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Abstract. We define an almost-convex polygon as a non convex poly-
gon in which any two vertices see each other inside the polygon unless
they are not adjacent and belong to a chain of consecutive concave
vertices. Using inclusion-exclusion techniques, we find formulas for the
number of triangulations of almost-convex polygons in terms of the
number and position of the concave vertices. We translate these formu-
las into the language of generating functions and provide several simple
asymptotic estimates. We also prove that certain balanced configura-
tions yield the maximum number of triangulations.
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1. Introduction

A classical problem on combinatorial geometry, which goes back to Euler,
asks for the number of ways of triangulating a convex polygon with n sides
using n— 3 internal diagonals. If we call this number 1,,, the answer is given

by (see [G] and Problem 7 in [D])
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where C, denotes the n-th Catalan number. For example, a quadrangle
admits C; = 2 triangulations and a pentagon admits C3 = 5. We accept
that a segment is a convex polygon with two sides and that {, = C = 1.

For the sake of completeness and future reference we briefly recall the
proof of this classical result. Let P be a convex n-polygon and fix one
side AB. In any triangulation of P, the side AB will be joined to some
other vertex C of P forming a triangle ABC (see figure 1); in this way P
is decomposed into a triangle and two other convex polygons of sizes k and
n—k+1 (where k ranges from 2 to n — 1), which can be triangulated in t
and ¢,_¢4) ways, respectively. This gives the recurrence

th =tlatpo1+ - Hiptappr1 + - +iaoqils,

which, up to a shift, is the same recurrence satisfied by the Catalan num-
bers.

C
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Fig. 1. Side AB can be joined to any other vertex C.

The question for convex polygons being settled, we ask whether we
can find closed formulas for the number of triangulations of non-convex
polygons. Triangulating a polygon is very sensitive to small changes in the
internal visibility of the vertices, which makes the analysis of the general
case rather difficult. Moreover, if we fix the number of concave (reflex)
vertices then, as shown in the companion paper [HN], there is a wide range
for the number of triangulations of an n-polygon. But we have been able
to find closed formulas for a restricted class of polygons introduced below.

First we introduce some definitions which will be used in the sequel.
Two vertices of a simple polygon are visible —a term widely used in the
fields of Combinatorial and Computational Geometry— if the segment join-
ing them is contained in the polygon. In particular, two consecutive vertices
are always visible. A reflez chain in a polygon is a set of consecutive re-
flex vertices preceeded and followed by corresponding convex vertices. An
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augmented reflex chain is a reflex chain including the two extreme convex
vertices. We define an almost-convez polygon as a polygon having the fol-
lowing maximum visibility property: two vertices are visible unless they
belong to the same augmented reflex chain and are not consecutive. Our
justification for the term almost-convex is that it represents a small depar-
ture from the convex model in which there is complete visibility: in other
words, the only internal visibilities lost are those minimally imposed by the
presence of reflex chains.

We denote by P(n; k1, k2, ..., k;) the class of almost-convex n-polygons
having r reflex chains of lengths ki, k2,..., k.. If some of the k; are re-
peated, we shorten the notation with an exponent so that, for example,
P(n;1,1,2,3,3) = P(n;12,2,3%). Thus the two polygons shown in figure
2 are both in the class P(11;1,2,3). If all chains have the same length we
write P(n, k") instead of P(n;k").

Our main result is Theorem 1: the number of triangulations of an
almost-convex polygon depends only on the total number of vertices and
on the number and lengths of its reflex chains, but not on their relative
position. In other words, we can permute the reflex chains without chang-
ing the number of triangulations. We prove this using the principle of
inclusion-exclusion and give a simple procedure for computing the number
of triangulations in terms of the Catalan numbers. Before that, we handle
in Section 2 a special case which illustrates the general technique we use
for counting triangulations. Section 3 contains the main result together
with an analysis of several particular cases. In Section 4 we prove that,
fixing the total number of convex and reflex vertices, certain balanced con-
figurations yield the maximum number of triangulations. In Section 5 we
translate our results into the language of generating functions and obtain
several asymptotic estimates. We conclude with some remarks and open
problems.

Fig. 2. Two polygons in the class P(11;1,2, 3) with their reflex chains
in different positions.
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2. A special case: polygons with non adjacent reflex vertices

According to the notation introduced above, a P(n, 1¥ ) polygon is one with
n vertices, k£ of them reflex, no two of them adjacent and with maximum
visibility, that is, the only internal visibilities lost are those between two
convex vertices separated by a reflex one. This is possible only if n > 2k.
Figure 3a gives an example of a P(9,12). We show that the number of ways
of triangulating such a polygon depends only on n and &.

Fig. 3. A P(9,2) polygon and the corresponding convex nonagon.

Proposition 1. The number of triangulations of a P(n, 1*) polygon, with
n > 2k, is independent on the position of the k reflex vertices and is equal
to

k [k
tn —ktn_1 + (2) lpa— -+ (_I)J (j)tn—j LA (_l)ktn-k, (2)

where t,, is the number of triangulations of a convex n-gon.

PROOF. Take a convex n-polygon P*, select k of its vertices not two
of them consecutive, and push them towards the interior of P* to get a
polygon in P(n, 1*) (figure 3b). In this way we only lose k diagonals and it
is clear that the number of triangulations of a P(n, 1*) equals the number of
triangulations of P* which do not use any of these diagonals. The formula
now follows from the principle of inclusion-exclusion, since triangulating
P* using j of these diagonals amounts to triangulating a convex (n—j)-
polygon. O

3. Almost-convex polygons

We now come to the general case and try to mimic the inclusion-
exclusion technique of the previous section. So let P = {P1,...,P,} be
a P(n;ky,..., k) polygon. We consider again a convex polygon P* =
{Pf,..., P} together with the correspondence P; — P;. As before, the
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triangulations of P correspond uniquely to those of P* which use none
of the diagonals connecting non consecutive vertices of a corresponding
augmented reflex chain in P. But we do not need to consider all these di-
agonals: we can limit ourselves to those in P* connecting the two vertices
immediately to the left and to the right of a vertex of P* which is reflex
in P, since a simple geometric argument shows that the triangulations we
want to exclude will necessarily contain one of these special diagonals.
How many of these special diagonals are there? As many as reflex ver-
tices are in P, that is, ky+k2+- - -+k,. But a triangulation of P* cannot use
any number of them arbitrarily: it cannot use two of them corresponding
to a pair consecutive reflex vertices in P, for then the two diagonals would
intersect. Thus we have run into the following combinatorial problem.

Problem: There are r strings of lengths k), ks, ..., &, and we want to select
J cells among the r strings without two of them being consecutive in one
string (see figure 4 for an illustration). In how many ways can this be done?

k,[e] To ®

k.|l® ®

Fig. 4. Selecting non consecutive cells.
If we denote this number by

"’cla“'skr
j

: )
then, by inclusion-exclusion, the following holds.

Theorem 1. The number of triangulations of a P(n;k,...,k,) polygon
is equal to

t - "Icl,.i.,lc, kl,....,lc,

j tn—j"'"'s (4)

tnoy oo+ (_1)1' "

where the sum extends until the term || ltn_j becomes zero. In

particular, this number depends only on n,k,, ..., k, and not on the relative
position of the reflex chains. O

ky,. ky,
J
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We denote the expression in (4) b

t(n; k1, ... k)_Z( 1) "kl’”.

tn—j

and use the exponent notation whenever some of the k; are repeated (we
also write a comma instead of a semicolon when r = 1). For example,
the number in (2) is ¢(n, 1¥). Clearly, Proposition 1 can be deduced from

Theorem 1, since
"1,.’?.,1" _ (k)
J il

A particular case that deserves further comment is that of spiral poly-
gons. They are defined in Computational Geometry as those composed of
a chain of convex vertices followed by a chain of reflex vertices and have
been studied because of their relative simplicity (see [EC]). Spiral polygons
with k reflex vertices and maximum internal visibility are those in the class

P(n,k). The number " ; || corresponds to the selection of i cells, no two of
them consecutive, in a string of length k. The solution to this problem is

well known:
HE !
J J

tn k)= Y17 (F 7T oy

i20

Thus we have

In order to calculate t(n, ky, ..., k) for arbitrary n and ky, ...,k weneed a

general procedure for computing the numbers " k"']"'k

r || This can be done
by means of the following recursive formula.

Proposition 2. The numbers defined in (3) satisfy the recurrence equation

SN

||kl) )
j—1

PROOF. Select i cells from the first string and the remaining j — ¢ from the
remaining strings. a

In section 5 we will see how to translate these formulas in terms of
certain polynomials and generating functions.
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4. A maximum property

Let us fix n and k and ask the following question: which distribution of &
concave vertices into reflex chains of an n-gon will produce the maximum
number of triangulations? The answer is that the chains must be balanced,
all having the same length (due to rounding effects, some of them will have
one vertex more than the others).

Theorem 2. Among all almost-convex polygons with n vertices, k of
them being reflex, the maximum number of triangulations is reached by
the balanced one: the k reflex vertices are evenly distributed in n — k reflex
chains of length | ;5| (which can be zero) or [-£;] between any two
convex vertices. Moreover, this maximum is strict.

The theorem will follow at once from the following lemma, which as-
serts that transfering vertices from one reflex chain to a shorter one increases
the number of triangulations.

Lemma. For p > 2 and arbitrary k,k,,...,k, it holds that

tnsk,k+p,ky,.. k) <t(nsk+1Lk+p—1,k,... k).

PRroOF. The proof is by induction on p. First of all, due to Theorem 1,
we can choose any representative P in the class P(n,k, k + p,ky, ..., k;),
and we do it in such a way that the two reflex chains of lengths & and
k + p are separated by only one reflex vertex. Do the same for P’ in
the class P(n,k + 1,k + p — 1,ks,...,k,). The situation is depicted
in figure 5, where {A4,V;,...,Vi, B} and {B,W,,...,Wiy,,C} are two
consecutive augmented reflex chains of P, and {A4,V;,...,Viy;, B} and
{B,W1,...,Wi4p—1,C} belong to P'.

Now take every triangle with base Wi,,C and third vertex X in P.
This disects P into L and R. Do the same in P’ with basis Witp-1C
and vertex X’ obtaining L’ and R'. For every permissible choice of X
we can take X’ = X. Then polygons R and R’ have the same number
of triangulations and, by induction hypothesis, L' has more triangulations
than L if p > 2.

When p = 2, L and L’ have exactly the same number of triangulations,
since the two resulting chains are in both cases of lengths k and k + 1 and
Theorem 1 applies again. But in this case we have for X’ one more choice
than for X, namely X’ = V;,,, and this choice provides at least one more
triangulation for P’ than for P. a
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Fig. 5. Dissection of P and P’.

5. Generating functions and asymptotic analysis

Let us recall that the generating function for the Catalan numbers is
-lﬂ;z'ﬂ. This, together with (1), implies that the generating function

of the ¢, is
T(z)= Ztnz - —(1 —V1-42).

n20
We now define a sequence p; of polynomials by means of

k=74 1\ ;
=y (FTI ) %)
i>0 J
and note that the j-th coefficient of py is precisely (—1)/ “ " From Propo-

sition 2 it follows that
ky,.
pra(2) -+ pe(2) = Y (17|
ji20

If we let Ty,,. S (2) = Xnyot(niky,... kr)z" then Theorem 1 gives an
explicit expression for this generating functlon

Tk,,....k.(2) = Pr,(2) -+ - Pr, (2)T(2). (6)

ok

.

An application of Darboux’s lemma to the former expression allows us to
compute an asymptotic estimate for the numbers t(n; ky, ..., k,).

Theorem 3. Fix positive integers k1, ks, ..., k.. Then, as n — oo,

¥ sl
2ki+--+k,

t(n;ky, ... kn
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PROOF. The function T(z) = 3, tn2" has an algebraic singularity at
z = 1/4; when multiplied by a polynomial p(z), Darboux’s lemma (see
[W]) tells us that the asympotic behaviour of the coefficients in p(z)T(z) is
p(1/4)t,. If we want to apply this to (6) we only need to compute the value
of pr(1/4) for every k. This is most easily done by means of the recurrence

po=1; npn=1-z
(7

Pk = Pk—1 — Z Pk-~2, for k > 2,

satisfied by the polynomials p; and which is proved from the definition
(5) and the addition formula for the binomial coefficients. If we let af =

Pk(1/4), then

Q41 = O — Zak—l

with initial conditions ap = 1 and a; = 3/4, and the unique solution is
ar=(1+ %)'2!;' ]

As particular cases of the theorem we get the following two estimates

(a) t(n,1¥) ~ (3/4)"1,,
(b) t(n, k)~ (1+ £)(1/2)*,.

which can be rephrased as follows. (a) Every time we transform a convex
vertex into a reflex one in a convex polygon while maintaining maximum
visibility (this implies that the reflex vertices will not be adjacent) the
number of triangulations decreases, asymptotically, by a factor of 3/4.

(b) If we insert a reflex chain of length k in a convex polygon while
maintaining maximum visibility —and produce an almost-convex spiral
polygon— the number of triangulations decreases, asymptotically, by a
factor of (1 + k/2)2-%.

We end this section with a remark. Theorem 1 and equations (7) imply
the following recurrence relation for the numbers ¢(n, k):

t(n,k) =t(n-1,k—1)+i(nk+1), forn>k+4.

- A pure geometric proof of this fact can be given as follows. Let P be
a polygon in the class P(n,k) and consider the diagonal joining the first
reflex vertex R with the second convex vertex B at its left (see figure 6).
Triangulations of P(n, k) which use the diagonal BR are counted by the
number t(n — 1,k — 1). If a triangulation does not contain BR then it
contains none of the diagonals BR’, BR", ... joining B to the reflex vertices.
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The situation is then as if A were a reflex vertex and B the first convex
vertex and these triangulations are counted by t(n, k+1) (note that n > k+4
guarantees that there are at least four convex vertices).

The recurence above can be used to prove by induction a closed formula
for the numbers t(n, k), namely

k+2(2n—k-5
’("”c)=m(n_k_3)-

We finally remark that the numbers ¢(n, k) also appear in [S] and in in [BV]
in the context of enumerating certain lattice paths.

6. Concluding remarks and open problems

The class of polygons dealt with in this paper is suitable for combinato-
rial analysis because being almost-convex is a very strong condition for a
polygon. We believe a natural class of polygons in which one should try
to enumerate triangulations is that of spiral polygons: they are simple in
structure but quite complicated with respect to the internal visibility of
the vertices. The general tight bounds obtained in [HN] apply to spiral
polygons; the problem then is to pick additional parameters from which to
obtain exact formulas.

Returning to almost-convex polygons, it is not difficult to prove that
t(a+b+3;a,b) = (“}?). It would be nice to find similar simple formulas for
the very symmetric configurations in P(3k + 3;k, k, k) or, more generally,
for P(rk + 7, k7).
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Fig. 6. Proof of the recurrence t(n,k) = t(n — 1,k —1) + t(n,k +1).
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