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ABSTRACT. Let G be a connected graph with v > 3. Let v €
V(G). We define Nx(v) = {uju € V(G) and d(u,v) = k}.
It is proved that if for each vertex v € V(G) and for each
independent set S C Na(v), IN(S) N N(v)| = |S| +1, then G
is hamiltonian. Several previously known sufficient conditions
for hamiltonian graphs follow as corollaries. It is also proved
that if for each vertex v € V(G) and for each independent set
S € Na(v), [IN(S) N N(v)| 2 |S] + 2, then G is pancyclic.

1 Introduction and terminology

All graphs considered are finite, undirected, connected and simple.

Let G be a connected graph. Let v be a vertex in V(G). We define
Ni(v) = {ulu € V(G) and d(u,v) = k}. When k =1, Ni(v) = N(v). For a
pair of vertices « and v of G, we use I(u,v) to denote |[N(u)N N(v)|. Let »
and v be two vertices of G such that d(u,v) = 2. We define the divergence
a*(u,v) as follows: a*(u,v) = max,{|S]| for each w € N(u)N N(v), Sisa
maximum independent set in N(w) containing » and v}.

A graph G is said to be pancyclic if G has a cycle of length n for each n
such that 3 < n < ¥(G).

Let C be a cycle of G. Let u be a vertex in V(C). We give C an
orientation. Then u*(C) denotes the successor of u on C in the orientation
and u~(C) denotes the predecessor of u on C in the orientation. Let S C
V(C). Then S*(C) = {z*(C)|z € S} and S—(C) = {z—(C)|z € S}.
When there is no confusion about C, we simply write ut, =, S* and S~ for
ut(C), u=(C), $*(C) and S~(C). Let v be a vertex in V(G)\V(C). N¢(v)
denotes N(v) N V(C). Suppose Ng(v) # 0. An A-structure on Nc(v) is a
pair of vertices = and y such that z,y € N¢(v) and z+ =y. Let S C V(C).
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A suc-J-structure on S is an edge zTy* such that z,y € S, zt # y and
yt #£ z. A pre-J-strucure on S is an edge -y~ such that z,y € S, z~ #
y and y~ # z. Both suc-J-structures and pre-J-structures are called J-
structures. Because of the obvious similarity between suc-J-structures and
pre-J-structures, and for ease of notation and presentation, we frequently
give proofs only using suc-J-structures (or pre-J-structures). Let u,v €
V(C). We denote by C* [u,v] the path on C from u to v in the orientation
and by C~[u, v] the path on C from u to v in the reverse orientation. Two J-
structures uv and zy on a set S are said to be independent if {u, v}N{z,y} =
@. Two independent J-structures u» and zy on a set S are said to be crossed
if u is on Ct[z,y] and v is on C*[y, z]. If two independent J-structures on
a set are not crossed, we say they are noncrossed.

Let G and H be two graphs such that E(G)NE(H) = 0. We use G+ H to
denote the graph with vertex set V(G) UV (H) and edge set E(G)U E(H).
Let S C V(G). We use G[S] to denote the induced subgraph of G on S.

For terminology and notation not defined in this paper, the reader is
referred to [2].

Since Hasratian and Khachatrian [3] obtained the first local condition for
hamiltonian graphs, some graph theorists have proposed different kinds of
local conditions for hamiltonian graphs. Shi [4] introduced the concept of
divergence and gave a condition for hamiltonian graphs using the concept
of divergence. The Shi condition implies many known sufficient conditions
for hamiltonian graphs. In [1], Aldred, Holton, Lou and Shi proved that
under the Shi condition a graph is pancyclic or Kn». In this paper, we
give a new local neighbourhood condition for hamiltonian graphs which
implies the Shi condition. We conjecture that under this condition a graph
is pancyclic or K, n. We then prove a result that under a little stronger
condition a graph is pancyclic. In Section 3, we list some known results
which our theorem implies.

2 Hamiltonicity and pancyclicity
First, we give a new sufficient condition for hamiltonian graphs.

Lemma 1. Let G be a connected graph, C be a cycle of G and u be a
vertex in V(G)\ V(C). If there is an A-structure on Ng(u) or there is a
J-structure on N¢(u), then there is a cycle C’ in G of length |V(C)| + 1
such that V(C') = V(C) U {u}.

Theorem 2. Let G be a connected graph with v > 3. If for each vertex
v € V(G) and for each independent set S C Nz(v), IN(S)NN(v)| 2 |S|+1,
then G is hamiltonian.

Proof: Suppose G is not hamiltonian. Let C be a longest cycle of G. Give
C an orientation. Let u € V(G) \ V(C) such that Ng(u) # 0.
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By Lemma 1, there is no A-structure on N¢(u) and no suc-J-structure
on Ng(u) otherwise G has a cycle C’ longer than C, a contradiction. Now
T = NZ(u) is an independent set and T C Na(u). By the hypothesis of
this theorem, |[N(T)N N(u)| > |T| + 1 = [Ng(u)| + 1. Then there are two
vertices w € N(u) \ V(C) and v* € NJ(u) such that wvt € E(G). So G
has a cycle C’ such that V(C’) = V(C) U {u,w}, a contradiction. o

The next lernma shows that under the hypotheses of Theorem 2, a graph
has a triangle and a 4-cycle, or the graph is K, ..

Lemma 3. Let G be a connected graph with v > 4. Suppose for each
vertex v € V(G) and for each independent set S C Ny(v), IN(S)NN(v)| >
|S|+ 1. Then G has a triangle unless G is K, /5,2 and also has a 4-cycle.

Proof: Suppose G satisfies the hypotheses of this lemma. If G is a complete
graph, then the lemma holds. So suppose G is not a complete graph. Hence
there are two vertices u and v in G such that d{u,v) = 2. But {u} is an
independent set in N2(v). So |[N(u) N|N(v)| > 2 and then G has a 4-cycle.

Suppose G has no triangle. First, we claim that G is a regular graph.
Let uv be an edge of G. Then N(u) \ {v} and N(v) \ {u} are independent
sets. But N(u) \ {v} C Nz(v). By the hypothesis of this lemma, there are
at least [N(u) \ {v}| +1 = |N(u)| vertices in N(v). So |[N(u)| < [N(v)].
By a symmetric argument, we also have |[N(u)| > |N(v)|. Hence |[N(u)| =
|N(@)]. Since G is a connected graph, G is a k-regular graph for k = d(u).

Under the assumption that G has no triangle, we now prove that G is
K, /2,,2 by the assumption that G has no triangle. Let v € V(G), u and w
be two distinct vertices in N(v). Suppose (N(u)\{v})\(N(w)\{v}) #0. As
N(w)\ {v} is an independent set of order k — 1 in N2(v) and |[N(v)| = k, by
the hypothesis of the lemma, {z}U(N(w)\ {v}) is not independent for each
vertex z € (N(u)\{v})\(N(w)\{v}). But G has no triangle, z is adjacent to
a vertex in (N(w)\{v})\(N(u)\{v}). And N((N(u)\{v})\(N(w)\{v}))N
N(w) C (N(w)\ {v}) \ (N () \ {v}). But (N()\ {v}) \ (N(w)\ {v}) is an
independent set in No(w). By the hypothesis, |(N(w)\{v})\ (N@)\{2})] >
IN((N @)\ {vHD\ (N () \ {v}))NN(w)| = [(N()\ {v})\ (N(w)\ {s})| +1.
But, by the k-regularity, |(N(w)\{vH\(N(2)\{z})]| = [(N @)\ {v})\(N (w)\
{v})|, a contradiction. Hence for any two distinct vertices u,w € N(v),
(N ENN(V\ ) = NI\ (s} = N(w)\{s}. By the kreglariy,
Gis K v/2,v/2-

Corollary 4. Let G be a connected graph with v > 4. Suppose for each
vertex v € V(G) and for each independent set S C Np(v), [N(S)NN(v)| >
|S| + 2. Then G has a triangle and a 4-cycle.

Proof: When G satisfies the hypotheses of this corollary, G is not K, /3 , /2.
By Lemma 3, the corollary follows. |

In light of Lemma 3, we propose the following conjecture.
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Conjecture 1: Let G be a connected graph with v > 3. If for each vertex
v € V(G) and for each independent set S C Np(v), [N(S)NN(v)| > |S|+1,
then G is pancyclic or K, /3,2

In the following we prove a little weaker result. First, however, we give
some obvious but useful lemmas.

Lemma 5. Let G be a connected graph, C be a cycle of G and u and
v be two different vertices in V(G) \ V(C). If there are two independent
suc-J-structures (pre-J-structures) on Nc(u) N Ng(v), then there is a cycle
C’ of length |V(C)| + 2, where V(C’) = V(C) U {u, v}.

Lemma 6. Let G be a connected graph, C be a cycle of G and u and v
be two different vertices in V(G) \ V(C). Suppose there is no A-structure
on Nc(u) and no A-structure on N¢(v). If there are two noncrossed inde-
pendent J-structures on N¢(u) N Nc(v), then G has a cycle C' of length
|[V(C)| + 2, where V(C') = V(C) U {u, v}.

Theorem 7. Let G be a connected graph with v > 3. If for each vertex
v € V(G) and for each independent set S C Na(v), IN(S)NN(v)| > |S|+2,
then G is pancyclic.

Proof: Suppose G satisfies the hypotheses of this theorem but is not pan-
cyclic. By Corollary 6, we assume that m is the minimum number such
that 3 < m < v -2 and G has a cycle of length m but does not have any
cycle of length m + 2. Note that if » = 3, then G is a triangle.

Let C be an oriented cycle of length m.

Claim 1: For all u in V(G)\ V(C) that are adjacent to some vertex on C,
there is no edge from N} (u) U N (u) to N(u) \ V(C).

The proof of this claim is straightforward.

By Theorem 2, G is 2-connected and m < v — 3, hence there are two
different vertices u and v in V(G) \ V(C) each adjacent to vertices on C.
Case 1. There is an A-structure zy on Nc(u) and there is an A-structure
wz on Ng(v).

If |{z,y} N {w,z}] < 1, then we have an (m + 2)-cycle C’ such that
V(C') = V(C) U {u,v}, a contradiction. So we may assume that each of
N¢(u) and Ng(v) has just one common A-structure, zy say, and no other
A-structures.

Subcase (1.1) wv € E(G).

Then G has an (m + 2)-cycle C’ such that V(C') = V(C) U {u,v}, a
contradiction.

Subcase (1.2) uwv ¢ E(G).

Suppose y = z+. Then there is a suc-J-structure w*z* on Ng(u) \ {z}.
Otherwise T = (N¢(u) \ {z}) is an independent set in Na(u) of order
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[Ne(u)] = 1. But N(T) N N(u) € Ng(u) and [N(T)N N(u)| < |T| +1,
contradicting the hypothesis. By Lemma 1, there is a cycle C’ of length
m + 1 such that V(C’) = V(C) U {u}. However, zy is also an A-structure
on N¢(v), and then G has an (m + 2)-cycle, a contradiction.

Case 2. There is an A-structure zy on N¢(u) but no A-structure on Ng(v).
Claim 2. If w € V(G) \ V(C), Nc(w) # 0 and there is no A-structure on
N¢(w), then there are a suc-J-structure and a pre-J-structure on Ng(w)
though they may be the same one.

Otherwise T = N} (w) is an independent set in Na(w). By Claim 1,
N(T) N N(w) € N¢(w) and |[N(T) N N(w)| < |T), a contradiction.

This completes the proof of Claim 2.

Assume y = z*. By Clalm 2, there is a suc-J-structure wz on N¢(v).
Then y = w or z otherwise V(C), u and v form an (m 4-2)-cycle. By Claim
2, there is a pre-J-structure w’2’ on N¢(v). Then x = w’ or 2’ otherwise
V(C), u and v form a cycle of length m + 2. But this means Ng(v) has an
A-structure zy, a contradiction.

Case 3. Neither Ng(u) nor Ng(v) have an A-structure.
Claim 3. For any suc-J-structure (pre-J-structure) J on Ng(u), J is on
N¢o(u) N Ne(v) and wv ¢ E(G).

This claim takes a little proof. By Claim 2, let z+y™ be a suc-J-structure
on N¢(u). By Lemma 1, C' = Ct[yt,z] + zuy + C [y, zt] + ztyt is an
(m+1)-cycle. We give C’ an orientation such that C’ and C have the same
orientation on Ct[yt, z].

I No: (v)n{z, z*(C),y,y*(C)} = 0, then (N¢ (v)\{u}) +(C") C NE(v)u
Ng (v) and by Claim 1 there is no edge from (N (v) \ {u})1(C’) to N(v)\
V(C"). If (Ne(v) \ {u})*(C") is an independent set, since T' = (N¢v(v) \
{u})*(C") € Na(v) and N(T)NN(v) € Ne(v), IN(T)NN(v)| < [Ne(v)| =
|T|, contradicting the hypothesis. So there is a suc-J-structure on N¢/(v).
By Lemma 1, G has a cycle of length [V(C’)| +1 = m + 2, a contradiction.

Now we have N¢:(v) N {z,z+(C),y,y7(C)} # 0. Then wv ¢ E(G),
otherwise either we have a contradiction to Claim 1 or we have an (m + 2)-
cycle C” such that V(C”) = V(C) U {u,v}. Note that Ng/(v) = Ng(v). If
NG (v) N {z, 2% (C), 3,5+ (C)}] < 1, then either N (v) C N (v) UN; (v)
or Ng.(v) € NJ(v) UNZ(v). By the same argument as above, there is
either a suc-J-structure on N¢v(v) or a pre-J- structure on N¢v(v) and
by Lemma 1, G has an (m + 2)-cycle, a contradiction. Hence |Ng+(v) N
{z,z*(C),y,y+(C)}| > 2. As there is no A-structure on N¢(v), we have
only four subcases to discuss.

Subcase (3.1) N¢«(v) N {z,z*(C),y,y7(C)} = {z,y*(C)}.

Let y*(C) = z. Then z=(C’) = z*t(C). By Claim 1, there is no egde
from z+(C) = 2=(C') to N(») \ V(C) = N(v) \ V(C’). Also (Ncr() \
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Corollary 10. Let G be a connected graph with v > 3. If for each vertex
v € V(G), d(v) > |M3(v)|/2, then G is hamiltonian.

Corollary 11. Let G be a connected graph with v > 3. If for each vertex
w € V(G), G’ = G[{w} U N(w)] and for each pair of nonadjacent vertices
u and v in V(G'), dg/(u) + dor(v) = dg(w) + 1, then G is hamiltonian.

Corollary 12. Let G be a connected graph. If for each vertex w € V(G),
e(G[{w}UN(w)]) > (d(w) — 1)(d(w) — 2)/2+ d(w), then G is hamiltonian.
Remark 1. Theorem 2 is sharp in the sense that we cannot replace the
hypothesis by [N(S) N N(v)| > |S]. Knnt1 (n > 2) is a counterexample.
It is not difficult to find other counterexamples.

Remark 2. Corollary 8 cannot imply Theorem 2. Let G; = Ky with
V(G1) = {v,v1,v2,v3,v4}. Let H = K> 3 with bipartition ({w;,w.}, {u1,u2,
us}). Let G = H + wyws. We construct a graph G = G1U G2 U {vyusli =
1,2,3} U {wou), vaus, v3ug, vaus, v4u;, vauz}. Then G satisfies the hypothe-
ses of Theorem 2, but G does not satisfy the hypothesis of Corollary 8.
d(v,u1) = 2. Considering vy, a*(v,u) = 4. But I(v,u;) = 3.
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