v)=g$,

where V(D) and A(D) is the vertex set and the arc set of D, respectively. The natural projection $\pi\colon D_g(\alpha)\to D$ is a function from $V(D_g(\alpha))$ onto V(D) which erases the second coordinates. A digraph D' is called a cyclic A-cover of D if D' is a g-cyclic A-cover of D for some $g\in A$. In the case that A is abelian, $D_g(\alpha)$ is called simply a cyclic abelian cover.

A graph H is called a *covering* of a graph G with projection $\pi\colon H\to G$ if there is a surjection $\pi\colon H\to G$ such that $\pi|_{N(v')}\colon N(v')\to N(v)$ is a bijection for all vertices $v\in V(G)$ and $v'\in\pi^{-1}(v)$. When a finite group Π acts on a graph (digraph) G, the quotient graph (digraph) G/Π is a simple graph (digraph) whose vertices are the Π -orbits on V(G), with two vertices adjacent in G/Π if and only if some two of their representatives are adjacent in G. A covering $\pi\colon H\to G$ is said to be regular if there is a subgroup G

of the automorphism group Aut H of H acting freely on H such that the quotient graph H/B is isomorphic to G.

Let G be a graph and A a finite group. Let D(G) be the arc set of the symmetric digraph corresponding to G. Then a mapping $\alpha \colon D(G) \to A$ is called an *ordinary voltage assignment* if $\alpha(v,u) = \alpha(u,v)^{-1}$ for each $(u,v) \in D(G)$. The pair (G,α) is called an *ordinary voltage graph*. The derived graph G^{α} of the ordinary voltage graph (G,α) is defined as follows:

 $V(G^{\alpha})=V(G)\times A$ and $((u,h),(v,k))\in D(G^{\alpha})$ if and only if $(u,v)\in D(G)$ and $k=h\alpha(u,v),$

where V(G) is the vertex set of G. Similarly to the case of a cyclic A-cover of a symmetric digraph, the natural projection $\pi: G^{\alpha} \to G$ is defined. The graph G^{α} is called a derived graph covering of G with voltages in A or an A-covering of G. The A-covering G^{α} is an |A|-fold regular covering of G. Furthermore, every regular covering of a graph G is an A-covering of G for some group A (see [5]).

The pair (D, α) of D and α can be considered as the ordinary voltage graph (\tilde{D}, α) of the underlying graph \tilde{D} of D. Thus the 1-cyclic A-cover $D_1(\alpha)$ corresponds to the A-covering \tilde{D}^{α} . Furthermore, if p is prime, A = GF(p) and $k \in A$, then the k-cyclic A-cover $D_k(\alpha)$ is the k-cyclic p-tuple cover of D (see [10]).

Figure 1. A symmetric digraph

Now, we give an example. Let D be the symmetric digraph of Figure 1 and $A = Z_3 = \{0, 1, -1\}$ (the additive group). Furthermore, let $\alpha \colon A(D) \to Z_3$ be the alternating function such that $\alpha(1, 2) = 0$, $\alpha(2, 3) = 1$ and $\alpha(3, 1) = -1$. Then the 1-cyclic Z_3 -cover (or 1-cyclic 3-tuple cover) $D_1(\alpha)$ is shown in Figure 2. Arrange the vertices of $D_1(\alpha)$ in three blocks:

$$(1,0), (2,0), (3,0); (1,1), (2,1), (3,1); (1,-1), (2,-1), (3,-1).$$

We consider the adjacency matrix $A(D_1(\alpha))$ under this order. Then $A(D_1(\alpha))$ is given as follows:

$$\mathbf{A}(D_1(lpha)) = egin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ \end{bmatrix}$$

Figure 2. The 1-cyclic Z_3 -cover $D_1(\alpha)$

The block diagonal sum $M_1 \dotplus ... \dotplus M_s$ of square matrices $M_1, ..., M_s$ is defined as the square matrix

$$\begin{bmatrix} \mathbf{M_1} & 0 \\ & \ddots & \\ 0 & \mathbf{M_s} \end{bmatrix}$$

If $M_1 = M_2 = \cdots = M_s = N$, then we write $s \circ N = M_1 \dotplus \dots \dotplus M_s$. Furthermore, if $M_1 = \cdots = M_{a_1} = N_1$, $M_{a_1+1} = \cdots = M_{a_1+a_2} = N_2, \dots, M_{s-a_t+1} = \cdots = M_s = N_t$ $(a_1 + a_2 + \cdots + a_t = s, a_i \ge 0, 1 \le i \le t)$, then we write $a_1 \circ N_1 \dotplus a_2 \circ N_2 \dotplus \dots \dotplus a_t \circ N_t = M_1 \dotplus \dots \dotplus M_s$. For a square matrix B, we define $\Phi(B; \lambda) := \det(\lambda I - B)$. The Kronecker product $A \otimes B$ of matrices A and B is considered as the matrix A having the element a_{ij} replaced by the matrix $a_{ij}B$.

Theorem 1. Let D be a symmetric digraph, A a finite group, $g \in A$ and $\alpha: A(D) \to A$ an alternating function. Furthermore, let $\rho_1 = 1, \rho_2, \ldots, \rho_t$ be the irreducible representations of A, and f_i the degree of ρ_i for each i, where $f_1 = 1$. For $h \in A$, the matrix $A_h = (a_{uv}^{(h)})$ is defined as follows:

$$a_{uv}^{(h)} := \begin{cases} 1 & \text{if } \alpha(u,v) = h \text{ and } (u,v) \in A(D), \\ 0 & \text{otherwise.} \end{cases}$$

Then the characteristic polynomial of the g-cyclic A-cover $D_q(\alpha)$ of D is

$$\Phi(D_g(\alpha);\lambda) = \Phi(D;\lambda) \cdot \prod_{j=2}^t \left\{ \Phi\left(\sum_{h \in A} \rho_j(h) \otimes \mathbf{A}_{hg};\lambda\right) \right\}^{f_i},$$

where ⊗ is the Kronecker product of matrices.

Proof: Set $V(D) = \{v_1, \ldots, v_m\}$ and $A = \{1 = g_1, g_2, \ldots, g_n\}$. Arrange vertices of $D_g(\alpha)$ in n blocks:

$$(v_1,1),\ldots,(v_m,1);(v_1,g_2),\ldots,(v_m,g_2);\ldots;(v_1,g_n),\ldots,(v_m,g_n).$$

We consider the adjacency matrix $A(D_g(\alpha))$ under this order. For $h \in A$, the matrix $P_h = (p_{ij}^{(h)})$ is defined as follows:

$$p_{ij}^{(h)} = \begin{cases} 1 & \text{if } g_i h = g_j, \\ 0 & \text{otherwise.} \end{cases}$$

Suppose that $p_{ij}^{(h)}=1$, i.e., $g_j=g_ih$. Then $((u,g_i),(v,g_j))\in A(D_g(\alpha))$ if and only if $(u,v)\in A(D)$ and $g_j^{-1}g_i\alpha(u,v)=g$, i.e., $\alpha(u,v)=g_i^{-1}g_jg=g_i^{-1}g_ihg=hg$. Thus we have

$$\mathbf{A}(D_g(\alpha)) = \sum_{h \in A} \mathbf{P}_h \otimes \mathbf{A}_{hg}.$$

Let ρ be the right regular representation of A. Then we have $\rho(h) = P_h$ for $h \in A$. Furthermore, there exists a regular matrix P such that

$$\mathbf{P}^{-1}\rho(h)\mathbf{P} = (1) \dotplus f_2 \circ \rho_2(h) \dotplus \dots \dotplus f_t \circ \rho_t(h)$$
 for each $h \in A$,

where t is the number of distinct irreducible representations of A. Putting

$$\mathbf{B} = (\mathbf{P}^{-1} \otimes \mathbf{I}_m) \mathbf{A}(D_g(\alpha)) (\mathbf{P} \otimes \mathbf{I}_m),$$

we have

$$\mathbf{B} = \sum_{h \in A} \{(1) \dotplus f_2 \circ \rho_2(h) \dotplus \ldots \dotplus f_t \circ \rho_t(h)\} \otimes \mathbf{A}_{hg}.$$

Note that $A(D) = \sum_{h \in A} A_{hg}$. Therefore it follows that

$$\Phi(D_g(\alpha);\lambda) = \Phi(\mathbf{B};\lambda) = \Phi(D;\lambda) \cdot \prod_{j=2}^t \left\{ \Phi\left(\sum_h \rho_j(h) \otimes \mathbf{A}_{hg};\lambda\right) \right\}^{f_j}.$$

Corollary 1. $\Phi(D;\lambda)|\Phi(D_a(\alpha);\lambda)$.

Let D be the symmetric digraph corresponding to a graph G. Then, note that A(D) = A(G).

Corollary 2 (9, Theorem 1). Let G be a graph, A a finite group and $\alpha: A(D) \to A$ an ordinary voltage assignment. Let ρ_i , f_i be as in Theorem 1. Then the characteristic polynomial of the A-covering G^{α} of G is

$$\Phi(G^{\alpha};\lambda) = \Phi(G;\lambda) \cdot \prod_{j=2}^{t} \left\{ \Phi\left(\sum_{h} \rho_{j}(h) \otimes \mathbf{A}_{h};\lambda\right) \right\}^{f_{j}}.$$

3 Cyclic abelian covers of symmetric digraphs

Let D be a symmetric digraph, A a finite abelian group and A^* the character group of A. For the mapping $f: A(D) \to A$, a pair $D_f = (D, f)$ is called a weighted symmetric digraph. Given any weighted symmetric digraph D_f , the adjacency matrix $A(D_f) = (a_{f,uv})$ of D_f is the square matrix of order |V(D)| defined by

$$a_{f,uv} = a_{uv} \cdot f(u,v).$$

The characteristic polynomial of D_f is that of its adjacency matrix, and is denoted $\Phi(D_f; \lambda)$ (see [12]).

Corollary 3. Let D be a symmetric digraph, α an alternating function from A(D) to a finite abelian group A, and $g \in A$. Then we have

$$\Phi(D_g(\alpha);\lambda) = \prod_{\chi \in A^{\bullet}} \Phi(D_{\chi(g)^{-1}(\chi \circ \alpha)};\lambda).$$

Proof: Each irreducible representation of A is linear, and these constitute the character group A^* . By Theorem 1, we have

$$\Phi(D_g(\alpha);\lambda) = \Phi(D;\lambda) \cdot \prod_{\chi \in A^{\bullet} \setminus \{1\}} \Phi\left(\sum_{h \in A} \chi(h) \mathbf{A}_{hg};\lambda\right).$$

Since

$$\sum_{h} \chi(h) \mathbf{A}_{hg} = \sum_{h} \chi(g^{-1}) \chi(hg) \mathbf{A}_{hg} = \mathbf{A}(D_{\chi(g)^{-1}(\chi \circ \alpha)}),$$

it follows that

$$\Phi(D_g(\alpha);\lambda) = \prod_{\chi \in A^*} \Phi(D_{\chi(g)^{-1}(\chi \circ \alpha)};\lambda).$$

For example, we consider the 1-cyclic \mathbb{Z}_3 -cover $\mathbb{D}_1(\alpha)$ of Figure 2. By Corollary 3, we have

$$\Phi(D_1(\alpha); \lambda) = (\lambda^3 - 3\lambda - 2)(\lambda^3 - 3\zeta\lambda - 2)(\lambda^3 - 3\zeta^2\lambda - 2)$$

$$= (\lambda^3 - 3\lambda - 2)(\lambda^6 + 3\lambda^4 - 4\lambda^3 + 9\lambda^2 - 6\lambda + 4)$$

$$= \lambda^9 - 6\lambda^6 - 15\lambda^3 - 8,$$

where $\zeta = (-1 + \sqrt{3}i)/2$.

Corollary 4. Let D be a symmetric digraph with m vertices, $A = \langle g \rangle$ a cyclic group and ord(g) = n the order of g. Let $1: A(D) \to A$ be the function such that 1(u, v) = 1 for each $(u, v) \in A(D)$. Furthermore, set $\zeta = \exp(2\pi i/n)$. Then we have

$$\Phi(D_g(\mathbf{1});\lambda) = \zeta^{-mn(n-1)/2} \prod_{k=0}^{n-1} \Phi(D;\zeta^k\lambda).$$

Proof: For $g^k \in A$, the character χ_k corresponding to g^k is defined by $\chi_k(g^j) = (\zeta^k)^j$. By Corollary 3, we have

$$\Phi(D_g(\mathbf{1});\lambda) = \prod_{k=0}^{n-1} \Phi(D_{\zeta^{-k}(\chi_k \circ \mathbf{1})};\lambda).$$

Since 1(u,v)=1 for each $(\mu,v)\in A(D)$, we have $\zeta^{-k}(\chi_k\circ 1))(u,v)=\zeta^{-k}\chi_k(1)=\zeta^{-k}\cdot 1=\zeta^{-k}$ for each $(u,v)\in A(D)$ and each k. Then the adjacency matrix $A(D_{\zeta^{-k}})=(a_{\zeta^{-k},uv})$ is given as follows:

$$a_{\zeta^{-k},uv} = \begin{cases} \zeta^{-k} & \text{if } (u,v) \in A(D), \\ 0 & \text{otherwise.} \end{cases}$$

Therefore it follows that

$$\Phi(D_{\zeta^{-k}};\lambda) = \det(\lambda \mathbf{I} - \zeta^{-k} \mathbf{A}(D)) = \zeta^{-mk} \Phi(D;\zeta^k \lambda).$$

Thus the result follows.

We shall examine the structure of a cyclic abelian cover of a symmetric digraph. Let D be a symmetric digraph, A a finite abelian group, $g \in A$ and $\alpha: A(D) \to A$ an alternating function. The right action of A on the g-cyclic A-cover $D_g(\alpha)$ of D is defined as follows:

$$(u,k)^h = (u,hk)$$

for each $h \in A$ and $(u, k) \in V(D_g(\alpha))$. Since a 1-cyclic A-cover of D is an A-covering of the underlying graph \tilde{D} , we state the structure of nonunit-cyclic A-cover of D. For convenience' sake, we identify the 1-cyclic A-cover $D_1(\alpha)$ with the A-covering \tilde{D}^{α} of \tilde{D} .

Theorem 2 (The Structure Theorem). Let D be a symmetric digraph, A a finite abelian group, $g \neq 1 \in A$ and $\alpha \colon A(D) \to A$ an alternating function. Let ord(g) = n and $H = \langle g \rangle$ the subgroup of A generated by g. Furthermore, let $\beta \colon A(D) \to A/H$ be the alternating function such that $\beta(x,y) = \alpha(x,y)H$ for each $(x,y) \in A(D)$, and \tilde{D} the underlying graph of D. Then the g-cyclic A-cover $D_g(\alpha)$ of D is the g-cyclic H-cover $(\tilde{D}^\beta)_g(1)$ of the A/H-covering \tilde{D}^β of \tilde{D} .

Proof: Let (x,y) be any arc of D. We shall examine the structure of the induced subdigraph $\langle \pi^{-1}(\{x,y\})\rangle_{D_g(\alpha)}$. Let |A/H|=m and $\{h_1=1,h_2,\ldots,h_m\}$ the representatives of all (right) cosets of H in A. Set $\alpha(x,y)=c$. Then $((x,h),(y,k))\in A(D_g(\alpha))$ if and only if $k^{-1}hc=g$, i.e., $k=hcg^{-1}$. Furthermore, $((y,h),(x,k))\in A(D_g(\alpha))$ if and only if $k^{-1}hc^{-1}=g$, i.e., $k=hc^{-1}g^{-1}$. For each $i=1,\ldots,m$ and $g^j\in H$, $((x,h_ig^j),(y,k))\in A(D_g(\alpha))$ if and only if $k=h_ig^jcg^{-1}=h_icg^{j-1}$, etc. Thus we have

$$((x, h_i g^j), (y, h_i c g^{j-1}))$$
 and $((y, h_i c g^j), (x, h_i g^{j-1})) \in A(D_g(\alpha))$.

for each i = 1, ..., m and $g^j \in H$. Therefore, for i = 1, ..., m, we obtain a

dicycle or a union of two dicycles as follows:

$$((x,h_i),(y,h_icg^{-1}),(x,h_ig^{-2}),(y,h_icg^{-3}),\ldots,(y,h_icg),(x,h_i))(n: odd);$$

$$((x,h_i),(y,h_icg^{-1}),(x,h_ig^{-2}),\ldots,(y,h_icg),(x,h_i))$$

$$\cup ((x,h_ig^{-1}),(y,h_icg^{-2}),(x,h_ig^{-3}),\ldots,(y,h_ic),(x,h_ig^{-1}))(n: even).$$

Now, we consider the quotient digraph $D_H = D_g(\alpha)/H$. Set $H_i = Hh_i$ $(1 \le i \le m)$. Then we have

$$A(\langle \pi^{-1}(\{x,y\})\rangle_{D_H}) = \{((x,H_i),(y,cH_i)),((y,cH_i),(x,H_i))|1 \le i \le m\}.$$

However, in the A/H-covering \tilde{D}^{β} of \tilde{D} , $((x, H_i), (y, K)) \in D(\tilde{D}^{\beta})$ if and only if $K = H_i\beta(x, y) = H_icH = Hh_icH = c(Hh_i) = cH_i$, for each $i = 1, \ldots, m$. Thus we have $((x, H_i), (y, cH_i))$ and $((y, cH_i), (x, H_i)) \in D(\tilde{D}^{\beta})$ $(1 \le i \le m)$. Therefore it follows that $D_g((\alpha)/H = \tilde{D}^{\beta})$.

Next, we consider the g-cyclic A/H-cover $(\tilde{D}^{\beta})_g(1)$ of \tilde{D}^{β} . Two vertices $((x, H_i), g^j), ((y, cH_i), h)$ are adjacent in $(\tilde{D}^{\beta})_g(1)$ if and only if $h^{-1}g^j1 = g$, i.e., $h = g^{j-1}$. Thus we have

$$(((x, H_i), g^j), ((y, cH_i), g^{j-1})) \in A((\tilde{D}^{\beta})_q(1))$$

for each i = 1, ..., m and j = 0, 1, ..., n - 1. Identifying $((y, cH_i), g^j)$ with $(y, h_i cg^j)$, etc, we have

$$((x, h_i g^j), (y, h_i c g^{j-1})) \in A((\tilde{D}^{\beta})_q(1))$$

for each i and j. Hence it follows that $D_g(\alpha) = (\tilde{D}^{\beta})_g(1)$.

Corollary 5. $\Phi(\tilde{D}^{\beta}; \lambda) | \Phi(D_{\alpha}(\alpha); \lambda)$.

Finally, we shall apply Theorem 2 for the characteristic polynomial of a cyclic abelian cover of a symmetric digraph.

Corollary 6. Let D be a symmetric digraph, A a finite abelian group, $g \neq 1 \in A$ and $\alpha \colon A(D) \to A$ an alternating function. Set |V(D)| = t, ord(g) = n, |A| = nq and $H = \langle g \rangle$. Furthermore, let $\beta \colon A(D) \to A/H$ be the alternating function such that $\beta(x,y) = \alpha(x,y)H$ for each $(x,y) \in A(D)$. Then the characteristic polynomial of the g-cyclic A-cover $D_g(\alpha)$ of D is

$$\Phi(D_g(\alpha);\lambda) = \zeta^{-qtn(n-1)/2} \prod_{k=0}^{n-1} \prod_{\chi_k \in (A/H)^*} \Phi(D_{\chi \circ \beta};\zeta^k \lambda),$$

where $(A/H)^*$ is the character group of A/H and $\zeta = \exp(2\pi i/n)$.

Proof: By Theorem 2, Corollaries 3,4 and the fact that $\tilde{D}^{\beta} = D_1(\beta)$. \square

Acknowledgement

The authors would like to thank the referees for their insightful comments and suggestions.

References

- M. Burrow, "Representation Theory of Finite Group", Academic Press, New York, (1965).
- [2] Y. Cheng and A.L. Wells, Jr., Switching classes of directed graphs, J. Combin. Theory Ser. B 40(1986), 169-186.
- [3] D.M. Cvetković, M. Doob and H. Sachs, "Spectra of Graphs", Academic Press, New York, (1979).
- [4] Y. Chae, J.H. Kwak and J. Lee, private communication.
- [5] J.L. Gross and T.W. Tucker, Generating all graph coverings by permutation voltage assignments, *Discrete Math.* 18(1977), 273-283.
- [6] J.L. Gross and T.W. Tucker, "Topological Graph Theory", Wiley-Interscience, New York, (1987).
- [7] T. Kitamura and M. Nihei, On the structure of double covering graphs, *Math. Japonica* **35**(1990), 225–229.
- [8] J.H. Kwak and J. Lee, Characteristic polynomials of some graph bundles II, to appear in *Linear and Multilinear Algebra*.
- [9] H. Mizuno and I. Sato, Characteristic polynomials of some graph coverings, to appear in *Discrete Math*.
- [10] H. Mizuno and I. Sato, Isomorphisms of cyclic p-tuple covers of symmetric digraphs, submitted.
- [11] A.J. Schwenk, Computing the characteristic polynomial of a graph, Lecture Notes in Mathematics, No. 406, Springer-Verlag, 1974; 153– 172.
- [12] M.Y. Sohn and J. Lee, Characteristic polynomials of some weighted graph bundles and its applications to links, submitted.