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1. Introduction.

Items from several sources are to be ordered along a line. Source 1 provides
up — 1 items before source 2 emerges with item #us. After that, the items from
source 2 are required to alternate with those from source 1. After uz — 1 items
are ordered, source 3 emerges with item #ug, and thereafter, its items must be
interspersed with the first two kinds. That is, between each item from each
emergent source must be an item from each of the other two sources, as typified
by the following ordering of 1's, 2's, and 3's:

111121213213213 m

Here "1" occupies places numbered 1, 2, 3, 4, 6, 8, 11, 14; "2" occupies places
5,7, 10, 13, and so on. Moreover, up =35 and uz =9, as indicated by the
following representation for the same ordering:

1 2 3 4 6 8 11 14
5 7 10 13 2)
9 12 15

Row 1 gives position numbers of items from source 1, row 2 those of items
from source 2, and so on. The scheme now continues inductively: after u, —1
items are ordered, source n emerges with item #u,, and thereafter, the items
from all n sources must be interspersed.

Such extensions of beginnings like (1) and (2) we call fractal sequences and
interspersions, respectively. The term "fractal sequence” is chosen because the
characteristic self-similarity property of fractals is manifest in the Upper and
Lower Self-Similarity Theorems proved in Section 3 for fractal sequences. The
term "interspersion" is introduced in [3}; the definition is given in Section 2.

Let N denote the set of positive integers. Except where stated otherwise, the
sequences we consider consist solely of numbers in NN, and the letters
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h,i, j, k,m,n, p, q,r designate elements of N, always arbitrary unless otherwise
stated.

Definitions. A sequence z = (z;) is an infinitive sequence if for every i,

(F1) z, = i for infinitely many n; let a(i, j) be the jth index n
for which z,, = i. .

As i and j range through N, the numbers a(i, 7) range through all of N. The
array A = {a(¢,7)} is the associated array of . An infinitive sequence z is a
Jfractal sequence if two conditions hold:

(F2) ifi+ 1 = z,, then there exists m < n such that i = z,,;
(F3) if h < i then for every j there is exactly one* k such that
a(i, j) < a(h,k) < a(i,j+1).

According to (F2), the first occurrence of each 7 > 2 in z must be preceded at
least once by each of the numbers 1, 2, ..., ¢ —1, and according to (F3),
between consecutive occurrences of ¢ in z, each h less than ¢ occurs exactly
once. Next we combine (F1)-(F3) to obtain a stronger form of (F3).

Theorem 1. Let z be a fractal sequence, A the associated amay, and
r=a(i,j+ 1) —a(i, j). Then

(F3Y if1l < h <1, there is exactly one k such that
a(i,5) < a(h,k) < a(i,j+1).

Proof: Formally, the set T = {Za(ijj+1, Ta(ij)+2>---> Ta(ij+1)} contains r
elements. Were they not distinct, some p would appear twice in T, and by (F3),
p > 1. Write

i p p i

to indicate that p occurs twice between the consecutive occurrences of ¢ in the
sequence z. (There may be other numbers in z separating these ¢'s and p's.) By
(F3), another occurrence of ¢ must come between the two occurrences of p.
This contradicts the consecutiveness of the two i's that are shown. Therefore,

*The quantifier "exactly one" means "one and only one." The price we pay for
this well-established convenience is that one is not exactly one; e.g., if you hold
up two fingers, the statement, "You are holding up one finger," is true, but the
statement, "You are holding up exactly one finger," is false.
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the r elements of T are distinct. Now suppose some number ¢ in the set
S =11, 2,..., r} is missing from T.

Case 1: there exists p in T such that p > q. Here we write
g &+ p i ¢

to indicate that ¢ must precede p, by (F2), and must precede the jth 4 since
g ¢ T, and also to indicate the first occurrence of g after the (j+ 1)st i. This
arrangement violates (F3), since i < g.

Case 2: p< q forevery pin T. In this case T consists of r positive integers
less than g, and since ¢ < r, the elements of T are not distinct. However, this
was already proved impossible.

We conclude that T = S, and this proves (F3)'. [ ]
2. Interspersions.

Fractal sequences are closely related to interspersions — closely enough that
many properties of fractal sequences are easily provable from properties already
known to hold for interspersions. In this section we present the basic
relationships, and in the next, we present proofs of self-similarity properties of
fractal sequences.

Definition. Anarray A = A(,]) of positive integers is an interspersion if

(I1) every positive integer occurs exactly once in A;

(I2) every row of A is an increasing sequence;

(I13) every column of A is an increasing sequence;

(14) if (u;) and (v;) are distinct rows of A, and if ¢ and h are any indices
for whichu; < vp < ¢y, then Uiy < Vg < Uigo.

Theorem 2. If x is a fractal sequence, then the associated array A is an
interspersion. Conversely, if A is an interspersion, then the sequence z = (z,)
given by

Zn, = the numberi such that n = a(i, 5) 3)

for some j is a fractal sequence.

Proof: First, suppose z is a fractal sequence. Clearly (F1) implies (I1) and (12).
By (F2), the first occurrence in = of ¢ precedes that of i+ 1. That is,
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a(i,1) < a(i + 1,1), so that column 1 of A is increasing. Suppose for arbitrary
j that column j is increasing. Suppose further that column j+ 1 is not
increasing, so that

a(i+1,j+1) <a(i,j+1) @

for some i. Now a(i,j) < a(i+1,7) since column j is increasing, and
a(i+1,5) <a(i+1,5+1) since row i + 1 is increasing. These inequalities
and (4) give

a(i,j) <a(i+1,7+1) <a(ij+1). )
Next,a(i+1,7) < a(i+1,5+1) < a(i,j+ 1),andalsoa(?, j) < a(i + 1,7),
so that

a(i,j) <a(i+1,7) <a(i,j+1). )

Inequalities (5) and (6) show two members of row i + 1 lying between a(s, 5)
and a(i,j+ 1). This is impossible, by Theorem 1. Therefore, column j+ 1 is
increasing, and by induction, (I3) holds.

Suppose next that
a(i,j) < a(h,k) < a(i,j+1). @)

That is, h occurs in z between the jth occurrence of ¢ and the (j+ 1)st
occurence of 4. If h does not also occur between the (j+ 1)st and (5 + 2)nd
occurrences of i, then z contains the arrangement
i h i i h ®

the last h representing the first occurrence of h after the (j+ 2)nd i. But this
arrangement violates (F3), so that the number of numbers between a(i, j + 1)
and a(3, j + 2) is at least as great as the number of numbers between a(3, 7) and
a(i,j+1). Thatis,

a(i,j+1) —a(i,j) < a(i,j+2) —a(i,j+1) ®
Inequalities (7) now imply 1 < h < a(,j+ 1) — a(i, j), by Theorem 1, so that

1<h<a(,j+2)—a(,j+1),

by (9). By Theorem 2, there exists k&’ such that

a(i,j+1) <alh,k) <a(i,j+2).
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Clearly k' > k+ 1. If k¥ > k+ 2, then arrangement (8) would occur in z, a
contradiction. Therefore &' = k+ 1, so that (I4) holds, and A is an inter-
spersion.

For the converse, suppose A is an interspersion and z is given by (3). By (12),
there are infinitely many numbers n in row i, so that =, = ¢ for infinitely many
n. Since a(z, j) in (3) means the jth number in row ¢, property (F1) holds.

By (I3), we have a(i,1) < a(Z + 1, 1), which is to say that the first occurrence
of i in  precedes that of ¢ + 1, so that (F2) holds.

By Lemma 1 of [3], each of the numbers a(, 7) + 1, a(é,j) + 2, ..., a(¢,5+ 1)
lies in exactly one row of A numbered from 1 up to the number
r=a(i,j+ 1) —a(i,j). By Lemma 2 of [3],  is the number of terms of the
first column of A which are < a(4,5+ 1). Therefore, i < , so that if h < i,
then exactly one k satisfies a(z, j) < a(h, k) < a(i,j+ 1). |

In the wake of Theorem 2, we may speak of the associated interspersion of any
fractal sequence, and the associated fractal sequence of any interspersion.

3. Self-similarity of a fractal sequence.

Definition. Suppose z = (z,).is an infinitive sequence. The upper-trimmed
subsequence of x is the sequence A(z) obtained from z by deleting the first
occurrence of n, for each n. More precisely, if the positive integers {a(3, 7)}
are written in increasing order, then A(z) is the sequence ()x), where ) is the
kth number z,(; j) such that ¢ > 1 and j > 2.

Example. First, we display the first few terms of an interspersion known as the
Wythoff array (see [5]):

1 2 3 5 8§ 13 21 34 55 89 144
4 7 11 18 29 47 76 123 199 322 521
6 10 16 26 42 68 110 178 288 466 754
9 15 24 39 63 102 165 267 432 699 1131
12 20 32 52 84 136 220 356 576 932 1508
14 23 37 60 97 157 254 411 665 1076 1741
17 28 45 73 118 191 309 500 809 1309 2118
19 31 50 81 131 212 343 555 898 1453 2351
22 36 58 94 152 246 398 644 1042 1686 2728

161



It is now easy to tell the first several terms of the associated fractal sequence; the
first occurrence of each n is marked:

111213214325164372851964103 (10)

The marked terms are deleted, and the remaining terms comprise the upper-
trimmed subsequence:

1112132143251643...

Theorem 3 (Upper Self-Similarity Theorem). If z is a fractal sequence, then
Alz) ==z.

Proof: Suppose z is a fractal sequence, with associated interspersion A. The
removal of the first occurrence of n in z, for every n, corresponds to the

removal of the first column of A, leaving an array A with terms given by
@(5,7) = a(s,j+1). Let Abe the array given by @ (4, j) = the number of
terms of A which are < a(é,7+ 1). According to Theorem 1.1 of [4], we have

A = A. Clearly, the fractal sequence associated with Ais A(z), so that
Alz) ==. |

The sequence 1,3,2,1,4,3,2,1,5,4,3,2,1,... is an infinitive sequence satis-

fying A(z) = z, but it is not a fractal sequence. However, it is easy to state and
prove a partial converse for Theorem 3.

Theorem 4. If z is an infinitive sequence satisfying (F2), and A(z) = z, then z
is a fractal sequence.

Proof: By hypothesis, z satisfies (F1) and (F2). Suppose z fails to satisfy (F3).
Then for some p and g, there are two occurrences of g in z with no p between
them. Let ¢ be the least ¢ for which such a p exists, and let & be the least p for
this choice of g.

Case 1: h < i. Schematically, z contains one of two arrangements:

Arrangement 1: h i 4

Here, the initial h represents the first occurrence of h in z; the first ¢ represents
the first occurrence of 7 in z; the second ¢ represents the next ¢ in z, and there is
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no h between these two i's. For this arrangement, A(z) would have its first
before its first h, so A(z) could not equal z.

Arrangement2: h ¢ ... h i h i i

Here the h's represent 1st, (j — 1)st, and jth occurrences, and the i's represent
Ist, (§ — 1)st, jth, and (5 + 1)st occurrences. After deleting the first occur-rence
of each n, we see that A(z) must contain the arrangement

h & h & i

indicating that there is no h between the (j — 1)st ¢ and the jth i. Since this is
not true about z, we have A(z) # z.

Arrangement3: h h ... h i i

Here, j h's before the first 4, in z, yield — 1 k's in A(zx) before the first 4, so
that A(z) # z.

Arrangement 4:
h h ...h ¢ h 2 h ... 4 h i 1

Here z has initially j A's, then k pairs ¢ h, and then two i's not separated by an
h. Consequently, A(z) has initially j — 1 h's followed by a jth h, followed by
only k — 1 pairs ¢ h, followed by two #'s that are not separated by an h. Again,

A(z) # z.
Case 2. h > i. The proof here is similar to that for Case 1 and is omitted.

Since both cases lead to contradictions, we conclude that (F3) holds, so that z is
a fractal sequence. |

Definition. Suppose z = (z,) is an infinitive sequence. The lower-trimmed
sequence of z is the sequence V' (z) obtained by subtracting 1 from each z,, and
then removing all 0's. Explicitly, for each n, let £(n) be the least number £ such
that the number of j satisfying j < £ and z; > 1 is »; then V (z) is the sequence
(vn) given by v,, = Ty(n) — 1.

Example. Let w be the Wythoff fractal sequence of (10). Subtracting 1 and
removing 0's leaves V' (z), beginning with

121321453261748539210611174121385
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Theorem 5 (Lower Self-Similarity Theorem). If z is a fractal sequence, then
V (z) is a fractal sequence.

Proof: Suppose z is a fractal sequence and ¢ > 1. By (F1), the number i + 1
occurs infinitely many times in z, so that ¢ occurs infinitely many times in V (z).
Clearly (F2) for z implies (F2) for V(z). Now by (F3),if 2 < h <i+1, then
between each pair of consecutive occurrences of i + 1 in x there is exactly one
occurrence of h. Thus, between each pair of consecutive occurrences of ¢ in
V (z), there is exactly one occurrence of h — 1. |

Theorem 5 can be stated in terms of an interspersion, as follows: if the first row
of an interspersion is deleted and each remaining term a is replaced by a — t,
where t is the number of deleted terms which are < a, then the resulting array
is an interspersion. In Theorem 7, we show a large class of fractal sequences z
for which V(z) is not only a fractal sequence, but is the sequence z itself. Each
such sequence, of course, has an associated interspersion which remains
invariant under the first-row deletion operation just described.

4. Signature sequences.

Definition. For any irrational number 6, let S(8)={c+df: c€ N, d € N},
and let c,(9) + d,(6)8 be the sequence obtained by arranging the elements of
S(8) in increasing order. A sequence z is a signature sequence if there exists a
positive irrational number 6 such that z = (c,(6)). In this case, = is the
signature of 0.

Theorem 6. Let @ be a positive irrational number. The signature of @ is a fractal
sequence.

Proof: The signature (c,) of 8 is defined from the ordering of the set S(6):
a+dif < ca+dof < c3+d3zf <--- (1)

Obviously (F1) and (F2) hold. Let a(3, 5} be the jth index n for which ¢, = 4.
Suppose h < i, and for arbitrary j write c+df for cuij + daiij)0. Let
k =[] + d + 1. Then k is the only integer satisfying
ehpack< G ras,
or equivalently,
c+df <h+kl<c+(d+1)6.

Thus, there is exactly one k such that a(3,j) < a(h, k) < a(i,j+1). |

164



Theorem 7. If z is a signature sequence, then V (z) = z.

Proof: Suppose z is the signature sequence of a positive irrational number 6.
Arrange the set S(0) in the natural order (11). When 1 is subtracted from each
term and all terms of the form 0 + df are removed, the remaining sequence is
still in natural order. Moreover, all the terms are of the form ¢, — 1 + d,,9, for
cn 22, dq 21, or equivalently, ¢, +daf8, for ¢, > 1, d, > 1, as in (11).
Therefore, V(z) = . [ |

Theorem 8. Suppose z is the signature sequence of 6. Let a(1, j) denote the
position of the jth occurrence of 1 in z. Then

a(1,j+1) —a(1,5) = 1+ [j6]. (12)

Proof: On one hand, the number of terms of z positioned between the jth 1 and
the (j+ 1)st 1 is clearly a(1, 7+ 1) — a(1, ) — 1. Now let us count the number
of a + b0 satisfying

1+j0<a+bdd <1+ (j+1)6.

Equivalently,

i-% <b<jr1-5L

so that b=[j+1 - %], and the values of @ > 1 for which b€ N are

2,3,...,[70 + 1]. So, there are [j8] numbers a + b6 of the kind being counted,
and (12) follows. u

Theorem 9. Suppose z is the signature sequence of 6. Let A be the
associated interspersion. Then

a(l,5) = j+ (6] + [26] + -+ [(G - 1)4] (13)
and ) -
1 -
a(i, 1) =i+ [5)+ [l + -+ =) (4)
Moreover, 6 = 2 lim a(]léj) = % lim a_(l:_l)
J—00 i=00
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Proof: Since a(1, 7) is the position of the jth occurrence of 1 in z, (13) follows
inductively from (12), since a(1,1) = 1. The interspersion A’ associated with
1/6 is the transpose of A, since the order of the numbers in (11) remains
unchanged when they are all divided by 8. Thus, a'(i,5) = a(j,%), and in
particular, column 1 of A is row 1 of A’. By Theorem 8,

¢(1,j+1) —d(1,5) =1+[3),
sothata(i+1,1) —a(i,1) =1+ [%], and (14) follows by induction.

Equation (13) yields

a(l»j)=j+9—61+20—62+'-'+(j—l)&—ej_l

(=58

j=1
where Q=5 e, 0<e& <1l,andk=1,2,...,5—1
k=1

2

From this easily follows ¢ = 2 lim allg) ’]) . A proof that § = -2- lim a(zz. 1) is
j—o0 i—c0 V'

obtained in the same way from (14). n

5. Beatty sequences and Graham's test.

How can one tell from a given fractal sequence whether it is a signature
sequence? The condition V(z) = z is not enough. For example, the sequence

1,2,1,3,2,1,4,3,2,1,5,4,3,2,1,6,5,4,3,2,1, ...

satisfies V(z) = z but is not a signature sequence. To see this, note that A is
given by
s, (Hi=1)(E45-2)
a(i,j) = j+ LIS

-2
so that lim ——=~ = 2, and by Theorem 9, z is not a sighature sequence.
i a(i,1)

The condition V() = z nevertheless leads one to try to "self-generate”
(cf. [6, page 10]) fractal sequences that satisfy V(z) = z in general and are
signature sequences in particular. Consider, for example, extending the initial
run
1,2,1
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in accord with the restriction V (z) = x. We use an arrow ( — ) to indicate an

extension. Initially,
,2,1-1,2,1,3-1,2,1,3,2

this last run being necessary in order that the first three terms of V(z) be 1,2, 1.
Now, there are two possible numbers to choose from to follow the 2 in the fifth
position, as indicated here:

ext. 1: 12132-121321-121321432(thenl5o0r51)
ext. 2: 12132-121324-412132413524(thenl6oré61l)
Let us examine possible extensions of extension 1:

ext. 1.1: 121321432-12132143215432(thenl6oré61)

ext. 1.2: 121321432 - 12132143251436251436251473625 (then 18 or 81)

These examples show that when constructing z so that V(z) = z (for the
portion of the sequence that has been constructed), a choice is sometimes
necessary when placing the number 1. The opportunity to place 1 occurs each
time a set of the form {1,2,..., h} has been assigned consecutive places in the
construction, and then the choice, when there is one, is between 1 or A + 1. (As
indicated in extension 1.2 by the mark ( ™), at some of the locations in question,
the position of 1 is determined — that is, there is no choice.)

In order to solve the problem of placing 1's so that we achieve not only
V(z) = = but also have a signature sequence, we use Graham's test [2] for
Beatty sequences. If @ is a positive irrational number, then the sequence

[0, [26), (36),...

is the Beatty sequence of §. (These sequences have attracted much interest since
their appearance in 1926 in connection with Beatty's problem: if

L1 _
0+01—1)

then the two Beatty sequences [n6] and [n#] partition N, or in other parlance,
they form a complementary system.) Following [2] and [6, pp. 29-30],
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Graham's test. For any finite sequence s = (s1,52,...5,), let
Six={si+sk-i: 1<i<k}
and decree s nearly linear if
max Sijx < 8 < 1+ minS;

fork =2,3,...,n. Then s is nearly linear if and only if s is the initial segment
of a Beatty sequence. In other words, to test whether (sy, sa, ... sp) is an initial
segment of a Beatty sequence, look at the sums s;+ Sp-1, S2+ Sn-2,...,
Sn—1 + 81. If all these sums have the same value, v say, then s, must equal v
or v+ 1; but if they take on the two values v and v + 1, and no others, then s,
must equal v + 1. If anything else happens, s is not part of a Beatty sequence.

In view of Theorem 8, it is easy to see that Graham's test solves our problem:
let s; be the number of terms of the sequence z under construction that are
placed after the jth 1 and before the (j + 1)st 1; as long as the numbers s; pass

Graham's test, the finite sequence thus far constructed is the first part of a Beatty
sequence (actually, infinitely many Beatty sequences), but not otherwise.
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