A Local Neighbourhood Condition for Cycles

Dingjun Lou

Department of Computer Science Zhongshan University Guangzhou 510275 People's Republic of China

ABSTRACT. Let G be a connected graph with $\nu \geq 3$. Let $v \in V(G)$. We define $N_k(v) = \{u|u \in V(G) \text{ and } d(u,v) = k\}$. It is proved that if for each vertex $v \in V(G)$ and for each independent set $S \subseteq N_2(v)$, $|N(S) \cap N(v)| \geq |S| + 1$, then G is hamiltonian. Several previously known sufficient conditions for hamiltonian graphs follow as corollaries. It is also proved that if for each vertex $v \in V(G)$ and for each independent set $S \subseteq N_2(v)$, $|N(S) \cap N(v)| \geq |S| + 2$, then G is pancyclic.

1 Introduction and terminology

All graphs considered are finite, undirected, connected and simple.

Let G be a connected graph. Let v be a vertex in V(G). We define $N_k(v) = \{u | u \in V(G) \text{ and } d(u,v) = k\}$. When k = 1, $N_1(v) = N(v)$. For a pair of vertices u and v of G, we use I(u,v) to denote $|N(u) \cap N(v)|$. Let u and v be two vertices of G such that d(u,v) = 2. We define the divergence $\alpha^*(u,v)$ as follows: $\alpha^*(u,v) = \max_w \{|S|| \text{ for each } w \in N(u) \cap N(v), S \text{ is a maximum independent set in } N(w) \text{ containing } u \text{ and } v\}$.

A graph G is said to be pancyclic if G has a cycle of length n for each n such that $3 \le n \le \nu(G)$.

Let C be a cycle of G. Let u be a vertex in V(C). We give C an orientation. Then $u^+(C)$ denotes the successor of u on C in the orientation and $u^-(C)$ denotes the predecessor of u on C in the orientation. Let $S \subseteq V(C)$. Then $S^+(C) = \{x^+(C)|x \in S\}$ and $S^-(C) = \{x^-(C)|x \in S\}$. When there is no confusion about C, we simply write u^+, u^-, S^+ and S^- for $u^+(C), u^-(C), S^+(C)$ and $S^-(C)$. Let v be a vertex in $V(G) \setminus V(C)$. $N_C(v)$ denotes $N(v) \cap V(C)$. Suppose $N_C(v) \neq \emptyset$. An A-structure on $N_C(v)$ is a pair of vertices x and y such that $x, y \in N_C(v)$ and $x^+ = y$. Let $S \subseteq V(C)$.

A suc-J-structure on S is an edge x^+y^+ such that $x,y \in S$, $x^+ \neq y$ and $y^+ \neq x$. A pre-J-structure on S is an edge x^-y^- such that $x,y \in S$, $x^- \neq y$ and $y^- \neq x$. Both suc-J-structures and pre-J-structures are called J-structures. Because of the obvious similarity between suc-J-structures and pre-J-structures, and for ease of notation and presentation, we frequently give proofs only using suc-J-structures (or pre-J-structures). Let $u,v \in V(C)$. We denote by $C^+[u,v]$ the path on C from u to v in the orientation and by $C^-[u,v]$ the path on C from u to v in the reverse orientation. Two J-structures uv and xy on a set S are said to be independent if $\{u,v\}\cap\{x,y\}=\emptyset$. Two independent J-structures uv and v on a set S are said to be crossed if v is on v is on v is on v in the orientation as set v are not crossed, we say they are noncrossed.

Let G and H be two graphs such that $E(G) \cap E(H) = \emptyset$. We use G+H to denote the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Let $S \subseteq V(G)$. We use G[S] to denote the induced subgraph of G on S.

For terminology and notation not defined in this paper, the reader is referred to [2].

Since Hasratian and Khachatrian [3] obtained the first local condition for hamiltonian graphs, some graph theorists have proposed different kinds of local conditions for hamiltonian graphs. Shi [4] introduced the concept of divergence and gave a condition for hamiltonian graphs using the concept of divergence. The Shi condition implies many known sufficient conditions for hamiltonian graphs. In [1], Aldred, Holton, Lou and Shi proved that under the Shi condition a graph is pancyclic or $K_{n,n}$. In this paper, we give a new local neighbourhood condition for hamiltonian graphs which implies the Shi condition. We conjecture that under this condition a graph is pancyclic or $K_{n,n}$. We then prove a result that under a little stronger condition a graph is pancyclic. In Section 3, we list some known results which our theorem implies.

2 Hamiltonicity and pancyclicity

First, we give a new sufficient condition for hamiltonian graphs.

Lemma 1. Let G be a connected graph, C be a cycle of G and u be a vertex in $V(G) \setminus V(C)$. If there is an A-structure on $N_C(u)$ or there is a J-structure on $N_C(u)$, then there is a cycle C' in G of length |V(C)| + 1 such that $V(C') = V(C) \cup \{u\}$.

Theorem 2. Let G be a connected graph with $\nu \geq 3$. If for each vertex $v \in V(G)$ and for each independent set $S \subseteq N_2(v)$, $|N(S) \cap N(v)| \geq |S|+1$, then G is hamiltonian.

Proof: Suppose G is not hamiltonian. Let C be a longest cycle of G. Give C an orientation. Let $u \in V(G) \setminus V(C)$ such that $N_C(u) \neq \emptyset$.

By Lemma 1, there is no A-structure on $N_C(u)$ and no suc-J-structure on $N_C(u)$ otherwise G has a cycle C' longer than C, a contradiction. Now $T = N_C^+(u)$ is an independent set and $T \subseteq N_2(u)$. By the hypothesis of this theorem, $|N(T) \cap N(u)| \ge |T| + 1 = |N_C(u)| + 1$. Then there are two vertices $w \in N(u) \setminus V(C)$ and $v^+ \in N_C^+(u)$ such that $wv^+ \in E(G)$. So G has a cycle C' such that $V(C') = V(C) \cup \{u, w\}$, a contradiction. \square

The next lemma shows that under the hypotheses of Theorem 2, a graph has a triangle and a 4-cycle, or the graph is $K_{n,n}$.

Lemma 3. Let G be a connected graph with $\nu \geq 4$. Suppose for each vertex $v \in V(G)$ and for each independent set $S \subseteq N_2(v)$, $|N(S) \cap N(v)| \geq |S| + 1$. Then G has a triangle unless G is $K_{\nu/2,\nu/2}$ and also has a 4-cycle.

Proof: Suppose G satisfies the hypotheses of this lemma. If G is a complete graph, then the lemma holds. So suppose G is not a complete graph. Hence there are two vertices u and v in G such that d(u,v)=2. But $\{u\}$ is an independent set in $N_2(v)$. So $|N(u)\cap N(v)|\geq 2$ and then G has a 4-cycle.

Suppose G has no triangle. First, we claim that G is a regular graph. Let uv be an edge of G. Then $N(u) \setminus \{v\}$ and $N(v) \setminus \{u\}$ are independent sets. But $N(u) \setminus \{v\} \subseteq N_2(v)$. By the hypothesis of this lemma, there are at least $|N(u) \setminus \{v\}| + 1 = |N(u)|$ vertices in N(v). So $|N(u)| \leq |N(v)|$. By a symmetric argument, we also have $|N(u)| \geq |N(v)|$. Hence |N(u)| = |N(v)|. Since G is a connected graph, G is a k-regular graph for k = d(u).

Under the assumption that G has no triangle, we now prove that G is $K_{\nu/2,\nu/2}$ by the assumption that G has no triangle. Let $v \in V(G)$, u and w be two distinct vertices in N(v). Suppose $(N(u)\setminus\{v\})\setminus(N(w)\setminus\{v\})\neq\emptyset$. As $N(w)\setminus\{v\}$ is an independent set of order k-1 in $N_2(v)$ and |N(v)|=k, by the hypothesis of the lemma, $\{x\}\cup(N(w)\setminus\{v\})$ is not independent for each vertex $x\in(N(u)\setminus\{v\})\setminus(N(w)\setminus\{v\})$. But G has no triangle, x is adjacent to a vertex in $(N(w)\setminus\{v\})\setminus(N(u)\setminus\{v\})$. And $N((N(u)\setminus\{v\})\setminus(N(w)\setminus\{v\}))\cap N(w)\subseteq(N(w)\setminus\{v\})\setminus(N(u)\setminus\{v\})$ is an independent set in $N_2(w)$. By the hypothesis, $|(N(w)\setminus\{v\})\setminus(N(u)\setminus\{v\})|\geq |N((N(u)\setminus\{v\})\setminus(N(w)\setminus\{v\}))\cap N(w)|\geq |(N(u)\setminus\{v\})\setminus(N(w)\setminus\{v\})|+1$. But, by the k-regularity, $|(N(w)\setminus\{v\})\setminus(N(u)\setminus\{v\})|=|(N(u)\setminus\{v\})\setminus(N(w)\setminus\{v\})|$, a contradiction. Hence for any two distinct vertices $u,w\in N(v)$, $(N(u)\setminus\{v\})\cap(N(w)\setminus\{v\})=N(v)\setminus\{v\}$. By the k-regularity, G is $K_{\nu/2,\nu/2}$.

Corollary 4. Let G be a connected graph with $\nu \geq 4$. Suppose for each vertex $v \in V(G)$ and for each independent set $S \subseteq N_2(v)$, $|N(S) \cap N(v)| \geq |S| + 2$. Then G has a triangle and a 4-cycle.

Proof: When G satisfies the hypotheses of this corollary, G is not $K_{\nu/2,\nu/2}$. By Lemma 3, the corollary follows.

In light of Lemma 3, we propose the following conjecture.

Conjecture 1: Let G be a connected graph with $\nu \geq 3$. If for each vertex $v \in V(G)$ and for each independent set $S \subseteq N_2(v)$, $|N(S) \cap N(v)| \geq |S| + 1$, then G is pancyclic or $K_{\nu/2,\nu/2}$.

In the following we prove a little weaker result. First, however, we give some obvious but useful lemmas.

Lemma 5. Let G be a connected graph, C be a cycle of G and u and v be two different vertices in $V(G) \setminus V(C)$. If there are two independent suc-J-structures (pre-J-structures) on $N_C(u) \cap N_C(v)$, then there is a cycle C' of length |V(C)| + 2, where $V(C') = V(C) \cup \{u, v\}$.

Lemma 6. Let G be a connected graph, C be a cycle of G and u and v be two different vertices in $V(G) \setminus V(C)$. Suppose there is no A-structure on $N_C(u)$ and no A-structure on $N_C(v)$. If there are two noncrossed independent J-structures on $N_C(u) \cap N_C(v)$, then G has a cycle C' of length |V(C)| + 2, where $V(C') = V(C) \cup \{u, v\}$.

Theorem 7. Let G be a connected graph with $\nu \geq 3$. If for each vertex $v \in V(G)$ and for each independent set $S \subseteq N_2(v)$, $|N(S) \cap N(v)| \geq |S| + 2$, then G is pancyclic.

Proof: Suppose G satisfies the hypotheses of this theorem but is not pancyclic. By Corollary 6, we assume that m is the minimum number such that $3 \le m \le \nu - 2$ and G has a cycle of length m but does not have any cycle of length m + 2. Note that if $\nu = 3$, then G is a triangle.

Let C be an oriented cycle of length m.

Claim 1: For all u in $V(G) \setminus V(C)$ that are adjacent to some vertex on C, there is no edge from $N_C^+(u) \cup N_C^-(u)$ to $N(u) \setminus V(C)$.

The proof of this claim is straightforward.

By Theorem 2, G is 2-connected and $m \leq \nu - 3$, hence there are two different vertices u and v in $V(G) \setminus V(C)$ each adjacent to vertices on C.

Case 1. There is an A-structure xy on $N_C(u)$ and there is an A-structure wz on $N_C(v)$.

If $|\{x,y\} \cap \{w,z\}| \leq 1$, then we have an (m+2)-cycle C' such that $V(C') = V(C) \cup \{u,v\}$, a contradiction. So we may assume that each of $N_C(u)$ and $N_C(v)$ has just one common A-structure, xy say, and no other A-structures.

Subcase (1.1) $uv \in E(G)$.

Then G has an (m+2)-cycle C' such that $V(C') = V(C) \cup \{u,v\}$, a contradiction.

Subcase (1.2) $uv \notin E(G)$.

Suppose $y = x^+$. Then there is a suc-J-structure w^+z^+ on $N_C(u) \setminus \{x\}$. Otherwise $T = (N_C(u) \setminus \{x\})$ is an independent set in $N_2(u)$ of order

 $|N_C(u)|-1$. But $N(T)\cap N(u)\subseteq N_C(u)$ and $|N(T)\cap N(u)|\leq |T|+1$, contradicting the hypothesis. By Lemma 1, there is a cycle C' of length m+1 such that $V(C')=V(C)\cup\{u\}$. However, xy is also an A-structure on $N_{C'}(v)$, and then G has an (m+2)-cycle, a contradiction.

Case 2. There is an A-structure xy on $N_C(u)$ but no A-structure on $N_C(v)$. Claim 2. If $w \in V(G) \setminus V(C)$, $N_C(w) \neq \emptyset$ and there is no A-structure on $N_C(w)$, then there are a suc-J-structure and a pre-J-structure on $N_C(w)$ though they may be the same one.

Otherwise $T = N_C^+(w)$ is an independent set in $N_2(w)$. By Claim 1, $N(T) \cap N(w) \subseteq N_C(w)$ and $|N(T) \cap N(w)| \le |T|$, a contradiction.

This completes the proof of Claim 2.

Assume $y = x^+$. By Clalm 2, there is a suc-J-structure wz on $N_C(v)$. Then y = w or z otherwise V(C), u and v form an (m+2)-cycle. By Claim 2, there is a pre-J-structure w'z' on $N_C(v)$. Then x = w' or z' otherwise V(C), u and v form a cycle of length m+2. But this means $N_C(v)$ has an A-structure xy, a contradiction.

Case 3. Neither $N_C(u)$ nor $N_C(v)$ have an A-structure.

Claim 3. For any suc-J-structure (pre-J-structure) J on $N_C(u)$, J is on $N_C(u) \cap N_C(v)$ and $uv \notin E(G)$.

This claim takes a little proof. By Claim 2, let x^+y^+ be a suc-J-structure on $N_C(u)$. By Lemma 1, $C' = C^+[y^+, x] + xuy + C^-[y, x^+] + x^+y^+$ is an (m+1)-cycle. We give C' an orientation such that C' and C have the same orientation on $C^+[y^+, x]$.

If $N_{C'}(v) \cap \{x, x^+(C), y, y^+(C)\} = \emptyset$, then $(N_{C'}(v) \setminus \{u\})^+(C') \subseteq N_C^+(v) \cup N_C^-(v)$ and by Claim 1 there is no edge from $(N_{C'}(v) \setminus \{u\})^+(C')$ to $N(v) \setminus V(C')$. If $(N_{C'}(v) \setminus \{u\})^+(C')$ is an independent set, since $T = (N_{C'}(v) \setminus \{u\})^+(C') \subseteq N_2(v)$ and $N(T) \cap N(v) \subseteq N_C(v)$, $|N(T) \cap N(v)| \leq |N_C(v)| = |T|$, contradicting the hypothesis. So there is a suc-J-structure on $N_{C'}(v)$. By Lemma 1, G has a cycle of length |V(C')| + 1 = m + 2, a contradiction.

Now we have $N_{C'}(v) \cap \{x, x^+(C), y, y^+(C)\} \neq \emptyset$. Then $uv \notin E(G)$, otherwise either we have a contradiction to Claim 1 or we have an (m+2)-cycle C'' such that $V(C'') = V(C) \cup \{u,v\}$. Note that $N_{C'}(v) = N_C(v)$. If $|N_{C'}(v) \cap \{x, x^+(C), y, y^+(C)\}| \leq 1$, then either $N_{C'}^+(v) \subseteq N_C^+(v) \cup N_C^-(v)$ or $N_{C'}^-(v) \subseteq N_C^+(v) \cup N_C^-(v)$. By the same argument as above, there is either a suc-J-structure on $N_{C'}(v)$ or a pre-J- structure on $N_{C'}(v)$ and by Lemma 1, G has an (m+2)-cycle, a contradiction. Hence $|N_{C'}(v) \cap \{x, x^+(C), y, y^+(C)\}| \geq 2$. As there is no A-structure on $N_C(v)$, we have only four subcases to discuss.

Subcase (3.1) $N_{C'}(v) \cap \{x, x^+(C), y, y^+(C)\} = \{x, y^+(C)\}.$

Let $y^+(C)=z$. Then $z^-(C')=x^+(C)$. By Claim 1, there is no egde from $x^+(C)=z^-(C')$ to $N(v)\setminus V(C)=N(v)\setminus V(C')$. Also $(N_{C'}(v)\setminus V(C'))$

J-structure on $N_{C'}(v)$. By Lemma 1, G has a cycle of length |V(C')|+1= $N_C^{-1}(v)$ to $N(v) \setminus V(C')$. By the hypothesis of this theorem, there is a pre- $\{y^+(C)\}^-(C')\subseteq N^+_G(v)\cup N^-_G(v)$. By Claim 1, there is no edge from

Subcase (3.2) $N_{G'}(v) \cap \{x.x^+(C), y, y^+(C)\} = \{x^+(C), y\}.$ m + 2, a contradiction.

J-structure on $N_{C'}(v)$. By Lemma 1, G has a cycle of length |V(C')|+1= $N_C^+(v)$ to $N(v) \setminus V(C')$. By the hypothesis of this theorem, there is a suc- $\{x^+(C)\}$ (C') $\subseteq N^+_C(v) \cup N^-_C(v)$. By Claim 1, there is no edge from from $y^+(C) = z^+(C')$ to $N(v) \setminus V(C) = N(v) \setminus V(C')$. Also $(N_{C'}(v) \setminus V(C'))$ Let $x^+(C) = x$. Then $z^+(C') = y^+(C)$. By Claim 1, there is no edge

m + 2, a contradiction.

Then $C'' = C^+[y^+(C), x] + xuy + C^-[y, x^+(C)] + x^+(C)vy^+(C)$ is an Subcase (3.3) $N_{C'}(v) \cap \{x, x^+(C), y, y, y^+(C)\} = \{x^+(C), y, y^+(C)\}.$

Hence there remains the following case which is stated by Claim 3. (m+2)-cycle, a contradiction.

Subcase (3.4) $N_{G'}(v) \cap \{x, x^+(C), y, y^+(C)\} = \{x, y\}.$

there is a triangle in $G[N_C^+(u)]$. Claim 4. Either there are two independent suc-1-structures on $N_{\rm C}(u)$ or

 $|A_C(u)| - 1$. But $S \subseteq N_C(u)$ and $|A(S)| \cap |A(u)| \leq |A(u)|$ Otherwise there is an independent set $S \subseteq N_O^+(u)$ of order at least

Subcase (3.4.1) There are two independent suc-J-structures on $N_C(v)$. contradicting the hypothesis and completing the proof of the claim.

By Claim 3, the two suc-J-structures are on $N_G(u) \cap N_G(v)$. By Lemma

5, G has an (m+2)-cycle, a contradiction.

Subcase (3.4.2) There is a triangle $x^+y^+z^+x^+$ in G[N_C(u)].

This final contradiction completes the proof of Theorem 7. $C^+[y^+, z] + zvy + C^-[y, a] + aux$ is a cycle of length m + 2, a contradiction. that $a^- = x^+$ and a^-b^- crosses y^+z^+ . Then $C' = C^-[x,z^+] + z^+x^+y^+ +$ or crosses each of x^+y^+ , y^+z^+ , x^+x^+ . Without loss of generality, assume and a^-b^- are on $N_G(u) \cap N_G(v)$. By Lemma 6, a^-b^- shares a vertex with there is a pre-J-structure a^-b^- on $N_C(u)$. By Claim 3 x^+y^+ , y^+z^+ , x^+z^+ Assume x is followed by y on C which is followed by z on C. By Claim 2,

Some consequential results of Theorem 2

was due to Shi [4]. tonian graphs which follow as corollaries of Theorem 2. The first corollary result. In this section, we show some known sufficient conditions for hamil-Although the proof of Theorem 2 is very simple, it turns out to ba a strong

Corollary 8. Let G be a connected graph with $v \ge 3$. If for each pair of

Vertices u and v a distance 2 apart, $I(u,v) \ge \alpha^*(u,v)$, then G is hamiltonian.

Proof: Let G be a graph satisfying the hypotheses. We shall prove G satisfies the hypotheses of Theorem 2.

Let v be a vertex of G and S be an independent subset of $N_2(v)$. Let $S = \{w_1, w_2, \dots, w_s\}$ and $T = N(S) \cap N(v) = \{v_1, v_2, \dots, v_t\}$. And let $k_i = |\{w_j|v_iw_j \in E(G), w_j \in S\}| (i = 1, 2, \dots, t)$. Without loss of generality, assume $k_1 \le k_2 \le \dots \le k_t$. Let $k_{m_j} = \max\{k_i|v_iw_j \in E(G) \text{ and } v_i \in T\}$ $(j = 1, 2, \dots, s)$. Without loss of generality, assume $k_{m_1} \le k_{m_2} \le \dots \le k_{m_n} \le \dots \le k_m$

If v_j is adjacent to w_i , considering v, by the hypothesis of this corollary, w_i and v have at least $k_j + 1$ common neighbours in T. Considering all vertices in T adjacent to w_i , w_i has at least $k_{m_i} + 1$ neighbours in T by the definition of k_{m_i} . The vertices in T send a total of $k_1 + k_2 + \cdots + k_i$ edges to S, whereas the vertices in S send at least $(k_{m_1} + 1) + (k_{m_2} + 1) + \cdots + (k_{m_i} + 1)$ edges to T. So

$$k_1 + k_2 + \dots + k_t \ge (k_{m_1} + 1) + (k_{m_2} + 1) + \dots + (k_{m_s} + 1)$$
 (1)

By (1),

(2)
$$\sum_{i=1}^{s} k_{i} \geq \sum_{i=1}^{s} k_{m_{i}} + s$$

In the following, we prove that

$$k_i \leq k_{m_i} \quad (i = 1, 2, \ldots, s)$$

By the definition of k_{m_i} , $k_{m_1} \geq K_1$. Assume that $k_{m_i} \geq k_i$ for all i such that i < j. Now suppose i = j. If there is a $w_p \in \{w_1, w_2, \ldots, w_j\}$ such that $w_p v_q \in E(G)$ for some $q \geq j$, then $k_{m_j} \geq k_{m_p} \geq k_q \geq k_j$. Otherwise $N(\{w_1, w_2, \ldots, w_j\}) \cap T \subseteq \{v_1, v_2, \ldots, v_{j-1}\}$. Then $k_1 + k_2 + \cdots + k_{j-1} \geq k_j$ ($k_{m_1} + 1) + (k_{m_2} + 1) + \cdots + (k_{m_j} + 1)$. By the induction hypothesis, $k_{m_i} \geq k_i$ ($k_{m_1} + k_1 + k_2 + \cdots + k_{j-1}$) and $k_{m_j} \geq k_j$, so $k_{m_1} + k_{m_2} + \cdots + k_{m_{j-1}} + k_{m_j} > k_j$.

By (3) and (2), we have $t \ge s+1$. And hence $|N(S) \cap N(v)| \ge |S|+1$. \square

The following corollaries were proved to be consequences of Corollary 8 in [1]. Corollary 9 is the well known Ore's condition. Corollary 10 was due to Hasratian and Khachatrian [3]. Corollaries 11 and 12 were due to Shi [5] and Lou respectively. Let $M_3(u) = \{v | d(u, v) \le 3 \text{ and } v \in V(G)\}$.

Corollary 9. If for each pair of nonadjacent vertices u and v of a graph G, $d(u) + d(v) \ge v(G)$, then G is hamiltonian.

Corollary 10. Let G be a connected graph with $\nu \geq 3$. If for each vertex $v \in V(G)$, $d(v) \geq |M_3(v)|/2$, then G is hamiltonian.

Corollary 11. Let G be a connected graph with $\nu \geq 3$. If for each vertex $w \in V(G)$, $G' = G[\{w\} \cup N(w)]$ and for each pair of nonadjacent vertices u and v in V(G'), $d_{G'}(u) + d_{G'}(v) \geq d_G(w) + 1$, then G is hamiltonian.

Corollary 12. Let G be a connected graph. If for each vertex $w \in V(G)$, $\epsilon(G[\{w\} \cup N(w)]) > (d(w) - 1)(d(w) - 2)/2 + d(w)$, then G is hamiltonian.

Remark 1. Theorem 2 is sharp in the sense that we cannot replace the hypothesis by $|N(S) \cap N(v)| \ge |S|$. $K_{n,n+1}$ $(n \ge 2)$ is a counterexample. It is not difficult to find other counterexamples.

Remark 2. Corollary 8 cannot imply Theorem 2. Let $G_1 = K_5$ with $V(G_1) = \{v, v_1, v_2, v_3, v_4\}$. Let $H = K_{2,3}$ with bipartition $(\{w_1, w_2\}, \{u_1, u_2, u_3\})$. Let $G_2 = H + w_1w_2$. We construct a graph $G = G_1 \cup G_2 \cup \{v_1u_i|i=1,2,3\} \cup \{v_2u_1, v_2u_3, v_3u_2, v_3u_3, v_4u_1, v_4u_2\}$. Then G satisfies the hypotheses of Theorem 2, but G does not satisfy the hypothesis of Corollary 8. $d(v, u_1) = 2$. Considering v_1 , $\alpha^*(v, u) = 4$. But $I(v, u_1) = 3$.

Acknowledgement

The work in this paper is supported by the Research Foundation of the State Education Commission of China for Scholars Who Studied Abroad.

References

- [1] R.E.L. Aldred, D.A. Holton, Dingjun Lou and Ronghua Shi, Divergence condition for pancyclicity, 1992, (submitted).
- [2] J.A. Bondy and U.S.R. Murty, Graph theory with applications, Macmillan Press, London (1976).
- [3] A.S. Hasratian and Khachatrian, Some localization theorems on hamiltonian circuits, J. Combin. Theory B 49 (1990), 287-294.
- [4] Ronghua Shi, Divergence and hamiltonian graphs, 1991, (submitted).
- [5] Ronghua Shi, Some localization hamiltonian conditions, J. Graph Theory, (to appear).