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ABSTRACT. It is shown that the existence of a semi-regular au-
tomorphism group of order m of a binary design with v points
implies the existence of an n-ary design with v/m points. Sev-
eral examples are described. Examples of other n-ary designs
are considered which place such n-ary designs in context among

n-ary designs generally.

1 Imtroduction

The concept of n-ary designs was introduced by Tocher [10] and described,
under a more restrictive definition, by Billington [1]. We will follow the
definition and notation of [1]. Thus an n-ary design is defined to be a set
of V points and a collection of B multisets, called blocks, formed from
the points so that each point occurs one of 0,1,...,7 — 1 times in any
block, each block contains K points, each point occurs R times among all
the blocks and any pair of distinct points occurs together A times. An
incidence matrix for an n-ary design has rows and columns indexed by the
points and blocks, respectively, where the ij entry equals the number of
times the point ¢ occurs in the block 7. In what follows we often identify
an incidence matrix with the design to which it belongs.

When n = 2 the design is said to be binary and is the same as the usual
balanced incomplete block design. Following [1], we use lower case letters
for the parameters of a binary design, writing them in the form (v, b, 7, k, A)
or, if the design is symmetric, in the form (v,k,A). An n-ary design is
regular if the number of blocks containing a point ¢ times is independent
of the point for any %, when this number is denoted p;. Ternary designs
(n = 3) are always regular.
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Note that we do not assume that in an n-ary design an (n — 1)-fold
repetition of a point actually occurs. This allows us to use n-ary design as
a generic term, which greatly facilitates expression. However, terms such
as ternary (n = 3) or quaternary (n = 4) do imply that the value of n
involved is the best possible.

An automorphism of an n-ary design is a permutation of the points and
of the blocks which preserves incidence, and an automorphism group is any
subgroup of the full automorphism group. A permutation group is semi-
regular if only the identity fixes anything, so that the length of any orbit
equals the order of the group.

We use the term residual of a symmetric binary design in the sense in
which it is used in [8] and the residual of a design D at a block = will be
written D;.

We denote by I, and J,,, respectively, the identity and all-one m x
m matrices and by Jp » the all-one m x n matrix. Other notations and
terminology, if not otherwise referenced, will be found in [1] or (3].

2 The main result

Our purpose is to combine and generalize several known methods of con-
structing n-ary designs from binary designs. This is done in the following
theorem.

Theorem 2.1. If there exists a binary (v,b,7,k,)\) design admitting an
automorphism group G of order m which is semi-regular on both points
and blocks then there exists an n-ary design with V = v/m, B = b/m,
R=r,K=kand A =m.

Proof: Clearly G has V point orbits and B block orbits. Let these be
denoted by Pi,...,Pv and By,...,Bp (resp.). Denote by a;; the number
of points of P; on a given block of B;. Then a;; is independent of the choice
of block and is also the number of blocks of B; through any point of P;.
Clearly we have

v

B
D aj=kand ) ay=r (1)

i=1 Jj=1

If P; and P;s denote distinct point orbits and we count the triples (P, Q, z)
where P is fixed in P;, Q is arbitrary in Py and z is a block incident with
both P and Q we obtain

\4
D aijap5=m (2)

Jj=1

218



But (1) and (2) are precisely the conditions that A = (a;;) be an incidence
matrix for the required n-ary design.

Let us consider a simple example. Writing I =1, Jo=J, A=J -1
and O for the all-zero 2 x 2 matrix we can form an incidence matrix for a
binary (16, 6, 2) design as follows:

1 I I I J O O O

1 1 AAOUJOO

1 A1 AOOJoO
y—_|1 A4 1000
“lJooo 1111
0JOoOOI1ITIAA
00JOI1IAIA
\O 0 0O J I A A I

Since M is constructed from cyclic 2x 2 matrices it clearly admits a semi-
regular automorphism group of order 2. The corresponding n-ary design,
with V = B =8 R = K = 6 and A = 4, has the following incidence

matrix: 5 ol
_ [ Ja 4
=5 %)

Theorem 2.1 is related to several known results. For a symmetric design
it is a special case of Theorem 2.1 of [6] and if m = 2 then it is essentially
the same as the construction using involutory automorphisms described
on pages 286-288 of [5]. For the case of a difference-set design with G a
subgroup of the difference-set group, the theorem recalls the idea of the
contraction of a difference set as described in [7). What we lose is that

the difference-set group induces a transitive automorphism group of the
resulting n-ary design which we do not obtain in the more general case.

Where an n-ary design is constructed by means of Theorem 2.1 the de-
termination of whether it is ternary, quaternary etc. is difficult in general.
In a few special cases, however, it is possible. Thus we always obtain a
ternary design if m = 2 or if m = 3 and A = 1 or 2. Taking the Singer
group of a Desarguesian protective plane of order ¢ with ¢ = 1 (mod 3)
and a subgroup of order 3 yields a family of ternary designs as described
in Theorem 2.10 of [5]. Also if G has order 7 and is in the Singer group of
a protective plane then we obtain either a ternary design with po = 3 or
a regular quaternary design with ps =1 and p2 = 0. Moreover, we obtain
a quaternary design only if the plane contains a subplane of order 2. Now
the Desarguesian plane of order g contains a subplane of order 2 only if q
is a power of 2. Thus we have the following result.

Theorem 2.2. Whenever q is an odd prime power such that q = 2,4
(mod 7) there is a symmetric ternary design with V = (¢® + q +1)/7,
K=q+4+1,pp=q-5,p2o=3and A=T.
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When ¢ is a power of 2 a little elementary field theory will show that a
subgroup of order 7 of a Singer group will always give a quaternary design,
for if g is an element of order 7 in the multiplicative group of GF(¢) and
if 7 does not divide g — 1 then the minimum polynomial of g over GF(q) is
either z3 +z+1or z3 4+ 22 +1 and thus 1, g and g® or 1, g2 and g3 are
linearly dependent over GF(g). Thus we have the following result.

Theorem 2.3. If ¢ = 2 and 3 does not divide ¢ then there is a symmetric
quaternary design withV = (> +q+1)/7, K =q+1,p1 =q¢—2, p2 =0,
p3 = land A=T7.

Examples of symmetric designs which admit semi-regular automorphism
groups but not difference-set groups are less common; however, although,
as we will show below, there is no (56,11,2) difference set, four of the known
(56,11,2) designs, namely those described in [4], admit involutory automor-
phisms with no fixed points or blocks. The resulting ternary designs have
V =28, K =11 and A = 4. These represent solutions for the design #94
of the list in [2]. In fact the ternary designs obtained from the designs B;
and B; of [4] are isomorphic while the other two are not isomorphic to this
design or to one another. Thus we have three solutions for this ternary
design.

So far we have considered only examples which are symmetric. One
source of non-symmetric examples is the groups described in the following
theorem.

Theorem 2.4. Let D be a symmetric (v,k,)\) design admitting an au-
tomorphism group G of order m which fixes an incident point-block pair
(P, z) and is semi-regular on the remaining points and blocks. Then there
exists an n-ary design withV = (v—k)/m, B = (v—1)/m, R=k, K = k-
and A = Am.

Proof: Let D, denote the residual of D at z. Then G induces a semi-
regular automorphism group of D, and the result follows from Theorem
2.1.

We note that an involutory automorphism of a symmetric binary design
cannot fix exactly one point, and so the group G in Theorem 2.4 must
have odd order. On the other hand, if q is an odd prime power then the
Desarguesian plane of order ¢ admits such a group G with m = ¢, and so
such a group of any order dividing g. Again the design is ternary if the group
has order 3,5 or 7 (since we are dealing with planes of odd characteristic).
Thus we get the following result.

Theorem 2.5. Ternary designs exist for the following values of the pa-
rameters, with t an arbitrary positive integer:

() V=3%"1 B=32-14 31 5 =3'—1,po=1,R=3"+1, K =3¢
and A = 3;
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(i) V=5%"1 B=5%"145"1 p; =5°-3,p, =2 R=5'+1, K =5

and A=35;
(iii) V=7#"1, B=72"147"1 p=7"~-5,p0=3, R=T'+1,K=Tt
and A=17.

Proof: For (i) we use Theorem 2.4 with D a Desarguesian plane of order
3t and m = 3. For (ii) and (iii) we replace 3 with 5 and 7, respectively.

Of course there are many examples of binary designs admitting semi-
regular automorphism groups besides those described above; for example,
projective and affine geometries of arbitrary dimension admit such groups,
and there are many other examples. Of these we mention just two. As
noted in [5], taking a (36, 15, 6) difference set and a subgroup of order 2
yields a solution for the design #302 in the list in [2]. Also, it is not difficult
to show that a solution for the design #153 of [2] cannot admit a transitive
cyclic automorphism group, and thus taking a (45, 12, 3) difference set and
a subgroup of order 3 will yield a quaternary design.

3 Recognizing the n-ary designs

Given an n-ary design we would like to be able to determine whether it
can be constructed from a binary design via Theorem 2.1. To begin with,
there are necessary parametric conditions. However, the design may not
be constructible in this way even when it has appropriate parameters. We
consider both situations.

Suppose we have a given n-ary design constructed from a binary design
as in Theorem 2.1. We adopt: the notation and hypotheses of Theorem 2.1.
Then we have VA — R(K = 1) = (v/m).dm —r(k—1) = vA —r(k - 1).
Since the relation A(v — 1) = r(k — 1) holds in any binary design, we have
VA — R(K —1) = \. Let us write D for the expression VA — R(K — 1)
in an arbitrary n-ary design. Then for the design to be constructible via
Theorem 2.1, D must be positive and must divide A. This rules out most
n~ary designs.

At this point we must consider the effect of taking complements. Still
with the notation and hypotheses of Theorem 2.1, let A be the incidence
matrix of the resulting n-ary design. Let D¢ denote the complement of D.
Then D¢ also admits G as a semi-regular automorphism group. If we apply
the theorem to this design we get an n-ary design with incidence matrix
mJy,g — A. This will be the complement of A in the sense of [1] when the
value m occurs in A, but not otherwise. In the latter case, if & is the largest
value occurring in A then mJy,g— A = B+(m—h)Jv,p where 0 occurs in B
and B is also an n-ary design. It can happen, therefore, that a given n-ary
design is constructible in this way when the necessary conditions for it to
be directly constructible are not met. It is a consequence of this that when
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testing whether an n-ary design meets the necessary parametric conditions,
we usually have to consider the design and its complement separately. In
what follows we in general consider only the possibility that an n-ary design
is directly constructible via Theorem 2.1. However, in case (ii) below we
give a simple condition under which a design is never constructible via
Theorem 2.1, even indirectly.

Let us now consider examples of n-ary designs not constructible via The-
orem 2.1. There are several possibilities, and for completeness we give an
example of each. We draw on [1] and [2] for most of our examples. Original
references, where appropriate, are given there.

(i) D < 0. The ternary designs constructed as example (4.8) in [1] have
V=K =A+1and so D =0. These have as points the elements of the
Galois field GF(q) for ¢ odd. An initial block is formed by taking 0 once
and each non-zero square in GF(q) twice. The other blocks are the images
of this under addition in GF(q). If ¢ = 3 (mod 4) and in the initial block
we take each non-zero square ¢ times, where ¢ is an integer greater than
two, we get an n-ary design with D < 0.

For symmetric ternary designs the condition D < 0 seems to be rare.
Among those constructed in [2] only one meets this condition, namely #24,
which has D = —2. (There are several non-symmetric examples.) A second
symmetric ternary design with D negative is the following solution for #164
of [2) with V =32, K =12 and A = 4. Let X be the matrix of a Hadamard
system H(4,1) (see [9] page 65 ) and let Y = I, ® J;. Then an incidence
matrix for the required design is M where

2X Y
w=(2 1),
This design has D = —4. Its complement belongs to case (ii) below.

(i) D > 0 but D does not divide A. This is the most common situation;
most of the designs in [2] belong to this category. This case serves to show
that certain n-ary designs can never be constructed, even indirectly, via
Theorem 2.1. Let M be a symmetric n-ary design for which V and K
have a common factor d which does not divide A. Then d divides D, so
D is not a divisor of A and the design belongs to this case or the previous
one. However the design Jy + M has parameters V* =V, K* =V + K
and A* =V 4 2K + A and so meets the same condition. Inductively, this
condition holds in the design c¢Jv 4+ M for any positive integer ¢, and so
none of these are constructible via Theorem 2.1. The ternary designs on the
points of GF(q) which were described in case (i) above have this property.

(iii) D > 0 and D divides A but the required binary design does not exist.
There are many examples of this; one is the design #18 of [2] for which the
binary design would be a symmetric (22,7,2) design, which is non-existent
since v is even but k& — )\ is non-square.
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(iv) There is a ¢-fold repetition of a point in a block where ¢t > A/D.
In this case the n-ary design is not constructible via Theorem 2.1 because
A/D would be the order of the group and so the largest value which could
occur in the incidence matrix of an n-ary design so constructed. As an
example let M be an incidence matrix for the ternary design on 32 points
described in case (i) above and let N = 2J32 + M. Then N is an n-ary
design with V =32, K = 76 and A = 180. Here D = 60 and A/D = 3 so
the parameters are right for the design to be constructible from a (96,76,60)
design and a group of order 3. This design is the complement of a (96,20,4)
design for which there is a difference set (see [7] pp 123-124 ), so examples
exist; however the value 4 occurs in N so it is not constructible in this way.

(v) D > 0, D divides A and the required binary design exists but does not
admit an automorphism group of the required type. Examples of this type,
where the n-ary design is known, are less easy to establish. The clearest
examples, perhaps, are those for residuals of biplanes (binary designs with
X = 2) when m is even. These would be special cases of Theorem 2.4,
since any residual biplane is embeddable in a biplane and inherits all of
its automorphisms from the hiplane. But an involutory automorphism of a
biplane cannot fix exactly one point so there are no examples with m even.
Nevertheless, the n-ary design may exist as is shown by a number of the
designs in [2], of which #56 is one.

The proof of Theorem 5.1 below will yield a further example belonging
to this case.

(vi) D > 0, D divides A and examples of the required binary design with
a group of the required type exist but do not yield the given n-ary design.
For this case to occur the n-ary design must have non-isomorphic solutions.
We take as our example the ternary design #49 in [2] with V = K =5,
B =R=9and A = 8. Here D = 4 so we are looking for a (10,18,9,5,4)
design with an involutory automorphism moving all points and blocks. It
is easily established that the example given in [2] cannot be constructed
from such a binary design. However the following is a second solution for
this design.

21111100
112110021
X=]11011201 2
101201211
011021211

Writing I =1, J, = J, A= J — I and O for all-zero 2 x 2 matrix we
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can replace the entries in X to give the required binary design as follows:

J J 1 1 I 1 I OO
I 1 J I AOOJ1I
Y=|1 1 O A I J o I J
A O I JO AUJ I I
O A AOUJ T J 11

This design is quasi-residual. According to [8] every such quasi-residual
is embeddable in a (19,9,4) design. However the involutory automorphism
exhibited in the structure of Y cannot act on the full symmetric design
since it would fix just one block, which is impossible.

4 A further generalization

There is no reason why the construction given in Theorem 2.1 has to begin
with a binary design. Indeed Theorem 2.1 is a special case of the following
theorem which can be proved in the same way.

Theorem 4.1. Let D be an n-ary design with parameters V, B, R, K
and A and let G be an automorphism group of D of order m which is
semi-regular on points and blocks. Then there exists an n-ary design with
parameters V* =V/m, B* = B/m, R* = R, K* = K and A* = Am.

In terms of known examples Theorem 2.1 is more useful than Theorem
4.1. Nevertheless examples of n-ary designs meeting the hypotheses of
Theorem 4.1 but not themselves constructible using Theorem 2.1 do exist.
The ternary designs on the points of GF(g), q odd, given in case (i) of
Section 3 are not constructible even indirectly via Theorem 2.1, but they
admit a regular automorphism group induced by the addition in GF(g), and
thus semi-regular automorphism groups of order any divisor of . Thus they
provide examples of Theorem 4.1 whenever q is not prime.

5 A theorem on (56,11,2) designs

In this section we prove a theorem for binary (56,11,2) designs which was
quoted in Section 2 and Section 3.

Theorem 5.1. A symmetric (56,11,2) binary design cannot admit a semi-
regular automorphism group of order 8.

Proof: Let G be an automorphism group of order 8 of a 2-(56,11,2) design
with G semi-regular on points. Then G is semi-regular on blocks also. Let A
be an incidence matrix of the corresponding n-ary design given by Theorem
2.1. Then A is a 7 x 7 matrix with constant row and column sum equal
to 11, and the inner product of any two distinct rows or any two distinct
columns equal to 16. Moreover, by Lemma 2.3 of [1], the sum of the squares
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of the entries in any row or column is RK — A(V — 1) which here equals 25.
Thus any row or column of A is a collection of seven non-negative integers
z1,...,z7 such that z; + -+ +z7 = 11 and z? + - - - + 22 = 25. There are
just three solutions to these equations. They are (ignoring the order of the
terms)

4,2,1,1,1,1,1 (a)
3,3,2,1,1,1,0 © (b)
3,2,2,2,2,0,0 ()

Thus any row or column of A must be of type (a), (b) or (c). Let us write
A = (a;;). We claim that no row or column of A is of type (a). Otherwise
we can assume that the first row is of type (a) (if necessary by permuting
the rows or transposing A, which is permissible because the hypotheses are
self-dual).We can set a;; =4, ajp =2and aj; =1 fori=3,...,7. Then
the first column of A is also of type (a) and we can take ap; = 2. We now
find that there is no way to complete row 2 so that its inner product with
row 1 is 16.

We note that just two of the values in type (b) are even, and if every row
were of type (b) then there would be distinct rows such that no position
contained an even term in both rows. The inner product of those two rows
would then be odd. Since this cannot occur, there must be a row of type
(c), and without loss of generality we set aj; = 3, aj; =2 for j = 2,...,5
and ajg = a17 = 0. If now we have a;; odd, for any 7 > 1, then the inner
product of the ith row with the first would be odd. Since this cannot occur,
the first column must be of type (c) and we can set a;; =2fori =2,...,5
and agl = a71 = 0.

Now the inner product of the sixth or seventh row with the first will be
twice the sum of its entries in positions 2 to 5, so this sum must be 8. For
a row of type (b) these values must be (in some order) 3,3,1,1 while for a
row of type (c) they must be 2,2,2,2. We may try various combinations of
these and then try to complete A. We find that we meet a contradiction
unless (up to equivalence) we set row 6 to be 0,3,3,1,1,2,1 and row 7 to
be 0,1,1,3,3,1,2. In that case we can complete A uniquely, so that, up to
permutation of the rows and columns, there is a unique solution for A,
namely

b

Il
CONNNNW
WO W N
WO =N
W = =0 WwN
W == WO N
N == WO
DN = WWw = —-O
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Now let H be a subgroup of G of order 4. Then H is also semi-regular.
Each orbit of G is decomposed into two orbits under H, and the n-ary
design corresponding to H can be obtained from A by replacing each a;;
with a 2 x 2 matrix with row and column sum equal to a;;. Moreover, in
such a matrix B the sum of the squares of the entries in any row or column
will be 17 (again using Lemma 2.3 of [1]). Thus it must be possible to split
each entry in any row of A into the sum of two terms so that the sum of
the squares of the fourteen integers thus obtained is 17. Now for a row of
type (b) this can only be done by decomposing each 3 as 2+ 1, the unique
2 as 2+ 0 and each 1 as 1+ 0. This means that each entry 2 in the first
column of A must be replaced either by 215 or by 2J — 2I5. We now find
that no possible 2 x 2 matrix can replace the 3 in the first column of A
without making the sum of the squares in the first (or second) column of B
too large. This contradiction shows the group G which we first postulated
to be impossible.

Corollary. There is no difference set for a binary (56,11,2) design.

We note that the above corollary is known for the case of abelian differ-
ence sets ( see [7], page 228).
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