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ABSTRACT. Let V be a finite set of order v. A (v, x,\) packing
design of index A and block size & is a collection of x-element
subsets, called blocks, such that every 2-subset of V' occurs in
at most A\ blocks. The packing problem is to determine the
maximum number of blocks, #(v, s, A), in a packing design. It
is well known that o(v,x,)) < [2[2=3)]] = ¥(v,k,)), where
[} is the largest integer satisfying z > [x]. It is shown here that
o(v,5,6) = ¥(v,5,6) for all positive integers v > 5 with the
possible exceptions of v = 43 and that o(v,5,3) = ¥(v,5,3)
for all positive integers v=1,5,9,17 (mod 20) and ¢(v,5,3) =
¥(v,5,3) — 1 for all positive integers v = 13 mod (20) with the
possible exception of v = 17,29, 33, 49.

1 Imtroduction

A (v, k, )) packing design (or respectively covering design) of order v, block
size x and index A is a collection 8 of x-element subsets, called blocks, of a
v-set V such that every 2-subset of V' occurs in at most (at least) A blocks.
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Let o(v, &, A) denote the maximum number of blocks in a (v, &, A) packing
design; and a(v, x, ) denote the minimum number of blocks in a (v, &, \)
covering design. A (v,x, ) packing design with |8] = o(v,x,)) will be
called 2 maximum packing design. Similarly, (v, x,A) covering design with
|8l = a(v, s, A) is called a minimum covering design. It is well known [21]
that

o(v,k,A) < [%[: : ;/\]] =9Y(v, K, )
and
e

where [z] is the largest integer satisfying [z] < z and [z] is the smallest inte-
ger satisfying z < [z]. When o(v, &, A) = (v, &, A) the (v, &, \) packing de-
sign is called optimal packing design. Similarly when a(v, &, A) = ¢(v, &, A)
the (v,x, ) covering design is called minimal covering design. Packing
designs with A = 3 are called tripacking.

Several researchers have been involved in determining the packing num-
ber o(v, k, A) known up to date (see bibliography). Our interest here is in
the case k =5 and A = 3,6. Our goal is to prove the following.

Theorem 1.1.

(1) o(v,5,6) = ¥(v, 5,6) for all positive integers v > 5 with the possible
exception of v =43

(2) o(v,5,3) = %(v,5,3) — 1 for all v = 13 mod (20) and o(v,5,3) =
¥(v,5,3) for all v=1,5,9,13 (mod 20) with the possible exceptions
of v = 17,29, 33, 49.

2 Recursive Constructions

In order to describe our recursive constructions we require several other
types of combinatorial designs. A balanced incomplete block design, B[v, «, )],
is a (v, &, A) packing design where every 2-subset of points is contained in
precisely A blocks. If a Bfv,«, )] exists then it is clear that o(v,x,)) =
Av(v —1)/k(k — 1) = (v, k,)) and Hanani [16] has proved the following
existence theorem for B[v, 5, A].

Theorem 2.1. Necessary and sufficient conditions for the existence of a
Blv, 5, )] are that A(v — 1) = 0 (mod 4) and Av(v — 1) = 0 (mod 20) and
(v,2) # (15,2).
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Corollary. (1) o(v, 5, 3) = ¥(v, 5,3) for all positive integers v where v = 1
or 5 (mod 20). (2) o(v,5,6) = ¥(v,5,6) for all positive integers v where
v=1or 5 (mod 10).

A (v, %, X) packing design with a hole of size & is a triple (V, H, 8) where
V is a v-set, H is a subset of V' of cardinality k, and 8 is a collection of
- element subsets, called blocks, of V such that

1) no 2-subset of H appears in any block;
2) every other 2-subset of V' appears in at most A\ blocks;

3) Iﬂl = 1/’(”: K, ’\) - ¢(h: K, A).

It is clear that if there exists a (v, x, A) packing design with a hole of size
h and o(h, x, A) = ¥(h, &, A) then o(v, &, A) = P(v, &, A).

Let x, A and v be positive integers and M be a set of positive integers. A
group divisible design GD[x, A\, M, v] is a triple (V, 8,~) where V is a set of
points with |V| = v, and v = {Gh,... ,Gyn} is a partition of V into n sets
called groups. The collection 8 consists of x-subsets of V, called blocks,
with the following properties

1) [BNG;|<1forall Be fand G; € v;
2) |G;| € M for all G; € v;

3) every 2-subset {z,y} of V such that z and y belong to distinct groups
is contained in exactly A blocks.

If M = {m} then the group divisible design is denoted by GD|x, A\, m,v].

A GD[x, A\, m, km] is called a transversal design and denoted by T'[x, A, m).
It is well known that a T'[x, 1, m] is equivalent to x -2 mutually orthogonal
Latin squares of side m.

In the sequel we shall use the following existence theorem for transversal
designs. The proof of this result may be found in [1], [12], [13], [16], [20],
[21).

Theorem 2.2. There exists a T'[6, 1, m] for all positive integers m with the
exception of m € {2, 3,4, 6} and the possible exception of m € {10, 14,18, 22,
26, 30, 34, 38, 42, 44}.

Theorem 2.3. If there exists a GD[6,6, 5,5n] and a (20 + h, 5, 6) packing
design with a hole of size h then there exists a (20(n — 1) + 4u + k,5,6)
packing design with a hole of size 4u + h.

Proof: Take a GD[6, 6,5, 5n] and delete 5 — u points from the last group.
Inflate this design by a factor of 4. On the blocks of size 5 and 6 construct a
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GD[5,1,4,20] and a GD[5, 1, 4, 24] respectively. Add & points to the groups
and on the first n — 1 groups construct a (20 + h, 5, 6) packing design with
a hole of size k, and take the k points with the last group to be the hole of
size 4u + h.

It is clear to apply the above theorem we require the existence of a
GDI6,6,5,5n]. Our authority for that is the following lemma of Hanani
[16].

Lemma 2.1. There exists a GD|6, 6, 5, 35] and a GDI6, 6, 5,45].

If in the definition of GD|k,\, m,v] (similarly T[x, A, m]) condition 3
is changed to be read as (3) every 2-subset {z,y} of V such that = and
y are neither in the same group (column) nor in the same row is con-
tained in exactly A blocks of 8. Then the resultant design is called a mod-
ified group divisible design (modified transversal design) and is denoted
by MGDI[x, A, m,v](MT[x, A, m]). Notice that this means that a block can
contain at most one element from any given row.

A resolvable design is a design of which the blocks can be partitioned into
parallel classes. We write RB, RMGD with the appropriate parameters.
It is clear that a RMGDI[5,1,5,5m] is the same as RT[5,1, m] with one
parallel class of blocks singled out, and since RT[5,1,m] is equivalent to
T[6,1,m] we have the following.

Theorem 2.4. There exists 8 RMGD[5,1,5,5m)] for all positive integers
m with the exception of m € {2,3,4,6} and the possible exception of
m € {10, 14, 18,22, 26, 30, 34, 38, 42, 44}.

The next two theorems are in the form most useful to us.

Theorem 2.5 [2]. If there existsa RMGDI[5,1,5,5m] and a GD[5, ), {4, s*},
4m + s], where * means there is exactly one group of size s, and there ex-
ists a (20 + h, 5, A) packing design with a hole of size h then there exists a
(20m +4u+ h+ 8,5, X) packing design with a hole of size 4u+ h+ s where
0<u<m-1.

It is clear that the application of the above theorem requires the existence
of a GDI[5,1, {4, s*},4m+s]. We observe that we may choose s =0ifm =1
(mod 5); s=4if m = 0 or 4 (mod 5), and s = ﬂm3_—1)-ifm51 (mod 3)
(see [2]). We may also apply the following [15].

Theorem 2.8. There exists a GD[5,1,{4,8*},4m + 8] for all positive
integers m = 0 or 2 (mod 5), m > 7, with the possible exception of m = 10.

Theorem 2.7. If there exists (1) a RMGD[5,1,5,5m] (2) there exists a
GD[5,6,2,2m] or a GD[5,6,2,2(m + 1)] (3) there exists a (10 + h,5,6)
packing design with a hole of size h. Then there exists a (10m + 2u+ e+
h,5,6) packing design with a hole of size 2u+ e+ h where 0 Su<m-—1
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and e = 0 if a GDJ5,6,2,2m] exists and e = 2 if a GD[5,6,2,2(m + 1)]
exists.

Proof: The proof of this theorem is the same as theorem 2.5 of [6].

We close this section with the following notation that will be used later.
A block < &,k + m, Kk + n,& + 7, f(x) > mod(v) where f(x) = a if s is
even and f(k) = b if x is odd will be denoted by < 0,m,n,j > U{a,b}.
Similarly a block < (0,%)(0,x + m)(1,& + m)(1, & + 5) f(x) > mod(—,v)
where f(x) = a if & is even and f(x) = b if s is odd will be denoted by
< (0,0)(0, m)(1, »)(1,5) > U{a, b}

3 The Structure of Packing and Covering Designs

Let (V,B) be a (v,x, ) packing design, for each 2-subset e = {z,y} of V
define m(e) to be the number of blocks in B which contain e. Note that by
the definition of a packing design we have m(e) < A for all e.

The complement of (V, ), denoted by C(V, B) is defined to be the graph
with vertex set V' and edges e occurring with multiplicity A — m(e) for
all e. The number of edges (counting multiplicities) in C(V, §) is given by
A(3)= 181 (5). The degree of the vertex z in C(V, B) is A\(v—1) —rz(x—1)
where 7, is the number of blocks containing z.

In a similar way we define the excess graph of a (V, 8) covering design
denoted by E(V, ), to be the graph with vertex set V and edges e occurring
with multiplicity m(e) — A for all e. The number of edges in E(V, 8) is given
by 181(5) — A(%); and the degree of each vertex is rz(x — 1) — Mv — 1)
where r, is as before.

Lemma 3.1. Let (V, 8) be a (v,5,4) covering design with |8| = ¢(v,5,4)
then the degree of each vertex of E(V, ) is divisible by 4 and the number
of edges in the graph is 0, 6, 8 when v (mod 10 ) € {1,5},{2,4},{3}
respectively.

The only graph with 6 edges and each vertex of degree divisible by 4 is
the graph consisting of v —3 isolated vertices and 3 vertices, each 2 of which
are connected by two edges. Therefore when v =2 or 4 (mod 5) a (v, 5,4)
minimal covering design contains a triple {a, b, c} each of its pairs appears
in precisely 6 blocks and all other pairs appears in 4 blocks.

Lemma 3.2, Let v be odd number and (V, 8) a (v, 5,2) minimal covering
design then the degree of each vertex of E(V, ) is divisible by 4, and the
number of edges in the graph is 0, 4 or 8 when v (mod 10 ) € {1,5}{3} or
{7,9},v#9,15.

The only graph with 4 edges and every vertex of degree divisible by 4 is
the graph with four parallel edges connecting two vertices and v—2 isolated
vertices. Therefore, when v = 3 (mod 10) a (v, 5,2) minimal covering design
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contains a pair of points which appears in 6 blocks while each other pair
appears in precisely two blocks.

4 Packing of index 3 and order v =1 (mod 4)

In this section we need to consider only the cases v =9,13,17 (mod 20).
In view of the discussion in Section 3, if (v,5,3) is a packing design
and v = 13 (mod 20) and |8} = (v, 5,3) then the degree of C(V, f) is
divisible by 4 and the total number of edges in C(V, 8) = 4. This means
that the graph C(V, 8) has only 4 parallel edges between two vertices, which
is impossible since A = 3. Thus:
Lemma 4.1. For v = 13 (mod 20), o(v,5,3) < ¢(v,5,3) — 1.
We need two small packings:
Lemma 4.2. ¢(9,5,3) = 4(9,5,3)

Proof: Let X = Zg. Then the required blocks are 02367 02478 03456
03578 04568 12348 12368 12467 13457 15678

Lemma 4.8. o(13,5,3) = $(13,5,3) — 1

Proof: Let X = ZyoU {A, B,C}. Then the required blocks are

02159 0124B 013467 0238A 0356A 057AB 079BC 12678 1359B 137AC
148AB 1568C 169AC 23679 238BC 2457C 245AC 269AB 34589 346BC
4789A 5678B

In [15] it was shown that
Theorem 4.4: [15].

1) If v =13 (mod 20), v > 53 then there exist a (v, 5,1) packing design
with a hole of size 13.

2) If v=9 or 17 (mod 20), v > 37 and v # 49, then there exist (v,5,1)
packing design with a hole of size 9.

Thus take 3 copies of the packing that exist for v = 13 (mod 20) and
replace the hole (or the block of size 13) by the packing obtained from
Lemma 4.3. Similarly for the case of v =9 or 17 (mod 20) we replace the
hole (or the blocks of size 9) by the packing obtained from Lemma 4.2.

Thus we have
Corollary 4.5.

1) If v = 13 (mod 20) then o(v,5,3) = ¥(v,5,3) — 1 with the possible
exception of v = 33.

2) If v=9 Or 17 (mod 20) then a(v,5,3) = ¥(v, 5,3) with the possible
exception of v =17,29,49.
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5 Packing of index 6
In this section we distinguish the following cases.

5.1 Packing of order v = 0, 2, 4 or 6 (mod 10)

It is easy to see that (o,v, 5, 6) = ¥(v, 5,6) for all positive integers v = 0,
2 or 6 (mod 10) by simply taking a (v,5,2) and a (v, 5,4) optimal packing
design. Furthermore since a (22,5,2) and (22,5,4) packing designs with a
hole of size 2 exist [4], [10] it follows that there exists a (22,5,6) packing
design with a hole of size 2. For v = 4 (mod 10) we treat the values under
100 individually. For this purpose the following lemma is very useful.

Lemma 5.1.1. Let v be a positive integer, v = 4 (mod 10). If there exists
a (v,5,2) packing design with a hole of size 4 and there exists a (v, 5,4)
minimal covering design then o(v, 5,6) = ¥(v, 5, 6).

Proof: The blocks of a (v, 5, 6) optimal packing design may be constructed
as follows.

1) take a (v, 5,4) minimal covering design. This design has a triple, say,
{a, b, c} such that each pair of this triple appears 6 times and all other
pairs appear precisely 4 times.

2) take a (v,5,2) packing design with a hole of size 4, say, {a,b,c,d}.
Now it is easy to check that these 2 steps yield a (v, 5,6) optimal
packing design for v = 4 (mod 10).

Lemma 5.1.2. There exists a (v, 5,2) packing design with a hole of size 4
for v = 34,54, 74, 94.

Proof: For v = 34,54, 74 see [4]. For v = 94 apply Theorem 2.7 with h =
2 and m = 9. See [6] for the existence of a GD[5, 2, 6, 20], and for a (12,5,6)
packing design with a hole of size 2 take a (12,5,2) and (12,5,4) packing
design with a hole of size 2 [4], [10].

Corollary. o(v, 5,6) = (v, 5,6) for v = 34,54, 74, 94.

Proof: For v = 34, 54, 74, 94 there exists a (v, 5,4) minimal covering design
such that the pairs of a triple, say,{a, b, ¢} occurs in 6 blocks. On the other
hand, for v = 34, 54,74, 94 there exists a (v, 5, 2) packing design with a hole
of size 4. Now apply Lemma. 5.1.1 to give the result.

Lemma 5.1.3. o(v, 5, 6) = ¥(v, 5, 6) for v = 14 and for all positive integers
v =4 (mod 20).

Proof: For v =14 let X = Z,0{A, B, C, D}. Then the required blocks are
0128C 0123A 0135D 01356 016AB 01789 02369 02478 0249A 0279D 0345D
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038BC 0458A 049BD 0567C 068AB 06ABD 09BCD 1237B 1268D 127BD
129AC 1346C 1358B 14589 146BD 147CD 1479A 14ABC 157AD 1689C
2349B 2346D 245AC 24568 25679 257BC 258AB 25BCD 28ACD 347BC
3478D 359CD 359AB 3679A 367AC 378AC 389AD 4569C 4678B 567AD
5789B 689CD

For v = 4 (mod 20) proceed as follows.

1. take a Bfvu+1,5,1] design and assume we have the block {123 v v+
1}, where {1, 2,3} are arbitrary numbers. In this block change v + 1
to 5 and in all other blocks change v+ 1 to v.

2. take a (v,5,4) optimal packing design, [10]. In this design there is
one pair, say, (5,v) that does not appear at all and every other pair

appears exactly 4 times. Furthermore assume we have the following
two blocks

{4678v} {47851}
where {4,6,7,8} are arbitrary numbers. In the first block change v
to 1 and in the second block change 1 to v.

3. take a (v — 1,5,1) optimal packing design, (3]. This design has pre-
cisely v missing pairs so without loss of generality we may assume
that (2,5) (3,5) and (1,6) are missing pairs in this design.

~ Now it is easily checked that the above three steps yield a (v, 5, 6) optimal

packing design for all v =4 (mod 20).

Theorem 5.1.1. o(v,5,6) = ¥(v,5,6) for all positive integers v where
v =2, 4 or 6 (mod 10).

Proof: For v = 2 or 6 (mod 10) a (v,5,6) optimal packing design is
obtained by taking a (v, 5,4) and (v, 5, 2) optimal packing designs. For v =
4 (mod 20) the result follows from Lemma 5.1.3. For v = 14, 34, 54,74, 94
the result follows from Lemma 5.1.3 and corollary to Lemma 5.1.2. For

v > 114, v # 134, simple calculations show that v can be written in the
form v = 20m + 4u + s + h where m,u, h and s are chosen so that

1. there exists a RMGDJ[5,1,5,5m)]

2. du+h+s=14(mod 20), 14 <4u+h+s<HM4
3. 0<u<m-—1,5=0 (mod 4) and m # 8 (mod 10)
4. h=2.

Now apply theorem 2.5 to give the result.

For v = 134 apply theorem 2.3 withn =7,h =2 and u = 3 gives us a
(134,5,6) packing design with a hole of size 14. But 0(14, 5, 6) = %(14, 5, 6)
hence o(134, 5, 6) = ¥(134,5,6).
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5.2 Packing of order v =8 (mod 10)

In this section the values below 100 are treated individually.
Lemma 5.2.1. o(v, 5,6) = ¥(v, 5,6) for v = 8,18, 28, 38,48, 58, 68, 78, 88, 98.

Proof: For v = 8,18, 28, 38, 48, 68,78, 88 the required constructions are
given in the following table. In general, the construction in this table
and other tables to come is as follows. Let X = Z3 x Z(,_n)/2 U Hy or
X = Z,_, U H, where H, = {hy,... ,hys} is the hole. The blocks are
constructed by taking the orbit of the tabulated base block mod (v —n)/2
or mod (v—n) respectively unless it is otherwise specified. For v = 98 apply
theorem 2.7 with m = 9,h = 2 and u = 2. For v = 58 take a T'[6,1, 5].
Delete a point from last group and inflate the design by a factor of 2 and
index 6. Finally, on each group construct a (v, 5, 6) optimal packing design
where v = 8,10.

v Point Set Base Blocks
8 Zs <01334 > <01346>
18 248 <01234> <£014813> <0161012>
<0261013> <0271013 >
as Z38 €01238>,twico <0261419> <03101419>
<03101620> <02615319> <0301721> < 03101520>
38 Z3g <012413> <0381824> <04901926> <06121930>
<0131017> <041319024> <0141217> <01248>
<021223027> <03122328> < 05142228 >
48 | ZgouHg | (08162432} +4,5€ {0,1,...,7},twico <013410> <03131728>
<08112227> <085121931> <O03913h) > <011719 hgy >
<041022hg> <06B820hg> <0129hg> <03718hg>
<0851726hy > < 071730 hg >. Lot Hg = {a, b,¢,d} X Z3
add the following baso blocks,
<013Bap> <031412760> <041028¢p> <0510628dgy >
[-1:3 Zgg U Hy On Zgg U Hy construct a (87,5,2) packing dosign with a hola of size 7,
[5), where the holo is Hy, and take the following blocks
{0 12 24 368 48} + 4,4 € {0, 1, ..., 11}. Throo timca.
< 0 10 30 40 hg > half orbit.
<013741> <05182844> <08173546> <013744>
<06143445> <0B8183346> <01318Ah; > < 04927 hg >
<0852229h3> <002039hy> <0138hg> < 041920 hg >
<092637hy> <0133530hg>.
78 Zqo U Hg On Zyg U Hg construct a (73,5,2) packing design with a holo of sizo 3,
cay, H3, and take tho following blocks.
{0 14 28 42 56} + i,% € {0,1,...13}, twice < 0 17 35 52 hg > half orbit
<05112141> 0262432> <031039534> <09303257>
<0191328> <02183848> <06233749> <013B68Ah1 >
<04020hy> <072643hg> <0112742hg> <0122540 hy >
<0128hg> <03922hy> <073038hg>
Lot Hg = {a, b, ¢,d} X Zg end add tha blocks <0 10 21 45 cg> < 0142047 dp >
88 2g0 U Hg On Zgg U Hy construct a (87,5,2) packing design with s hole of sixe 7,
say, Hy, [19] and take the following blocks
{0 16 32 48 64} +4,i € {0, 1, ..., 15}, Throo timas.
< 012 40 52 hg > half orbit.
<013724> <08184354> <012274160> <L 0261124>
<07152850> < 010274101> < 01852347> < 02122938 >
<06204455> <01318523> <0331530h; > <042541 h3 >
<0169h3> <O0B1540hy> <O0T72659hx> < 073748 hg >
< 0113942 Ahy > < 013 3057 hg >

Theorem 5.2.1. For all positive integers v = 8 (mod 10), o(v,5,6) =
¢(v’ 5’ 6)'

Proof: For 8 < v < 98 the result follows from Lemma 5.2.1. For v >
108,v # 128, 138, 178 simple calculations show that v can be written in
the form v = 20m + 4u + 3 + h where m,u, 2 and s are chosen so that:
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1. there exists a RMGD[5,1,5,5m]

2. du+h+s5=8(mod 10),8 <4u+s+h <98

3. 0<u<m-—1,5=0 (mod 4) and m # 8 (mod 10)
4. h=2.

Now apply Theorem 2.5 to give the result.

For v = 128 apply Theorem 2.3 with » = 7,h = 0, and u = 2. For
v = 138,178 apply Theorem 2.3 with A = 2,u = 4,n = 7 and 9 respectively
gives us a (138,5,6) and (178,5,6) packing design with a hole of size 18. But
o(18,5,6) = ¥(18,5,6) hence (138, 5,6) = (138, 5,6) and ¢(178,5,6) =
$(178, 5, 6).

5.8 Packing of order v= 7 or 9 (mod 10)

It is easy to see that if there exists a (v, 5,2) packing design with a hole of
size k and we take three copies of this design then the resultant design is a
(v, 5,6) packing design with a hole of size h.

Lemma 5.3.1. (1) For all positive integer v > 29,v = 7 or 9 (mod 10)
v # 147 there exist a (v, 5,2) packing design with a hole of size h where
h =7 or 9. (2) There exist a (147,5,2) packing design with a hole of size
27. '

Proof: For all such v, v # 137, 139, 147 the result is given in [5]. For
v =137, 139, 147 see [2].

Lemma 5.3.2. (1) o(v,5,6) = ¥(v,5,6) for v=17,9,17,19,27. (2) There
exists a (23,5,6) packing design with a hole of size 3.

Proof: For a (23,5,6) packing design with a hole of size 3 take 3 copies
of a (23,5,2) packing design with a hole of size 3. For v = 7,9,19,27 the
constructions are given in the next table. For v = 17 let X = Zjp U
{A,B,C, D, E, F,G}. Then the blocks are

012BG 0123C 0134C 0169B 017BE 018AD 0245G 02478 02579 026AC
035DG 0369E 037AC 039BF 0456E 0456C 04EFG 059AF 0678C 078DF
089DG 08ABF 0ADEG 0BDEF 1239F 1236G 128DF 129AG 1358A 13CDE
1457F 1467B 1479E 1489E 149CD 1568F 156DG 157AD 15BCE 168AF
17BEG 1ACFG 2348B 235EF 235BC 247CD 247DF 24ABD 2568F 257AE
267AE 269DG 26ABE 289DE 28CEG 29BCF 345EF 346AG 34689 346AD
358DE 3678B 378BG 379CD 379FG 37AFG 3ABDE 45BDG 489AB 48ACG
49AEF 4BCFG 569BD 578BG 579AC 589CG 59ABC 679EG 67CDF 6BCDF
6CEFG
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Point Set Base Blocks

Ze U Hs <012hi ha > <012h; hg> <0132 hg hg >
Z3 x Z3 U Hy < (0,0)(0, 1){1,1)Ag hg >< (0,0)(1, 0)(1, 1)h3 hg >< (0, 0)(0,1)(2, 0)hghg >
< (0,0)(1,1)(1,2)h1 hs >< (0,0)(0, 1)(1, 2)hahs >< (0, 0)(1,0)(1, 2)hzhs >
< (0, 0)(0, 1)(0,2)(1, 0)(1, 1) >
19 Z3 x Zg U H3 On {0} x Zg U Hg construct a B[11,5,2).
On {1} X Zg U Hg construct » B[11,5,2) and take the following blocks
< (0, 0)(0, lg(o. €)(1,0)(1,1) > < (0,0)(0, 1)(0, 3)(1,0)(1,1) >
< (0, 0)(0, 2)(1,0)(1,1)(1, 3) > < (0,0)(0, 2)(1, 0)(1, 3)(1, 5) >
< (0,0)(0,4)(1,2)(1, 9hy > < (0,0)(0,1)(1, 2)(1,4)hy >
< (0,0)(0, 1)(1, 4)(1, S)ha > < (0,0)(0, 2)(1, 4)X(1, T)A3 >
< (0, 0)(0, 3)(1,2)(1,8)h3 > < (0,0)(0, 3)(1, 5)(1, T)h3 >
27 | Z3 x 213U H3 | {(0,0)(0,4)(0,8)h1h3} + (0,9).1 € Z4
{(0, 0)(0, 4)(0, B)hgh3} + (0,4),i € Z4
{(0, 0)(0, 4)(0,8)h1 A2} +(0,4), 4 € 24
< (0, 0)(0, 1)(0, 2)(0, 7)(1,0) > < (0,0)(0, 1)(0, 5)(1,0)(1,1) >
< (0, 0)(0, 1)(1,0)(1, 2)(1,4) > < (0,0)(0, 2)(0, 3)(1, 8)(1, 9) >
< (0,0)(0, 3)(1,0)(1,1)(1,3) > < (0, 0)(0, 2)(0,10)(1,4)(2, 7) >
< (0, 0)(0, 4)(1, 4)(1, 8)(1, 11) > < (0, 0)(0, 2)(0, 5)(1, 3)(1, B) >
< (0,0)(0, 5)(1,2)(1,8)(1,8) > < (0,0)(0, 3)(0, 6)(0, 9)hy > +(—,3),i € Z3, twico
< (0,0)(0, 1)(1,5)(1,10)hy > < (1,0)(1,1)(1,8)(1, )hy >
< (0,0)(0, 2)(1, 7)(1, 10)h3 > < (0, 0)(0, 3)(1, 6)(1, D)hg >
< (0,0)(0, 5)(1,1)(1, N)hs > < (0,0)(0, 6)(1, 4)(1,11)hs >
Lot {h2,h3} = {a} X Z3, and add < (1, 0)(1, 1)(1, 3)(1, 4)ap >.

oe

Theorem 5.3.1. o(v, 5,6) = ¥(v, 5,6) for all positive integers v,v =7 or
9 (mod 10).

Proof: For v = 7,9,17,19,27 the result follows from Lemma 5.3.2. For
v > 29 we have shown, Lemma 5.3.1, that there exists a (v, 5,2) packing
design with a hole of size 7, 9 or 27 and hence a (v, 5,6) packing design
with a hole of size 7, 9 or 27. But o(v, 5,6) = ¥(v, 5,6) for v = 7,9 or 27
hence o(v, 5, 6) = ¢(v, 5,6) for v > 29.

5.4 Packing of order v =3 (mod 10)

In this section we combine different designs to obtain our result.
Theorem 5.4.1. o(v,5,6) = ¥(v,5,6) for all positive integers v, v = 3
(mod 10) with the possible exceptions of v = 43.

Proof: For v # 13,43, 53, 63, 73,83 the construction is as follows.

1. take a (v,5,2) minimal covering design [18]. Such design exists for
all v = 3 (mod 10), v # 13, with the possible exception of v =
43,53, 63, 73, 83. Furthermore this design has one pair, say {a, b} that
appears 6 times while each other pair appears exactly twice.

2. take two copies of a (v,5,2) optimal packing design [4], [6]. This
design has a triple, say, {a,b,c} that its pairs do not appear in any
block while each other pair appears exactly twice.

Now it is easily checked that the above two steps yield an optimal packing
design for v = 3 (mod 10), v # 13,43, 53, 63,73, 83.
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For v=13let X ={1,2,...,13} then the blocks are

{123511} {1231112} {126913} {1281012} {1281113}
{1291011} {134912} {135813} {137913} {13789}
{145910} {145712} {1481013} {156710} {156712}
{1681011} {17111213} {234613} {234713} {235910}
{237810} {245612} {24589} {257913} {25101213}
{267811} {2781012} {2791112} {345811} {3461011}
{347812} {3561012} {3571011} {368912} {3691013}
{36111213} {4581113} {4671013} {467911} {468912}
{4791011} {410111213} {567813} {568911} {59111213}
{8 9101213}

For v = 53, 63,73, 83 we show that there exists a (v, 5, 6) packing design
with a hole of size 13 and since 0(13,5,6) = (13,5,6) it follows that
o(v,5,6) = ¥(v,5, 6) for v = 53, 63,73, 83.

For v = 53 take RB[40,4, 1], [17]. There are 13 parallel classes, to each
parallel class add a new point. The resultant design is a (53,5,1) packing
design with a hole of size 13. Take six copies of this design gives us a
(53,5,6) packing design with a hole of size 13.

For v = 73 take six copies of a (73,5,1) packing design with a hole of size
13, [15].

For v = 63, 83 see the next table. In this table we use a B[61,5,2] with a
hole of size 11. Such design may be constructed by taking a T'[6, 1, 5], inflate
this design by a factor of 2. On the blocks construct a GDJ[5,2,2,12], [16].
Add a point to the groups and on the first five groups construct a B[11,5,2]
and take the last group with the point to be the hole.

v Point Sot Baso Blocks

250 u 7!1: [e] 250 [¥) Hl » conatruct a BIET,B.N with & holo of sine “. say Hll |
t

ake the following blocks.

-~
c
,_ﬂ-!

(4

%6000

83 | ZygUH3

432038 h; > <03
41323 hy > <06
< 0122083 hg >
1128 47 hys >

and add the blocks

528 cg> <0853043dg >

oceo,

L3
-
7% 4
>

AATAAAASOEAAAA

(- X-]
-
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