A Class Of Well-Covered Graphs With Girth Four

Michael R. Pinter

Department of Mathematics
Belmont University
Nashville, Tennessee, USA

ABSTRACT. A graph is well-covered if every maximal indepen-
dent set is also a maximum independent set. A 1-well-covered
graph G has the additional property that G — v is also well-
covered for every point v in G. Thus, the 1-well-covered graphs
form a subclass of the well-covered graphs. We examine triangle-
free 1-well-covered graphs. Other than Cs and K3, a 1-well-
covered graph must contain a triangle or a 4-cycle. Thus, the
graphs we consider have girth 4. Two constructions are given
which yield infinite families of 1-well-covered graphs with girth
4. These families contain graphs with arbitrarily large indepen-
dence number.

Introduction

A set of points in a graph is independent if no two points in the graph
are joined by a line. The maximum size possible for a set of independent
points in a graph G is called the independence number of G and is denoted
by a(G). A set of independent points which attains the maximum size is
referred to as a mazimum independent set. A set S of independent points
in a graph is mazimal (with respect to set inclusion) if the addition to S
of any other point in the graph destroys the independence. In general, a
maximal independent set in a graph is not necessarily maximum.

In a 1970 paper, Plummer [13] introduced the notion of considering
graphs in which every maximal independent set is also maximum; he called
a graph having this property a well-covered graph. The work on well-
covered graphs that has appeared in the literature has focused on certain
subclasses of well-covered graphs. Campbell [2] characterized all cubic well-
covered graphs with connectivity at most two, and Campbell and Plummer
[4] proved that there are only four 3-connected cubic planar well-covered
graphs. Campbell, Ellingham and Royle [3] have recently completed the
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picture for cubic well-covered graphs by determining all 3-connected cubic
well-covered graphs.

For a well-covered graph with no isolated points, the independence: num-
ber is at most one-half the size of the graph. Well-covered graphs whose
independence number is exactly one-half the size of the graph are called
very well-covered graphs. The subclass of very well-covered graphs was
characterized by Staples [16] and includes all well-covered trees and all
well-covered bipartite graphs. Independently, Ravindra [14] characterized
bipartite well-covered graphs and Favaron (7] characterized the very well-
covered graphs. Recently, Dean and Zito [5] characterized the very well-
covered graphs as a subset of a more general (than well-covered) class of
graphs.

Finbow and Hartnell [8] and Finbow, Hartnell, and Nowakowski [9] stud-
ied well-covered graphs relative to the concept of dominating sets. Finbow,
Hartnell, and Nowakowski have also obtained a characterization of well-
covered graphs with girth at least five [10].

A well-covered graph (with at least two points) is I-well-covered if and
only if the deletion of any point from the graph leaves a graph which is also
well-covered. A well-covered graph (with at least two points) is in the class
W, if and only if any two disjoint independent sets in the graph can be
extended to disjoint maximum independent sets. Staples [17] showed that
a well-covered graph is 1-well-covered if and only if it is in W,. Since we
will appeal mostly to the notion of extending two disjoint independent sets
to disjoint maximum independent sets, henceforth we use the W nomen-
clature instead of referring to 1-well-covered graphs.

The class of well-covered graphs contains all complete graphs and all
complete bipartite graphs of the form K, .. The only cycles which are
well-covered are C3, C4, Cs, and C;. We note that all complete graphs
with at least two points are also in Wa, but no complete bipartite graphs
(except K1) are in Wa. The cycles C3 and Cj are the only cycles in Wa.
Some additional results for W» graphs can be found in [11] and [12].

Preliminary Results

We assume that all graphs are connected, unless otherwise stated. The
reader is referred to [1] for terminology and notation not defined here. Note
that a disconnected graph is in W> if and only if each of its components
is in Wa. Suppose G is well-covered, G # K;. Let v be a point in G
and consider the graph G —v. Since G # K, there exists a point u ~ v.
Since G is well-covered, the point u is contained in a maximum independent
set I in G. Clearly, v is not in I. Thus, I is also independent in G — v.
Consequently, a(G — v) = a(G) for any point v. Hence, from a result of
Erdds and Gallai [6] it follows that a(G) < |V(G)|/2.
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Since W> graphs are well-covered, then a(G — v) = a(G) for any point
v in a Wy graph. Also, W, graphs inherit the bound on independence
number, a(G) < |V(G)|/2.

Staples [17] proved that a W graph cannot have a point of degree one.
Theorem 1. If G € W, and G # Ka, then § > 2.

If v is a point in the graph G, then denote the neighborhood of v by
N(v). Let G, be the graph induced by G — {vUN(v)}. Campbell [2] found
the following very useful necessary condition for a graph to be well-covered.

Theorem 2. If a graph G is well-covered and is not complete, then G, is
well-covered for all v in G. Moreover, a(G,) = a(G) - 1.

Fortunately, we prove in Theorem 3 that we have a similar necessary
condition for a well-covered graph to be in W2. We will reference Theorem
3 several times in this paper.

Theorem 3. If a graph G is in W, and G is not complete, then G, is in
W, forall v in G.

Proof: Let v be a point in G. Since G is not complete, then G, # @. By
Theorem 2, graph G, is well-covered and a(G,) = a(G)—1. Suppose I, and
I are disjoint independent sets in G,. Then I; U {v} is an independent set
in G, as is I U {v}. Since G is in Wy, there exists a maximum independent
set J; 2 I U {v} such that J; N 2 = @. Since Io U {v} and J; — v are
disjoint independent sets in G, then there exists a maximum independent
set Jp 2 I, U{v} such that Jo,N (J; —v) = @. Hence, Jo —v and J, —v are
disjoint independent sets in G,,. Since |J;| = a(G), then |J; —v| = a(G) -1,
for i = 1,2. Thus, J; — v contains I, J; — v contains I, and J; — v and
Ja — v are disjoint maximum independent sets in G,. So any two disjoint
independent sets in G, can be extended to disjoint maximum independent
sets in Gy. By definition of the class Wa, we conclude that G, € Wo. O

We prove in the following theorem that if a W, graph has a cutpoint,
then the graph obtained by deleting the cutpoint is also a W2 graph.

Theorem 4. If G € W, and v is a cutpoint of G, then G —v € Wa.

Proof: Let H,, H,,..., H, be the components of G —v. Let z € V(H,)
and y € V(H;) such that z ~ v and y ~ v. By Theorem 3, the graphs
Gy =G - N[y] and Gz =G — N([z] are in W». Clearly, H; is a component
of Gy, for i # 2, and Hj; is a component of G, for j # 1. Hence, H; is a
W, graph for all i. It follows that G — v is also a W3 graph. a

In order to consider triangle-free W7 graphs, we introduce some termi-
- nology given in [10]. A 5-cycle in a graph is called a basic 5-cycle provided
that it contains no two adjacent points of degree > 3 (that is, at most two
points in the 5-cycle can have degree > 3 and two such points must be
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nonadjacent). A graph G is in the family PC if V(G) can be partitioned
into two sets V(C) and V(P) such that V(C) contains points from basic
5-cycles in G and V(P) contains points from pendant lines in G; in addi-
tion, the lines induced by V(P) must be independent. Two graphs in PC
are given in Figure 1.

Yy S

Figure 1

The girth of a graph is the size of a smallest cycle in the graph. We say a
graph with no cycles has infinite girth. Finbow, Hartnell and Nowakowski
[10] proved that the family PC described above contains all well-covered
graphs with girth at least five, except K3, C7, and the four graphs shown
in Figure 2. We state their result in the next theorem.
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Figure 2
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Theorem 5. Suppose G is well-covered with girth > 5. Then G € PC or
G € {K,,Cy, Py, Pi3,Q13, P1a}-

We need Lemma 6 to show that Kz and Cy are the only W> graphs in
PC. Consequently, we prove in Theorem 7 that a W, graph other than K>
and Cjs has girth at most four.

Lemma 6. If G is in PC with girth > 5 (G # K2 or Cs), then G ¢ Wa.

Proof: Suppose G € Wa. As mentioned earlier, we assume that G is
connected. By Theorem 1, we have § > 2. So G € PC and § > 2 together
imply that {C;}, { = 1,...,n, partitions V(G), where each C; is a basic
5-cycle. Since G # Cs, then i > 2.

Now C, is joined to one or more of the C; (i > 2) by one or more lines.
Without loss of generality, assume C) is connected to Cs by line e = uv.
Let C; = uabed and Cp = vwzyz. Since C) is a basic 5-cycle then either v
is not adjacent to b or v is not adjacent to c. We can assume that v is not
adjacent to c. Since v ~ u, then deg(a) = 2. Thus, {v,c} is independent
and so {v,c} and {a} don’t extend to disjoint maximum independent sets
in G, a contradiction since G € Ws. O

Theorem 7. If G € W, (G # K or Cs), then girth G < 4.

Proof: Suppose girth G > 5 and G is well-covered. By the preceding
lemma, if G € PC then G ¢ W,. From Theorem 5, if G ¢ PC, then
G € {K,,Cy, Pro, P13, Qi3, P14}. It is straightforward to check that each of
these 6 graphs is not in W; by finding a pair of disjoint independent sets
that do not extend to disjoint maximum independent sets. Thus, if G is
well-covered with girth > 5, then G ¢ Wa. a

Hence, a W, graph (other than K7 and Cs) must contain a triangle or a
4-cycle. Thus, a triangle-free W, graph (other than K, and Cj) has girth
4. We study W, graphs of girth four for the remainder of this paper.

A line in a graph G is a critical line if its removal increases the inde-
pendence number. A line-critical graph is a graph with only critical lines.
Staples proved in [16] that a triangle-free W, graph is line-critical. Hence,
all graphs given in the following constructions are line-critical.

Constructions

The following constructions show how to build a larger (in size and indepen-
dence number) W> graph of girth four from a given such graph with some
additional properties. The fact that the constructions yield W> graphs can
be verified directly from the definition of a W, graph by showing that every
two disjoint independent sets can be extended to two disjoint maximum
independent sets.

245



An alternative means of verifying that a graph is in W5 uses the notion of

an extendable point. Finbow, Hartnell and Nowakowski [10] defined a point
v in a well-covered graph to be an extendable point if G — v is well-covered
and a(G - v) = a(G). Since every point in a W2 graph has this property,
then every point in a Wa graph is extendable. See [10] for details on the
use of extendable points.
Construction 1. Suppose H is a W3 graph of girth 4 and C is a 4-cycle
in H such that a(H —C) =a(H) —1 and H — C is in Wj. Let C = achd
and let zy be a new line and A = v;vou3v4 be a new 4-cycle. Form a new
graph G with

V(G) =V(H)UV(A)U {z,y}, and
E(G) = E(H)U E(A) U {zy, v1z, v3y, v2a, v2b, v4c, v4d}.

See Figure 3.
Then G is a Wy graph of girth 4 with a(G) = a(H) + 2.

Figure 3

Suppose H; is the graph in Figure 4. If C is the 4-cycle in H,, then
H, -C is a W; graph. Also, a( H, —C) = 2 = a(H,) — 1. Thus, we can use
H, to construct a larger Wa graph of girth 4 with independence number 5
via the construction in Construction 1. Call this graph Gs.

X

Figure 4

Let H> be the graph on 12 points in Figure 6. Let C be the 4-cycle acbd,
as indicated in Figure 6. It can be checked that Hj is a W graph with
a(Hz) = 4, and H — C = H,. Thus, a(Hz —C) = a(H2) ~1,and H2 - C
is a Wp graph. Thus, we can build a larger W, graph of girth 4 (with
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independence number 6) from Hj via the construction in Construction 1.
Call this graph Gg.

Let H; = G3. Note that Gy satisfies the conditions in Construction 1,
with the 4-cycle A that was used to build Gs from G3 satisfying a(Ggs —
A) = a(Gs) — 1 and G5 — A € Wa. Hence, we can obtain a W graph
of girth 4 from Gs, call it G, via the construction in Construction 1.
Therefore, by starting with H; = G3 we can recursively use the construction
in Construction 1 to generate an infinite family of W, graphs of girth 4,
namely Gs, Gs, G7, Gy, ..., where a(Gy) = n, for all odd n. Note that the
“new” 4-cycle used to construct Gax4+1 from Gak—; is a 4-cycle in Gagyi
which satisfies the conditions in Construction 1. Thus, we “attach” to this
4-cycle to construct Gax43 from Gax41 via the construction in Construction
1. Similarly, by starting with Ho = G4, we can recursively generate Wa
graphs of girth 4, namely G4, Gg, Gs, G0, ..., where a(Gn) = n, for all
even n.

By the nature of the construction in Construction 1, all graphs in the two
infinite families just given are exactly 2-connected. In order to construct
3-connected and 4-connected W» graphs of girth 4, we develop a different
construction in Construction 2.

Construction 2. Suppose H is a Wy graph of girth 4 with disjoint 4-cycles
C) and C; such that (i) a( H - C;) = a(H) -1, for i = 1,2, and (ii) H - C;
is a Wy graph, for i = 1,2. Also, H is either connected or has exactly two
components. In the disconnected case, each component contains exactly
one of the 4-cycles C;.

Let C) = u1jy1v17), Ca = ugysvaZ2, and let A = abed be a new 4-cycle.
Form a new graph G with
V(G)=V(H)UV(A), and
E(G) = E(H)U E(A) U {au1, avy, cx1, cy1, bz, byz, duz, dv2 }.
See Figure 5.




Then G is a Wy graph of girth 4 and a(G) = o(H) + 1.

Note that in Construction 2, we allowed H to be the disjoint union of
two W, graphs of girth 4, say G; and G3, each containing a 4-cycle C; such
that G; — C; is a W, graph and a(G; - C;) = a(G;) — 1, fori = 1,2. In
this case, a(G) = a(G1) + o(G2) + 1 and G is exactly 2-connected.

Let H be the graph on 12 points given in Figure 6. It is straightforward
to verify that H is a W3 graph of girth 4. Let C = uyvz and C; = acbd;
then C; and C; are disjoint 4-cycles in H. Also, H — C; is isomorphic
to the graph in Figure 4, for i = 1,2. Thus, H — C; is a W, graph and
a(H-C))=a(H)-1,fori=1,2.

Figure 6

We will work with copies of H. For copy H;, we will denote the 4-
cycles corresponding to C; and C; by Cy; = wiyviz; and Ca = aicibyd;,
respectively.

Let H, and H; be two copies of H. Obtain a new graph F; by adjoining
a new 4-cycle A; to C); and Cy; as in Construction 2. See Figure 7. By
Construction 2, graph F; is a W» graph of girth 4 and a(F,) = 2a(H;) +1.

Figure 7

Since H; —C) 3 is a W, graph, then by Construction 2 the graph F1-C) 2
is also a W> graph. Moreover, a(Fy — C12) = a(H — C12) + a(H2) +1 =
(a(Hy) — 1)+ a(H2) + 1 = a(H;) + a(H2) = a(F}) — 1. Clearly, F; — A;
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is a W, graph and a(F; — A;) = a(F1) — 1. So we form a new graph Fy
from F; by adjoining a new 4-cycle Az to Cy,2 and A; by the construction
in Construction 2. By Construction 2, graph F} ; is a W, graph of girth 4
with a(Fl,l) = a(Fl) +1.

Figure 8

Ciearly, F 1 — Az is in W5 and a(Fy,1 — A2) = a F1,1)—1. Since Ho—C3 2
is in W, then by Construction 2 the graph Fj; — Cy is in Wa. Also,
a(Fi,1 - Co2) = a(F1 - C32) +1 = (a(F1) = 1) +1 = o F1) = a(F1,1) - 1.
So we form a new graph Fj 2 by adjoining a new 4-cycle A3 to A2 and C; 2
by the construction given in Construction 2. Let G; = Fy 2. G) is shown
in Figure 8. Then G, is a W, graph of girth 4 by Construction 2. Also, G;
is 3-connected, |V (G,)| = 36 and a(G;) = 2a(H;) + 3 =11.

We conjecture that it is possible to construct an infinite family of 3-
connected W5 graphs of girth 4 by using Construction 2 and a technique
generalized from that used to construct the graph G, given above.

Beginning with H given above in Figure 6, we can obtain the graph H’
given in Figure 9 by two successive applications of Construction 2. Thus,
H'’ is a W> graph of girth 4. Note that H’ is 4-connected. We conjecture
that it is possible to construct an infinite family of 4-connected W> graphs
of girth 4 by using Construction 2 and by having H’ play the role of H
above in constructing G;.

Not all W, graphs of girth 4 arise from the constructions given above.
Neither of the graphs given in Figure 10 can be built using our construc-
tions. The graph on 13 points is 4-regular and was found by Royle [15]
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using a computer program. Note that neither of the graphs has any 4-cycle
that satisfies the conditions in Construction 1 or Construction 2.

Figure 9

Figure 10

Cutsets

Now that we have constructed some W, graphs of girth 4, we look at
minimum point cutsets for such graphs.

Theorem 8. If G is a W, graph of girth 4, then G is 2-connected.

Proof: Assume to the contrary that G has a cutpoint v. Let G1,Ga,...,Gyp
be the components of G — v. By Theorem 4, graphs G;,...,G, are W,
graphs. Let N; = N(v)NG;, fori=1,...,n. Since G has girth 4, then N;

250



is independent for all i. Since G; € W2, there exists maximum independent
sets J; in G; such that J; N N; = @, for all i. Clearly, J=JU.---UJ, is
an independent set in G. Consequently, J and {v} are disjoint independent
sets in G which do not extend to disjoint maximum independent sets in G.
This is a contradiction since G € Wa. Hence, G is 2-connected. 0O

Lemma 9. Suppose G is a Wa graph of girth 4 and {u,v} is & cutset of
G. If u ~ v, then every component of G — {u,v}, except possibly one, is a
Wy graph.

Proof: Let Gy, ..., Gy, be the components of G—{u, v}. Let U; = N(u)NG;
and V; = N(v)NG;, for all i. Since G has girth 4, then z € U; implies z is
not adjacent to v, and y € V; implies y is not adjacent to u, for all <. Also,
U; and V; are independent sets, for all 3.

Suppose that = € U;, y € V; implies z ~ y, for all i. Let U = U U---UU,.
Then U and {v} are disjoint independent sets in G' which do not extend
to disjoint maximum independent sets in G, contradicting G € W,. Thus,
there exists j € {1,...,n} such that z and y are points in Gj, z € Uj,
y € V; and z is not adjacent to y.

Consider the graph G = G — N|[z]. Since z is not adjacent to y, then
y € G;. Since G € Wp, then by Theorem 3 so is G;. Then v is a cutpoint
for G, and by Theorem 4, the graph G — v is a W5 graph. Since G; is a
component of Gz — v, for i # j, then G; is a W graph, i # j. O

Theorem 10. Suppose G is a W, graph of girth 4 and {u,v} is a cutset
for G. Then {u,v} is independent.

Proof: Suppose u ~ v. Let G,...,Gn be the components of G — {u,v}.
Let U; = N(u)NG; and V; = N(v)NG;, for all <. Since G has girth 4, then
U; and V; are disjoint independent sets, for all 4.

Case 1. Suppose G; is a W, graph, for all i. Then there exist maximum
independent sets J; in G; such that J; 2 V; and J; N U; = @, for all i. Let
J = J;U---UJ,. Then J and {u} are disjoint independent sets in G which
do not extend to disjoint maximum independent sets in G, contradicting
Ge W,

Case 2. So Gj is not a W graph, for some j. By Lemma 9, graph G; is
a W, graph for ¢ # j. So let J; 2 V; be a maximum independent set in
G; such that J; NU; = @, for all i # j. For each i # j, pick z; € U;. Let
X = {z;: i # j}. Clearly X is an independent set. By Theorem 3, the
graph Gx =G — {X UN(X)} is a Wy graph.

Suppose there exists some y € V; such that y is not adjacent to x;, for
some i # j. Then v is a cutpoint for Gx. By Theorem 4, the graph Gx —v
is in Wa. Since Gx — v contains G; as a component and Gj; is not a W
graph, we obtain a contradiction. Thus, y € V; implies y ~ z;, for all { # j.
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Let H be the subgraph of G induced by G; U {v}. Since y € V; implies
y ~ z;, for all i # j, then H is a component of Gx. Since Gx € W3, then
H € W,. Hence, there exists maximum independent set J; in H such that
Jj2Viand J;NnU; =@. Let J=J,U.--UJ,. Then J and {u} are
disjoint independent sets in G which do not extend to disjoint maximum
independent sets in G. This contradicts G € W5.

Therefore {u,v} must be independent. 0

Since a cutset of size two in a W3 graph of girth 4 is independent, we are
led to ask if the same is true for minimum cutsets of size three or more.
The next two lemmas help to answer the question for minimum cutsets of
size three in W graphs of girth 4.

Lemma 11. Suppose G is 3-connected W, graph of girth 4 and {u,v,t}
is a cutset for G. Then {u,v,t} does not induce exactly one line.

Proof: Assume to the contrary that {u,v,t} induces precisely the line uv.
Let G,,...,Gn be the components of G — {u,v,t}. Let U; = N(u) NGy,
Vi = N(v) N G;, and T; = N(t) N G;, for all .

Since ¢ is adjacent to neither u nor v, then we must have ¢t ~ z for all
z € U; and t ~ y for all y € V;, for all values of i except possibly one.
Otherwise, the graph G, is a W, graph with cutset {,v}, contradicting
Theorem 10. Without loss of generality, we assume ¢ ~ x for all z € U; and
t ~yforall y € V;, for all 1 # 1. Since G has no triangles, it follows that
the sets U; U V; are independent, for i # 1.

Consider any component different from Gy, say G2. Choose s ~ t such
that 8 € Vo. Then the graph G, has u as a cutpoint. So by Theorem 4,
graph G, — u is a W, graph. Since G, is a component of G, — u, then G;
is a Wy graph.

Case 1. Suppose there exists a € U; and b € V; such that a ~ t and
b ~ t. Since G has no triangles, then a is not adjacent to b. Thus, G, is
a W, graph which has v as a cutpoint. By Theorem 4, the graph G, — v
is a Wa graph. Since G;, i # 1, is a component of G, — v, then G;, i # 1,
is a Ws graph. Thus, there exist maximum independent sets J; in G; such
that J;NV; = @ (i # 1), and there exists a maximum independent set J,
inGysuchthatee Jjand JiNVi =@, Let J=J1U.--UJ,. Then J
and {v} are independent sets in G which don’t extend to disjoint maximum
independent sets in G, contradicting G € Ws.

Case 2. So either ¢ is not adjacent to a for all a € Uy, or t is not adjacent
to b for all b € V5. Without loss of generality, assume ¢ is not adjacent to
a for all a € Uj.

Case 2.1. Suppose T) — V) # @. Let z € Ty — Vj; that is, t ~ z and
z € Vi. From the assumption ¢ is not adjacent to a for all a € Uy, we see
also that z ¢ U;. If there exists a € U; such that z is not adjacent to a, or
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b € V; such that z is not adjacent to b, then the W graph G; has {u,v}
as a cutset. This contradicts Theorem 10, Thus, x ~ a for all a € U; and
x ~ b for all b € V;. Since G has girth 4, then a € U; and b € V; imply
that a is not adjacent to b. Similarly, b € V; implies b is not adjacent to ¢.
Hence, Ty N Vi = @ = Ty NU;. Therefore, T} — V; = Ty. Thus, ify € T, it
follows that y ~ a for all a € U,.

Fix z € U;. From above, z ~ y for all y € T). But then G; hasv as a
cutpoint and so by Theorem 4 the graph G; — v is a W, graph.

Case 2.1.1. Suppose n > 3. Then ¢ is a cutpoint for G; —v. By
Theorem 4, graph G, —v —t is a W, graph. Since G, ¢ # 1, is a component
of G, — v —t, then G;, i # 1, is a W graph. Thus, there exist maximum
independent sets J; in G; such that V; N Ji = @ (i # 1), and there exists
maximum independent. set J, in Gy such that 2 € Jy and ViNJ; = @.
Let J=JyU---UJ,. Then J and {v} don’t extend to disjoint maximum
independent sets in G, contradicting G € Wa.

Case 2.1.2. So assume n = 2, Let H be the graph mduoed by GaUt.
Then H is a component of G, — v; hence, H is a W graph. From earlier,
U, and V; are disjoint and independent, and ¢ ~ z for all z € Ua. Since
H is a W3 graph, there exists maximum independent set Jy in H such
that Jy D U and Jy N Vo = @. Note that ¢t ¢ Jy. Since Gy is a Wa
graph, there exists maximum independent set J; in G; such that z € J,
and J; N Vi = @. Then J = J; U Jy is independent in G. So J and {v}
don’t extend to disjoint maximum independent sets in G, a contradiction.

Case 2.2. Thus, T} — V; = @. Hence, V; 2 T). Since U; and V) are
disjoint independent sets in G, then there exists maximum independent
set J; D Uy in G, such that J; NV = @. But then J; U {t} and {v}
are disjoint independent sets in G which don’t extend to disjoint maximum
independent sets in G, contradicting G € Wa.

Therefore, {u,v,t} does not induce exactly one line in G. a

Lemma 12. Suppose G is a 3-connected Wy graph of girth 4 with cutset
{u,v,t}. Then {u,v,t} induces at most one line.

Proof: Assume to the contrary that {u,v,t} induces two lines, say uv
and vt (since G has girth 4, then {u,v,¢} cannot induce three lines). Let
Gy,...,Gp be the components of G — {u,v,t}. Let Uy = N(u) NG, V; =
N(@)NG; and T; = N(t) N G;, for all i. Note that UsNnV; =@ =V;NT;,
for all i; however, we do not know that U; N T; = 2.

Suppose for all z € U;, for all 4, that ¢ ~ z. Then {t} and {u} don’t
extend to disjoint maximum independent sets in G, contradicting G € Wa.
So, without loss of generality, assume there exists some z € U; such that ¢
is not adjacent to z.

Suppose there exists some z € V; such that z is not adjacent to z. Then
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G: has {v, t} as a cutset, contradicting Theorem 10. We are implicitly using
Theorem 13 here, which states that a W, graph of girth 4 is 2-connected.
Hence, 2z € V; implies = ~ 2.

Since G is 3-connected, T} # @. If there exists some y € T} such that z is
not adjacent to y, then G will have {v,t} as a cutset, again contradicting
Theorem 10. So y € T implies y ~ z. Since G has girth 4 and x ~ y for
allye Ty, thenUyNTy = 2. Sincez~yforally € T) and z ~ 2 for
all z € Wy, then y € T} and z € V; implies y is not adjacent to z. Thus, if
y € T}, then G, has {u,v} as a cutset. This contradicts Theorem 10.

Therefore, {u,v,t} cannot induce two lines in G. Since G has girth 4, it
follows that {u,v,t} induces at most one line. (]

With the two preceding lemmas, it is a simple matter to prove in the
next theorem that a minimum cutset of size three in a W graph of girth 4
must be independent.

Theorem 13. If G is a 3-connected W2 graph of girth 4 with cutset
{u,v,t}, then {u,v,t} is independent.

Proof: By Lemma 12, the set {u, v, t} induces at most oné line. By Lemma
11, the set {u,v,t} does not induce exactly one line. Hence, {u, v, t} induces
no lines in G; that is, {u,v,t} is independent in G. a

For minimum cutsets of size four or greater, we do not know if the cutsets
must be independent.
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