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ABSTRACT. We determine upper bounds on the number of el-
ements in connected and 3-connected matroids with fixed rank
and bounded cocircuit size. The existence of these upper bounds
is a Ramsey property of matroids. We also determine size type
function and extremal matroids in several classes of matroids
with small cocircuits.

1 Introduction

Extremal matroid theory derives much of its motivation from extremal
problems in geometry and graph theory. We draw our motivation here
from extremal problems in planar geometries and the Ramsey theory of
graphs. An excellent reference to extremal matroid theory is the survey
paper of Kung [9]. In this paper Kung notes that the central problem of
extremal matroid theory is, for a class of matroids C, to determine the
size function h(r,C) = max{|E(M)|: rM = r and M € C} and find the
matroids of maximum size. We consider the closely related cardinality
function e(r,C) = max{|E(M)|: M < r and M € C} here. Exact values
and bounds for the size functions of many classes of matroids which are
subsets of some projective gedmetry have been computed (see, for example,
(2,4,5,6,7,8,9,10,11,12,13,14,15,16]). It is clear that the size functions of
these classes of matroids exist, although it is often difficult to compute
them. It is not clear that the size function of the class of connected matroids
with all cocircuits having fewer than a fixed number of elements exists as
these matroids need not be representable over a finite field. We show here
that the existence of this function is part of a fundamental Ramsey property
of matroids implied by the existence of the matroid Ramsey numbers. The
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definition, a triangle inequality, and a binomial upper bound for the matroid
Ramsey numbers are given in the next two results [18].

Definition 1. Let k and ! be positive integers. Then n(k,!) is the least
positive integer n such that every connected matroid with n elements con-
tains either a circuit with at least k elements or a cocircuit with at least 1
elements. a

Theorem 1. Let k and ! be integers exceeding one.
(a) n(k,l) <n(k-1,0) +n(k,1 - 1).
(b) n(k,1) < (515" if k and I exceed three.
0

For each positive integer I, let C*(l) denote the class of all connected ma-
troids with each cocircuit having fewer than ! elements. Then e(r,C*(1)) is
the maximum number of elements a connected matroids M may have which
has rank at most r and each cocircuit containing fewer than ! elements. The
next result establishes the existence of this cardinality function. The proofs
of our main results are given in Section 2.

Theorem 2. e(r,C*(1)) < min{n(r +2,l),n(r +2,l 1)+ 7} if r and |
exceed one. An upper bound for this minimum is ("*}~3) 4+-r when 1 > 5.

An extremal matroid of a number e(r,C*(l)) is a connected matroid M
with e(r,C*(l)) elements, rank at most r, and each cocircuit having fewer
than I elements. We next define several classes of matroids which are
shown in the next theorem to contain extremal matroids of specific numbers
e(r,C*()).

Let a, b, ¢, and d be positive integers. Then L(a, b, c) denotes the matroid
constructed by adding elements in parallel to a 3-element circuit so that
parallel classes of sizes a, b, and c are obtained. The matroid P(a, b,c, d)
denotes the matroid constructed by adding elements in parallel to a 4-
element circuit so that parallel classes of sizes a, b, ¢, and d are obtained.
The matroid P*(a, a, a, a) is constructed by freely adding an element to the
intersection of two distinct lines of P(a,, a, a). The uniform matroid with
rank r on n elements is denoted by U,.,. The rank-4 binary affine geometry
is denoted by AG(3,2). The graph Hg and Euclidean representations for
Ps and some of the matroids mentioned are given in figure 1.

The next result gives all values of e(r,C*(l)) and the extremal matroids
for r at most three. The values e(3,C*(5)) = 8 and &(3,C*(6)) = 9 are
used in a subsequent paper [3] in the proof of n(5,6) = 11. This is the
largest known matroid Ramsey number. If I < 2, then C*(l) consists only
of 1-element matroids. We ignore this case in the remaining theorems for
this reason.
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Theorem 3. Let r and [ be positive integers with 1 > 3.

(a) e(l,C*())=1-1.
The extremal matroid is Uy 1.

(b) e(2,C*())) = 21— 3 if I =2n+1 for some positive integer n.
The extremal matroid is L(n,n,n).

(c) e(2,C*(1)) = 31— 2 if I = 2n for some positive integer n.
The extremal matroid is L(n — 1,n — 1, n).

(d) e(3,C*(1)) =2l -2 if | =2n+ 1 for some positive integer n.
The extremal matroid is P(n,n,n,n).

(e) e(3,C*(l)) = 2l — 3 if I = 2n for some positive integer n.
The extremal matroids are P(n—1,n—1,n—1,n) and P*(n—1,n—
1,n—1,n—1)if 1 > 6. If | =4, then the extremal matroids are the
connected rank-3 matroids with five elements.

The final main result implies that 3-connected matroids with small co-
circuits have fewer elements than connected matroids with small cocircuits.

Theorem 4. Let M be a 3-connected rank-r matroid with all cocircuits
having fewer than l elements for integers r > 5 and |l > 3. Then |E(M)| <
e(r—2,C*()) +2.
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Section 1 concludes with sbme terminology and results used here. The
matroid terminology used mostly follows Oxley [17]. Let M be a matroid.
The ground set of M is denoted by E(M). Let X C E(M). Then M\ X
and M/X denote the deletion and contraction of X from M, respectively.
The restriction of M to X is denoted by M|X. The closure and rank of X
in M are denoted by cl(X) and rX, respectively. Three-element circuits of
M are called triangles.

If k is a positive integer, then a bipartition (A4, B) of E(M) is a k-
separation of M if |A| > k, |[B| > k, and TA+7rB —rM < k—1 [19]. For
an integer n > 2, M is n-connected if and only if M has no k-separations
for any k < n. A 2-connected matroid is said to be connected. A matroid
M is connected if and only if its dual M* is connected (see [17, (4.2.8))).

The next three results on matroid connectivity are used here. The first
result is due to Tutte [19]. The second result follows from Tutte’s result by
induction. The last result is due to Akkari and Oxley [1].

Theorem 5. If M is a connected matroid and e € E(M), then M \ e or
M /e is connected. o

Corollary 1. If X is a subset of a connected matroid M, then there exists
a connected minor N of M with E(N)=X. a

Theorem 6. Let M be a matroid having at least four elements. Then
M is 3-connected and M/e, f is disconnected for all pairs {e, f} of distinct
elements if and only if every pair of distinct elements of M is in a triangle. O

2 The proofs

We first establish an upper bound for the size functions of the connected
matroids with small cocircuits.

The proof of Theorem 2: Let M be a member of C*(I) with rank at
most r. If |[E(M)| 2 n(r + 2,1), then either M has a circuit with at least
7 4 2 elements or M has a cocircuit with at least ! elements. The former
does not occur as 7M < r, while the latter does not occur as M € C*(1).
Thus |[E(M)| < n(r + 2,1).

Suppose rM* > n(r + 2,1 — 1). Let B* be a cobasis of M. Then there
exists a connected minor N of M with ground set B* by Corollary 1. Hence
|[E(N)| = |B*| 2 n(r + 2,1 — 1) implies that N has either a circuit with
at least 7 + 2 elements or a cocircuit with at least { — 1 elements. The
former does not occur as 7N < rM < r. Hence N has a cocircuit D with
‘at least [ — 1 elements. The set D is contained in some cocircuit of M
(see [17, (3.1.11)]). Thus D is a cocircuit of M as M has no cocircuits
with { or more elements. However, D is contained in the cobasis B* of M;
a contradiction. Thus rM* < n(r +2,l —1). It follows that |[E(M)| =
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rM 4+ rM* < r+n(r+ 2,01 —1). Thus [E(M)| < min{n(r + 2,1),n(r +
2,1 — 1) + r} for all connected matroids M in C*(l) with rank at most r.
Hence e(r,C*(1)) < min{n(r +2,0),n(r + 2,1 — 1)+ r}. If 1 > 5, then
min{n(r +2,0,n(r +2,I — 1) +7} Sn(r+2,1-1)+r < (%) +r by
Theorem 1(b). a

The next result of Reid [18] is used in the proof of Theorem 3. An ex-
tremal matroid of a number n(k, ) is a connected matroid M with n(k, )1
elements such that each circuit of M has fewer than k elements and each
cocircuit of M has fewer than ! elements.

"Theorem 7. Let l be an integer exceeding two.

(a) n(3,)=1.
The extremal matroid is Uy 1.

(b) n(4,!) = 31— 1 if I=2n+1 for some positive integer n.
The extremal matroid is L(n,n,n).

(¢) n(4,1) = 31 —1 if | = 2n for some positive integer n.
The extremal matroid is L(n — 1,n — 1,n).

O

The following result is combined with the previous theorem to establish
parts (a), (b), and (c) of Theorem 3.

Lemma 1. Let r and l be integers exceeding one. If there exists a con-
nected matroid M with n(r + 2,1) — 1 elements, rank at most r, and each
cocircuit of M has fewer than | elements, then e(r,C*(1)) = n(r + 2,1) — 1.
Moreover, the set of extremal matroids of e(r,C*(l)) consists of the mem-
bers of the set of extremal matroids of n(r + 2,1) which have rank at most
T.

Proof: It follows from M € C*(l) with rM < r that e(r,C*(I)) > |[E(M)| =
n(r + 2,I) — 1. The reverse inequality follows from Theorem 2 so that
e(r,C*(1)) = n(r +2,1) — 1. Let N be an extremal matroid of e(r,C*(I)).
Then rN < r implies that each circuit of NV has fewer than r + 2 elements.
Thus n(r + 2,1) > |E(N)| 2 |[E(M)| = n(r + 2,1) — 1. Hence |E(N)| =
n(r+2,1)—1and N is an extremal matroid of n(r + 2, ) with rank at most
T.

Conversely, suppose that N is an extremal matroid of n(r + 2, 1) having
rank at most r. Then |E(N)| =n(r +2,1) — 1 = e(r,C*(l)). Thus N is an
extremal matroid of e(r, C*(1)). (m]

The complement of a cocircuit in a matroid is a hyperplane (see [17,
(2.1.14)]). Hence we obtain the following useful lemma.
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Lemma 2. Let M be a matroid of positive rank and | > 2. Then each
cocircuit of M has fewer than ! elements if and only if each hyperplane of
M contains at least |E(M)| — ! + 1 elements. (]

The proof of Theorem 3(a), (b), and (c): The matroid Uy, is a
connected matroid with rank one and each cocircuit having { —~ 1 elements.
It has I — 1 = n(3,1) — 1 elements by Theorem 7(a). Therefore, Theorem
3(a) follows immediately from Theorem 7(a) and Lemma 1.

Suppose | = 2n+1 for some integer n > 1. Each cocircuit of the connected
rank-2 matroid L(n,n,n) has 2n < ! elements. This matroid has 3n =
31— 32 = n(4,1) - 1 elements by Theorem 7(b). Thus Theorem 3(b) follows
immediately from Theorem 7(b) and Lemma 1.

Suppose ! = 2n for some integer n > 2. Each cocircuit of the connected
rank-2 matroid L(n — 1,n — 1,n) has at most 2n — 1 < [ elements. This
matroid has 3n — 2 = 31 — 2 = n(4,!) — 1 elements by Theorem 7(c). Thus
Theorem 3(c) follows immediately from Theorem 7(c) and Lemmal. O

We remark that Lemma 1 may be used to determine e(3,C*(5)) and its ex-
tremal matroids by the following argument. Reid [18] showed that n(5, 5) =
9. Hurst and Reid [3] showed that AG(3,2), P(2,2,2,2), P(2,2,2,2)*, and
M (Hg) are the extremal matroids of n(5,5). The only one of these with
rank at most three is P(2,2,2,2). Thus (3,C*(5)) = n(5,5) —1 = 8
and P(2,2,2,2) is the extremal matroid of e(3,C*(5)) by Lemma 1. How-
ever, Lemma 1 cannot be used to determine e(3,C*(6)). This follows as
n(5,6) = 11 [3], but ¢(3,C*(6)) = 9 is shown in Theorem 3(e). Thus
e(3,C*(6)) # n(5,6) — 1 and Lemma 1 does not apply in general.

Suppose £ is a collection of subsets of the ground set of a matroid M.
Then X(L, E(M)) denotes the number of ordered pairs (I, €) such that [ € £
ande€l.

The proof of Theorem 3(d) and (e): Suppose | = 2n + 1 for some
integer n > 1. Each cocircuit of the connected rank-3 matroid P(n,n,n,n)
has at most 2n < [ elements. Thus e(3,C*(l)) > 4n =21 — 2 if l is odd.

Suppose I = 2n for some integer » > 2. Each cocircuit of the connected
rank-3 matroid P(n —1,n — 1,n — 1,n) has at most 2n — 1 < [ elements.
Thus €(3,C*(l)) > 4n — 3 = 2l — 3 for [ even.

Suppose M is an extremal matroid of e(3,C*(l)), where [ may be even
or odd. We obtain the following two statements by Theorem 7(b) and (c),
respectively. If lis odd, then |E(M)| > 21-2 > 31—1 = n(4,1). If L iseven,
then |E(M)| > 21 — 3 > 31 — 1 = n(4,1). Hence |E(M)| > n(4,1), and M
contains a circuit with four or more elements. The maximum circuit size of
M is four as rM < 3. Thus M contains a 4-element circuit C = {a, b, c,d}.

Let £ denote the set of six distinct lines of M determined by each pair of
elements of C. Each line of £ is a hyperplane of M which contains at least
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| E(M)|—1+1 elements by Lemma 2. Hence £(£, E(M)) > 6(|E(M)|—1+1).
The elements a, b, ¢, and d are in exactly three lines of £. Thus it is
straightforward to show that an element e of M is in at most three lines of
L. Moreover, e is in exactly three lines of £ if and only if e is in a parallel
class with a, b, ¢, or d. It follows that £(£, E(M)) < 3|E(M)| with equality
if and only if every element of M is in a parallel class with a, b, c, or d.
Thus

6(|E(M)| —1+1) <D (£, E(M)) < 3|E(M)). 1)

This implies that |[E(M)| < 2! — 2. It follows that if ! is odd, then
e(3,C*(1)) = 21 — 2. If l is even, then e(3,C*(l)) is 21 — 3 or 21 - 2.

Suppose |E(M)| = 2! — 2. From substituting |E(M)| = 2I — 2 into
(1), we obtain equality throughout so that (£, E(M)) = 3|E(M)|. Thus
each element of M is a member of cl(a), cl(b), cl(c), or cl(d). For each
distinct pair of elements x and y of C, cl(z,y) is a hyperplane of M so that
lel(z)] + |cl(w)] = |cl(z,y)| > 1 —1 by Lemma 2. Also, 2l — 2 = |E(M)| =
|cl(a)]+cl(b)]+|cl(c)|+|ci(d)]. Thus |cl(a)|+|cl(b)] = lcl(c)|+|cl(d)] = I-1.
Likewise, |cl(a)| + |el(¢)| = |cl(b)] + |cl(d)] = I — 1 and |cl(a)| + |cl(d)| =
|el(b)] +|cl(c)| = ! — 1. From using these equations we obtain that |cl(a)| =
[el(®)| = |ci(c)| = |cl(d)|. Thus 4|cl(a)|] = |[E(M)| = 2l — 2. It follows that
1 = 2|cl(a)|+1 is odd. Hence ! even implies that |E(M)| = 21—3. Moreover,
1 = 2n+1 odd implies that |cl(a)] = |cl(b)] = |cl(c)| = |c(d)| = ;| E(M)| =
12 -2) = (1 -1) = n. Thus M = P(n,n,n,n) and P(n,n,n,n) is the
only extremal matroid of e(3,C*(l)) for I odd and ! = 2n 4-1. It remains to
determine the extremal matroid of e(3,C*(l)) when [ is even.

Suppose [ = 2n. Then ¢(3,C* (1)) = 2/ —3. Hence each line of M contains
at least |E(M)|—1+1 = [—2 elements. Ifl = 4, then |E(M)| = e(3,C*(I)) =
5, and each line of M need only contain | — 2 = 2 elements. Thus any
connected rank-3 matroid with five elements is an extremal matroid of
e(3,C*(4)). The four such matroids are Uss, P(1,1,1,2), P*(1,1,1,1),
and the matroid Ps of Figure 1.

Suppose that [ > 6. First assume that every pair of distinct lines of £
meet. Then there exist distinct elements e, f, and g of E(M)—C such that
M|C U {e, f, g} is isomorphic to the Fano or non-Fano matroid.

There are seven and nine distinct lines contained in F; and F;, respec-
tively. Suppose that M|C U {e, f, g} = F7 is as given in Figure 2. Let £,
denote the set of seven distinct lines of M determined by pairs of elements
of CU{e, f,g}. Then each line of £, contains at least { —2 elements so that
(L, E(M)) > 7(1 — 2) = 7l — 14. Each element of E(M) is in at most
three lines of £;. The maximum is attained when an element is in a parallel
class with a, b, ¢, or d. Thus £(L,, E(M)) < 3|E(M)| = 3(2l - 3) = 6] —-9.
Hence 7! — 14 < 61 — 9 or I < 5; a contradiction.
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Suppose that M|CU{e, f, g} = F; is as given in Figure 2. Let £, denote
the set of nine distinct lines of M determined by pairs of elements of the
set CU{e, f,g}. These consist of the six lines with three elements pictured
and the lines cl(e, f), cl(e,g), and cl(f,g). The elements e, f, and g are
in four lines of £3, while the elements of C are in three lines of £,. Thus
each element of M is in at most four lines of £;. It follows that 9(I — 2) <
E(Ly, E(M)) = 2(L2,C) + Z(L2, EIM)-C) <3-44+4(21 - 7) =81 - 16.
Hence 9! — 18 < 8/ — 16 and ! < 2; a contradiction. Hence there exists a
pair of disjoint lines of £. Let cl(a,b) and cl(c, d) be disjoint lines of £,
without loss of generality. These two disjoint lines each contain at least
{ — 2 elements and |E(M)| = 2! — 3. Thus at most one element of M is in
neither the line cl(e, b) nor the line cl(c, d).

e e
a c a c
b g d b 9 d
F7 (F7)-
Figure 2

Suppose there exists an element x on the line cl(a,b) that is in neither
cl(a) nor cl(b). Then a Euclidean representation for M|CU{z} is as given in
P; of Figure 1. Let £3 denote the set of eight distinct lines of M determined
by the pairs of elements of C U {z}. The elements of M which are in the
maximum number of lines of £3, namely four, are those in cl(c) or cl(d). Let
S = cl(c)Ucl(d). Then 8(1—2) < £(Ls, E(M)) = £(L3,S)+Z(L3, E(M) —
S) < 48|+ 3|E(M) - S| = 4|S|+3(20 —3—|S]|) = |S| + 61 —9. Thus
|S] > 21-7, and there are at most four elements of M not in S = cl(c)Ucl(d).
Each element of cl(a, b) is not in cl(c)Ucl(d) as the lines cl(a,b) and cl(c, d)
do not meet. Hence 4 > |cl(a,b)| > ! —2 > 4 as | > 6. Thus equality holds
throughout, I = 6, and |E(M)| = 21—-3 = 9. It follows from |S| > 21-7 =5
that every one of the five elements not in cl(a, b) is in either cl(c) or cl(d).
One of ¢l(c) and cl(d), say cl(c), contains at most two elements. As the line
cl(a,b) contains only four elements, at least two of cl(a), cl(b), and cl(zx)
have only one element. Suppose |cl(a)] = 1, without loss of generality.
Then 1 -2 =4 > 3 > |d(a)] + |c(c)| = |cl(a,c)|; a contradiction. Thus
every element on the line cl(a, b) is in either cl(a) or cl(b). By symmetry,
every element of the line cl(e, d) is in either cl(c) or cl(d). It follows that
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every element of M, with at most one exception, is in a parallel class with
a, b, ¢, ord.

First suppose that every element of M is in a parallel class with a, b, c,
or d. Then |cl(a)| + [cl(b)] + |ci(c)| + |cl(d)| = |E(M)| = 21 — 3. We shall
show that M 2 P(n —1,n — 1,7 — 1,n). Let u and v be distinct elements
of C. Then |cl(u)] + |cl(v)| = |cl(u,v)| = 1 —2. Thus |cl(u)| +|cl(v)] is I -2
or [ — 1 for each u,v €C. Suppose |cl(a)] < n — 2. For each z € {b,¢c,d},
[cl(a)] + |ci(z)] = I = 2. Thus [cl(z)] 21-2—|c(a)| 2I-2—(n-2)=n
as | = 2n. Hence |c(b)| + |cl(c)| = 2n = I; a contradiction. Thus cl(a),
and likewise cl(b), cl(c), and cl(d), contains at least n — 1 elements. Hence
[cI(a)] +|cl(b)| < 1—1 implies that |cl(a)| < I1-1—|c(b)| <I-1—-(n—1) =
n. Hence cl(a), and likewise cl(b), cl(c), and cl(d), contains at most n
elements. It follows from the facts that each of the four parallel classes of
M contain either » — 1 or n elements and-|E(M)| = 2] — 3 = 4n — 3 that
M=2Pnh-1,n-1,n—-1,n).

Finally, suppose that there exists an element of M, say j, not in a parallel
class determined by a, b, ¢, or d. Then we shall show that M & Pt(n —
1,n—1,n —1,n —1). Let I(7) denote the number of lines of £ containing
j. Suppose I(j) = 0. Then M|CU {j} = Uss. Hence C U {5} determines
a set of ten distinct lines of M. Call this set £4. Each element of M is
in four lines of £4 and hence 10(I — 2) < (L4, E(M)) = 4(2! — 3). Thus
1 < 4; a contradiction. Suppose I(j) = 1. Then M|C U {j} is isomorphic to
the matroid Ps in Figure 1. However, we have previously shown that there
cannot exist two disjoint lines when one of the lines contains at least three
distinct parallel classes. Thus I(j) > 2. But j is not in a parallel class with
a, b, ¢, ord. Thusi(5) < 3. Hence I(j) = 2. Suppose that j € cl(a,b)N(c, d),
without loss of generality. The equations |cl(a)|+ |cl(b)| + |cl(c)| + |ci(d)| =
|[E(M) — {5}| = 2l -4, |cl(a)] + |cl(c)] = 12, |c(a)| + |ci(d)] 21 -2,
[el(®)| + |ci(c)] = 1 -2, and |cl(b)] + |cl(d)] > ! — 2 can be used to show
that |cl(a)| = |cI(b)| and |cl(c)| = |ci(d)|- Suppose |ci(a)| < 3 — 2. Then
|cl(a, b)| = |cl(a)] + |cl(b)| + 1 < I — 3; a contradiction. Thus |cl(a)|, and
likewise |cl(b)], |cl(c)|, and |cl(d)|, all exceed -é-l —2. It follows from the fact
that there are 2/ — 4 elements in the parallel classes determined by a, b, c,
and d that each of these parallel classes contains exactly %l —1=n-1
elements. A Euclidean representation for M|CU{j} is givenin P*(1,1,1,1)
of Figure 1. From adding points in parallel to a, b, ¢, and d we obtain that
M=2Pt(n-1,n-1,n—-1n-1). O
The proof of Theorem 4: By Theorem 3, e(r—2,C*(1))+2 > e(1,C*(3))+
2 > 4. Thus the result holds if |E(M)| < 4. Suppose that |E(M)| > 4.
Then M is simple (see [17, (8 1.6)]).

First suppose that every pair of distinct elements of M is in a triangle
of M. Let H be a hyperplane of M. Then E(M) — H is a cocircuit of M.
Thus |[E(M) - H|<Il-1.
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Let z € E(M) — H. If y & H, then there exists a triangle T' containing
z and y. Let 2 € T — {z,y}. Then 2z ¢ H as z € H would imply that
z € c(H) = H; a contradiction. Hence each element y of H may be
associated with an element z of (E(M) — H) — {z} chosen from the line
c(z,y). Let f: H —» (E(M) — H) — {z} be a function induced in this
manner.

Figure 3

Let y; and y» be distinct elements of H. Suppose f(y1) = f(¥2). Then
y2 € cl(z, f(y2)) = cl(z, f(11)) = cl(z,y1). Thus cl(z,31) = cl(y1,92) C H.
Hence = € H; a contradiction. It follows that f(y:1) # f(y2) and f is an
injection from H to (E(M)—'H)—{z}. Hence |H| < {(E(M)-H)—{z}| =
|E(M) — H| — 1. Thus |E(M)| = |H| + |E(M) — H| < 2|E(M) - H| -
1<21-1)-1=2-3. It follows from Theorem 3(d) and (e) that
|[E(M)] <21 -3 <e(3,C*(1)) < e(r —2,C*(1)) < e(r—2,C*(D)) + 2.

Suppose there exists a pair of elements of M which is in no triangle
of M. Then, by Theorem 6, there exist e, f € E(M) such that M/e, f is
connected. The set {e, f} is independent as M is simple. It follows that the
matroid M/e, f has rank at most r—2 and is in C*(1). Thus e(r—2,C*(1)) >
|E(M/e, f)| = |E(M)| — 2. Hence |E(M)| < e(r —2,C*(1)) + 2. a
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