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ABSTRACT. We give recursive methods for enumerating the
number of orientations of a tree which can be efficiently dom-
inated. We also examine the maximum number 7, of orien-
tations admitting an efficient dominating set in a tree with g
edges. While we are unable to give either explicit formulas
or recursive methods for finding 74, we are able to show that
the growth rate of the sequence (7,) stabilizes by showing that

limg—.c0 75’ ¥ exists.

1 Introduction

For a directed graph D with vertex set V and arc set A, the out-neighborhood
Np(w) of a vertex v of D is {w € V: v € A} while the closed out-
neighborhood Np[v] is Np(v)U {v}. We call a subset S of the vertices of D
an efficient dominating set if {Np[v]: v € S} partitions the vertices of D.
An efficiency of a graph G is a pair (é, S) where S is an efficient dominat-
ing set of the orientation G of G. The number of efficiencies, as pairs, of G
is denoted by n(G). We have shown [4] that every graph has at least one
efficiency, found the extremal graphs which attain the maximum number
and minimum number of efficiencies for graphs of given order and graphs
of given size, and observed that any oriented tree has at most one efficient
dominating set. See [1, 2, 3, 7] for results regarding efficient domination of
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graphs and [5, 6, 8] for additional results regarding efficient domination of
directed graphs.

In this paper we give recursive methods for enumerating the number 7(T")
of efficiencies of a labeled tree T'. Since an oriented tree T has at most one
efficient dominating set, 7(T") counts the number of orientations of T which
can be efficiently dominated. We are also interested in the extreme value
of n(T) and define 7, to be the maximum of #(T) among all trees with ¢
edges. It follows that 7, enumerates the maximum number of orientations
admitting an efficient dominating set in a tree with ¢ edges. While we are
unable to give either explicit formulas or recursive methods for finding 7,
we are able to show that the growth rate of the sequence (r,) stabilizes by

showing that limg_,o ﬂ;/q exists.

2 The Number of Orientations of a Tree Admitting an Efficient
Dominating Set

Let G be a labeled graph. For any vertex v in G, define the ordered triple
(a, b, c) as follows:

a = the number of efficiencies of G which include v in the dominating set
(dominated using v).

b = the number of efficiencies of the graph G + u that include u in the
dominating set, where u is a new vertex of degree one adjacent to v
and edge uv is directed from u to » (dominated from outside).

¢ = the number of efficiencies of G in which v is dominated by a neighbor
in G (dominated from inside).

Observation. Note that for any graph G and any vertex v with triple
(a,b,¢), n(G) =a+c.

For example, the path P; of length one has triple (1,1,1) at either end
and n(P;) = 2; K3 has triple (2,4,4) at any vertex and n(K3) = 6. We
also note that for any vertex of any graph, a > 1,5 > 1, ¢ > 0, and for
nontrivial graphs ¢ > 1. We next show how to compute triples, hence 7,
recursively for certain graphs including trees.

Theorem 1 (Merging theorem). Let G, have triple (a1, by, ¢1) at vertex
v; and let G5 have triple (az, b2, c2) at vertex vo. Form a separable graph
G by merging vy and vy into a single vertex v. Then the triple for G at v
is (ajag, bybs, bico + ¢1b2) so that n(G) = aias + byca + c1bs.

Proof: Any pair (@, S) is an efficiency which uses v if and only if the
restriction of (é, S) to G; and G3 produces efficiencies which use v; and v,
respectively. Thus a = ajas. Similarly b = b;bs since v can be dominated
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from outside (in G) if and only if v; can be dominated from outside in G,
and v, can be dominated from outside in G3. To show ¢ = byca +c1 b3, note
that in any efficiency of G which does not use v, » must be dominated by
exactly one neighbor in G, either from a vertex in G; (hence outside G3),
or from a vertex inside G2 (hence outside G ). O

Theorem 2 (Lifting theorem). Let G’ be a graph with triple (a’,¥,c)
at vertex v. Form a graph G by joining a vertex u of degree one to vertex
v. Then the triple for G at u is (b +/,a’ +2¢,a') and n(G) = o’ +b' + .

Proof: Let the triple for G at u be given by (a, b, ¢). To efficiently dominate
G using vertex u, we must either direct edge uv from u to v, in which case
there are b’ ways to dominate G using u, or direct edge uv from v to u,
in which case there are ¢ ways to dominate G .using u. Thus a = b’ + €.
Similarly, if edge uw is directed from u to v there are a’+¢’ ways to dominate
G efficiently from outside at u, while if edge uv is directed from v to u there
are ¢ ways to do it. Thus b= a’ + 2¢/. The only way to dominate u from
inside is to direct edge uv from v to u and include vertex v in the dominating
set. Thus c=a’. O

In what follows, we find it convenient to let P, denote the path of length
g. As simple examples of the preceding theorems, note that by lifting
Pi(1,1,1) we see P, has triple (2,3,1) at either end, and by merging two
copies of P1(1,1,1) we see P, has triple (1, 1,2) at its center. We next give
an asymptotic formula for n(FP,).

Corollary 3. For q > 3, 7(P,) = 29(Py-2) + 2n(P,-3) where n(P) = 1,
n(P1) = 2 and n(P;) = 3. Hence, 7(Py) ~ ar? where a = .58644 and
r = 1.76929 is the real root of z3 — 2z — 2.

Proof: Let (aq,bq,cq) be the triple for Py at an endvertex. By the lifting
theorem, aq = bg_1 + ¢q—1, bg = ag—1 + 2¢4—1 and ¢g = aq—1. For ¢ 2 3,
we have

n(Pq) = bq—l +cg—1+ag-1=0a9-2 + 2Cq—2 +aq-2+ bq—2 + cq—2
= 2n(Py-2) + bg—2+ cg—2= 2n(Py-2) + aq-3+24-3+ag-3
= 2n(Py—2) + 2n(FPy-3)

Hence, using standard methods for solving linear recurrence relations,
n(P,) = ar? + bs? + ci? where r, s, t are the roots of z3 — 2z — 2 with r
real. Then a = .58644 and v > |s|, [t| so that 5(F,) ~ ar9. n}

In [5], both the maximal trees and 7, were determined for all ¢ < 69.

Examination of this data showed that the sequence (n;/ %) behaved errati-
cally and, in particular, was not monotonic. Subsequently, we showed that
the sequence (n,) did not grow too quickly and was supermultiplicative (see
Lemmas 6, 7). Some time after proving the next theorem we discovered
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that it is a slight extension of a result of Fekete [9] (see also [10; p. 85]).
This result also plays an important role in Moon’s proof [11; p. 27] of a
result of Szele [14]; the existence of the Shannon capacity of a graph [13];
and the existence of certain parameters concerning permanents [12].

Theorem 4. [9]. Let {an) be a sequence of positive real numbers and let
m be a nonnegative integer. If

(1) there exists a positive constant c such that a,_; < an < Cln—1,
(2) for all positive integers i and j, Gitjim 2> aiaj,

then lim,_,o0 ai/™ exists and is finite.

Remark. It is easily seen that condition (2) is sufficient to ensure both that
limy, 00 a,n/ exists, though possibly infinite, and that limy,—, a.ﬂ "> a:,/ dm
for any fixed integer d > m. We note that while conditions (1), (2) imply
that lim, e a.,,/ exists and is a finite real number L they do not imply
that @, ~ L". For example, fix L € (1,3) and let a, = L*(1 — n~2/3)"
for all large n and a, = 1, otherwise. Then conditions (1), (2) hold with
m = 0 (so m =1 since nondecreasing) and ¢ = 3 but a, = o(L").

A tree having q edges will be denoted by T,. If (T,) equals ng we call
T, mazimal and denote it by T;. We next show that the sequence (r,)

satisfies the two conditions of Theorem 4 and, hence, (nq/ ) has a finite
limit as ¢ — oo.

Lemma 5. For any tree with at least one edge, there exists a vertex w
such that the triple (a,b,c) at w has ¢ > a.

Proof: Let u be a leaf of a tree T and let v be the neighbor of u in T. Let
T’ be the tree obtained by deleting u from T'. If the triple for 7” at v is
(a',¥,c’), then by merging T’ and the path Py(1,1,1) the triple for T at v
is (o', ¥, b’ +¢’), while by lifting 7" the triple for T at w is (b’ +¢/, a’+2¢, a’).
If o’ > b + ¢, let w = u; otherwise, let w = v. m]

Lemma 6. For ¢ > 1, ng_1 < g < 37¢—1.

Proof: For the first inequality, assume that T,_; is a maximal tree with
triple (a,b,c) at a vertex. Then, lifting T from this vertex gives a tree
T, and, since b is positive, 7, a+c<a+b+c—n(T) < 1.

For the second inequality, assume that T3 is a maximal tree with ¢ >
2. Any tree with at least two edges must contam either two leaves with
a common neighbor or a suspended path of length two ending at a leaf.
In the first case, T} has been formed by merging some tree 7T,_» having
triple (a,b,c) at vertex v with the center of a path P(1,1, 2), so that
7)q = a+2b+c. In the second case, we have a similar merger with an end of
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a path P(2, 3,1), so that 1, = 2a+b+3c. In either case, 7, < 3a+3b+3c.
Form a tree Ty_; by merging a path Pi(1,1,1) with T,_» at v. By the
merging theorem, 7(T,—1) = a + b+ c. Thus, we have in either case,
g < 3a + 3b+ 3¢ = 3n(T4—1) < 3ng-1. O

Lemma 7. If i and j are positive integers, then 7iyj+1 > T%n;.

Proof: Let T be a maximal tree. By Lemma 5, we may choose vertex
v; in T} with triple (as, b, ¢;) so that ¢; > a;. Similarly, choose vertex
vj in a disjoint maximal tree T; with triple (aj,bj,¢5) so that ¢; > aj.
Then 7n; = (a; + ¢i)(aj + c;). Construct tree Tiyj+1 from T and T by
adding the edge v;v;. From the lifting and merging theorems, we obta.m
N Tirjr1) = ai(bj + ¢5) + biaj + cila; + 2¢5) > aic; + ciaj + 265 2 (as +
ci)(a; +¢;). Thus 74541 > N(Tiyj+1) > mn;.

Theorem 8. limg_, nq/ exists and is finite.

Proof: Lemmas 6 and 7 show that the sequence (n,) satisfies the conditions
of Theorem 4 with m = 1, and the result follows. a

Remark. In [4], we showed that the minimum of 7(G) among all graphs
G, and hence among trees, with ¢ edges is attained solely by the star. The
remark after Theorem 4 implies that the limit L guaranteed by Theorem
8 satisfies L > nl/ 70 - 1.8488. Consequently, paths and stars are far from
the maximal trees, unlike many properties of trees. This answers a question
posed in a conversation with Paul Erdés.

38 Conclusion

The limit L guaranteed by Theorem 8 is the growth rate of the sequence
{nq). We would like to know the value of L. We have done considerable work
[5] on forbidden structures in maximal trees, but as yet have no structural
characterization for maximal trees. Using known forbidden structures, we
have generated the maximal trees for ¢ < 69 and these are cataloged in the
accompanying figure and table. The apparent patterns in the table cannot
continue: all known maximal trees have diameter at most six, but in [5] we
prove that the diameter of maximal trees goes to infinity with ¢. We do
not know whether anomalies such as T35 reoccur for large values of g.

A lengthy analysis in [5] shows that any maximal tree Ty, ¢ having g+6 >
6 edges is obtained by merging a vertex of some tree T, having g edges with
the center of a fan having 6 edges. Merging a path of length one with that
vertex of T, produces a tree Ty 1 having g+1 edges where 546 = 7(Tj4¢) <
271)(Tq+1) < 2T(Ty41) = 27Tng41 and, hence, L < 27/5, In addition,
merging k copies of the palm having fifteen edges at the endvertex adjacent
to its center gives an infinite family of trees which imply L > 103341/15,
Although we are able to slightly improve both bounds given above, nelther
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improvement is optimal and, hence, we will not give the details here (see
[5] for details).
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The pailm with 2i + 1 edges The 2-palm with 2i + 3 edges The fan with 2i edges.

i2 Ik -1
The k - fan with fan structure {i:jq, o, - -+ Ik - 1) has
2(i +[q +jg + . + ]k . 1) + k-1 edges.

Figure 1. Maximal trees

Tree Type Number of edges (and fan structure)

Palms 3,517,911

2-palms 13,15
Fans 2,4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24
T3 26

2-fans  17(4;4), 19(5:4), 21(5;5), 23(6;5), 25(6;6), 27(7;6), 29(7;7),
31(8;7), 33(8;8), 35(9;8), 37(9;9), 39(10;9), 41(10;10)

3-fans 28(4;5,4), 30(5;5,4), 32(5;5,5), 34(6;5,5), 36(6;6,5),
38(6;6,6), 40(7;6,6), 42(7:7,6), 44(7;7,7), 46(8;7,7),
48(8;8,7), 50(8;8,8), 52(9;8,8), 54(9;9,8), 56(9;9,9)

Afans  43(5;5,5,5), 45(6;5,5,5), 47(6;6,5,5), 49(6;6,6,5), 51(6;6,6,6),
53(7:6,6,6), 55(7:7,6,6), 57(7:7,7,6), 59(7:7,7,7), 61(8;7,7,7),
63(8;8,7,7), 65(8;8,8,7), 67(8;8,8,8), 69(9;8,8,8)

5-fans  58(6;6,5,5,5), 60(6;6,6,5,5), 62(6;6,6,6,5), 64(6;6,6,6,6),
66(7:6,6,6,6), 68(7;7,6,6,6)

Table 1. Maximal Trees with q edges
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