A Particular Class Of Bigraphs
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ABSTRACT. A semi-complete bigraph G has adjacency matrix
0 B
A= [BT o] '

where B + BT = J — I; so B is the adjacency matrix of a
tournament T corresponding to G. We determine algebraic and
structural properties of this class of graphs. In particular, we
obtain a condition equivalent to the connectedness of a semi-
complete bigraph; moreover we determine characterizations of
semi-complete bigraphs having 4 distinct eigenvalues in the case
of G regular or A irreducible. In particular a regular semi-
complete bigraph has 4 distinct eigenvalues if and only if it
corresponds to a doubly regular tournament.

1 Introduction

A bigraph G is a graph whose vertex set can be partitioned into two
nonempty subsets V' and W such that every edge of G joins V with W,
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If V| = r and |W| = s, we shall say that G is of parts (r, s).
G is regular of degree k if every vertex is incident with k edges.

We recall also that a tournament is an oriented complete graph; we shall
say that the vertex v of a tournament T has positive [negative] valence k if
there are k arcs from [into] v. Moreover if (v;,v;) is an arc of T, we shall
say that v; dominates v; . For every vertex v, od(v) [id(v)] denotes the
number of vertices dominated by v [which dominate v]. A tournament T is
regular of degree t if the positive valence of each of its vertices is ¢.

Let J denote the matrix all of whose entries are equal to 1. In the
following we shall denote the (0,1)-adjacency matrix A of G in the form:

A=L% ﬂ. (1)

We shall say that the bigraph G is semi-complete (denoted by s-c) if it is
of parts (n,n) and if the matrix B of (1.1) satisfies the relation:

BT+B=J-1 (1.2)

From (1.2) it follows that B is the adjacency matrix of a tournament T' of
order n and we say that T' corresponds to G. We also say that B corresponds
to A and conversely. :

We investigate the connections between the properties of the spectrum
and the connectedness of the two classes of graphs, in particular when they
are regular. So we obtain spectral properties of G and we prove that a
connected s-c-bigraph has exactly 4 distinct eigenvalues if and only if it
corresponds to a doubly regular tournament (Theorem 4.3). Moreover we
obtain a condition equivalent to the connectedness of a s-c-bigraph (Theo-
rem 2.6).

Recall that a square non negative matrix A is reducible provided there
exists a permutation matrix P such that

Ts,p_ |A1 O
PAP—[X Ay

where A; and A, are square non vacuous matrices. If no such P exists, then
the matrix is irreducible. Thus a primitive matrix is necessarily irreducible.
The Perron-Frobenius Theorem (see Minc [11]) implies that the spectral
radius, p, of an irreducible non negative primitive matrix is an algebraically
simple eigenvalue and that the eigenspace corresponding to the Perron-value
p is spanned by an eigenvector, the Perron-vector, each of whose entries is
positive. It is well-known that A is irreducible if and only if its directed
graph is strongly connected; in particular, if A is the adjacency matrix of
an undirected graph G, A is irreducible if and only if G is connected.
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We investigate the spectral properties of an s-c-bigraph with irreducible
adjacency matrix having 4 distinct eigenvalues. In particular we obtain
(Proposition 5.5) another characterization of doubly regular tournaments.

2 Regularity and Connectness

Throughout the paper G represents a s-c-bigraph with adjacency matrix A
satisfying (1.1) and (1.2). V = {v1,v2,--- ,vs} and V' = {2}, 25,--- ,v}}
are the classes of vertices of G corresponding respectively to the rows and
the columns of B.

So v; and v} are adjacent if and only if (v;, v;) is an arc of T. We say that
v; corresponds to v and conversely.
Remark 2.1. If V = {v;,v2, - ,vn} and V' = {v},v},--- ,v,} are the
classes of vertices of a s-c-bigraph G, then Vi, € {1,--- ,n}, v; and v] are not
adjacent. Moreover, for every pair of vertices vi,v; of V, G contains one
and only one of the edges (v;,v}) and (v},v;). It implies that the number
n(n—1)

2

Proposition 2.2. If G is a s-c-bigraph of parts (n,n) and T is the corre-
sponding tournament, then G is regular with degree k and n = 2k + 1 if
and only if T is regular with positive valence k.

of edgesin G is , the same of T.

Proof: Let A be the adjacency matrix of G and J has order 2n. G is
regular, of degree k if and only if AJ = kJ, that is BJ = kJ (and, from
(1.2), BTJ = kJ). This relation means that T is regular of valence k.
Moreover it is well known that, if T is a regular tournament of order n and
of positive valence k, then n =2k + 1. O

Proposition 2.3. Let H be a connected component of order greater than
1 of a s-c-bigraph G such that |H| < |G — H|. Then G = K.

Proof: Let Vg and Wy and V, W be the sets of vertices of H and G — H
contained in V and V' respectively.

Suppose |Vy| > 2. We have to distinguish the cases in which Wy contains
or does not contain a vertex corresponding to one of the vertices of V.

In the first case we suppose that Wy contains o’, the vertex corresponding
to a vertex a of V. Suppose that [W| > |V]. As a is not adjacent to any
vertex of W, then o’ is adjacent to all the corresponding ones of W, which
have to belong to V. Since |H| < |G~ H| and |W| > |V|, then W contains
at least two elements, say b’ and ¢’. Then b,c € Vi . As either (b,c’) or
(¥, c) belong to G, we have a contradiction. A similar argument applies if
Wl <[Vl

In the second case we suppose Wy does not contain a vertex correspond-
ing to a vertex of Vy. Let a,b vertices of Viy. Then a’, b’ belong to W. As
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either (a,b’) or (a’,b) belong to G, again we have a contradiction.

So Vy and Wy have order 1. Because H is connected we obtain G =
K. . a

Proposition 2.4. A s-c-bigraph G contains K, as component if and only’
if T contains an arc (u,v) such that id(u) =n — 2 and od(v) =n - 2.

Proof: Let K, a component of G and u,v’ its vertices. Then u is not
adjacent to the remaining vertices of W. So in T u is dominated by all the

vertices but v. Similarly v dominates all the vertices but u. The converse is
immediate. (m}

Proposition 2.5. A s-c-bigraph G contains an isolated vertex if and only
if T contains a vertex u such that either od(u) =n —1 or id(u) =n —1.

Proof: If the isolated vertex u belongs to V, then in T u does not dominate
any vertex and ¢d{u) =n—1.If u € V/ and u = ¢/, then in T v dominates
all the remaining vertices and od(v) =n — 1. o

Theorem 2.6. A s-c-bigraph G is connected if and only if T contains
neither a vertex with od(v) or id(v) equal to n — 1, nor an arc (u,v) with
td(u) =n—2 and od(v) =n—2

Proof: It follows from Propositions 2.4 and 2.5. (u}

Corollary 2.7. If T is a regular tournament of order at least 5, then the
corresponding s-c-bigraph is connected.

Proof: If T is regular, clearly it does not contain a vertex » or an arc
satisfying Theorem 2.6. a

3 Spectral Properties

In this section we prove some spectral properties of a s-c-bigraph, with
particular interest in the case when G is regular.

Proposition 3.1. Let T be a regular tournament of order n and let G be
the regular corresponding semi-complete bigraph. Let w be an eigenvalue

of T of multiplicity m. Then *|w| are eigenvalues of G of multiplicity m if
-1
w is real and 2m if w is complex. Moreover +2 are the unique simple

eigenvalues of G and every other eigenvalue has even multiplicity.

Proof: Since (1.1) is the adjacency matrix of G, we have ¢(G,\) =
det(A2I — BBT). As T is regular, B is normal [5]; thus there exists an
unitary matrix U such that UBUT is a diagonal matrix A. Since B is real,
BT =UAUT and so BTB = BBT = UAAUT.
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If w is a complex eigenvalue of T with multiplicity m, then w-@ = |w|? is
an eigenvalue of BBT with multiplicity 2m. In fact, since Re(w) = -2

[2], @ is the only eigenvalue with the same modulus as w. So =+|w| are
eigenvalues of G with the same multiplicity 2m.

n—1

Moreover, since B is regular, in [2] is proved that is the unique real

n—1

eigenvalue of T and it is simple. Therefore + are the unique simple

eigenvalues of A.
As every other eigenvalue of T' is complex, then every other eigenvalue
of G has even multiplicity. 0

Corollary 3.2. Let T be a regular tournament <if order n and let G be
n —

the regular corresponding s-c-bigraph. Then is a simple eigenvalue

n-1

2
then —% +4/a? - % are eigenvalues of T' of multiplicity m.

of T; moreover if a # + is an eigenvalue of G of multiplicity 2m,

Proof: It follows from the condition that Re(w) = —% and from Proposi-
tion 3.1. o

Proposition 3.3. Let G be a connected semi-complete bigraph. Then G
has at least 4 distinct eigenvalues.

Proof: Let n be the order of G and A\; > Ay > .- > A, their eigenvalues.
By Perron-Frobenius theorem, ), is simple and, as G is bipartite, )\, = —);.
Every other eigenvalue ); satisfies \; = —An+1—i. Suppose G has only three
distinct eigenvalues. Then ); = 0 for every i # 1,n. In this case G has
exactly one positive eigenvalue; then G is a complete multipartite graph, a
contradiction. 0

A question arises whether there exists a s-c-bigraph with exactly 4 dis-
tinct eigenvalues. In the next section we give characterizations of such
bigraphs first in the case of G regular and A irreducible, then in the case
of G connected.

4 Doubly Regular Tournaments

Recall that a tournament is doubly regular with subdegree ¢ if all pairs of
vertices jointly dominate precisely ¢ vertices.

Such a tournament is regular of degree k = 2t + 1 and hence has 4¢ + 3

vertices. If B is a doubly regular tournament matrix, then BBT = k%ll +

k-1
TJ.
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In [14] the following characterization is proved:

Theorem 4.1. A regular tournament matrix A of order n = 2k +1 is

doubly regular if an only if it has exactly three distinct eigenvalues. In the

case that A is doubly regular, its eigenvalues are k, #ﬁ-, the first

being simple and the other two having multiplicities k.

The problem of the existence of a doubly regular tournament in every
admissible order is still open. Since Theorem 4.3 and the results of Section
5 provide new characterizations of doubly regular tournaments, they may
have some bearing on the existence problem.

Proposition 4.2. Let G be a regular s-c-bigraph with 4 distinct eigenval-
ues. Then the tournament corresponding to G is doubly regular.

Proof: Let G a regular s-c bigraph of parts (n, n); we denote k the degree
of Gsothat n=2k+1.
If G has 4 distinct eigenvalues, then these are +k, of multiplicity 1 and

+p of multiplicity — = 2
It is shown in [4, pg. 94] that if \; =7, A2, -+, A is the spectrum of a
graph G, then G is regular if and only if

1
1y =r (41)

r being the index of G.
If (4.1) is satisfied, r is the degree of G. In our case, we obtain

;—n (2k% + (2n — 2)p%) = k;

then
k+1
p== 5
By corollary 3.2, we see that T has eigenvalues k, i:l;i@ By theorem
4.1 T is doubly regular. m]
Theorem 4.3. A doubly regular tournament of order n exists if and only if
there exists a regular s-c-bigraph of parts (n,n) with 4 distinct eigenvalues.

Proof: Let T be a doubly regular tournament of order n. Then n = 2k +1,
where k is the positive valence of T. Then the corresponding s-c-bigraph is
regular of degree k.

By Theorem 4.1 T has three distinct eigenvalues, one real of multiplicity
1 and the others of multiplicity r- 1. So by Propositions 3.1, G has 4
distinct eigenvalues. The converse follows from Proposition 4.2. (]
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Corollary 4.4. Let T a doubly regular tournament of order n = 2k + 1
and G the corresponding s-c-bigraph. Then the eigenvalues of T are k
and —é-(-l + iy/n) of multiplicity 1 and k respectively, while the eigenval-

ues of the bigraph are %k, both of multiplicity 1, and 1 /% both of
multiplicity 2k. :
Proof: It follows from Proposition 3.1 and Theorem 4.1. a

It is well known that a symmetric design < v, k, A > exists if and only if
there exists a regular bigraph of order 2n with eigenvalues +k, +(k— /\)‘1‘
of multiplicity 1 and v — 1 respectively ([4] pg. 190).

In the case of skew-Hadamard design, from Corollary 3.3 of [14] and from
Proposition 3.6 of [13] and from Theorem 4.3 we obtain the following

Corollary 4.5. A symmetric skew-Hadamard design of order n exists if
and only if there exists a skew symmetric regular bigraph of order 2n with
four distinct eigenvalues.

Theorem 4.6. A regular s-c-bigraph G has four distinct eigenvalues if and
only if the number of vertices adjacent to any two vertices of the same class
is constant.

Proof: Let G be a s-c-bigraph. If the vertices v; ,v; in V are adjacent in G
to the vertex vy in V’, then in T v;,v; dominate vy. If the vertices v}, v}
in V' are adjacent to the vertex vx in V, then in T v;, v; are dominated by
Vk.

If G is regular with 4 distinct eigenvalues, then by Theorem 4.3 the tour-
nament T corresponding to G is doubly regular. Recall that a tournament
T of order n = 2k +1 is doubly regular if and only if for any pair of vertices
the number of vertices that dominate both of them is constant and equal
to t. The number of vertices that are dominated by both of them is also

equal to t. The converse follows easily. |

Proposition 4.7. Let u, v be vertices of a s-c-bigraph corresponding to
a doubly regular tournament. If they belong to the same class of vertices,
their distance is 2, while, if they belong to different classes and are not
adjacent, their distance is 3.

Proof: By Theorem 2.6, G is connected. It is proved [4, pg. 88] that if
a connected graph has exactly m distinct eigenvalues, then its diameter D
satisfies the inequality D < m — 1. So because G has 4 distinct eigenvalues
then D < 3. As G is a bipartite graph, the property follows. (]

Recall that the complezity of a graph G is the number of spanning trees
of G. Now we determine the complexity x(G) of a s-c-bigraph G associated
with a doubly-regular tournament 7. We recall [1] that if the eigenvalues
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of an undirected regular graph of valence k and order n are k,Aj--- A1
of multiplicities 1, m,, ..., m,_; respectively, then the complexity is

s—1
&(G) =n"" [[(k - A)™

=1

In this case, since G has order 2n = 2(2k + 1) we obtain

k(G) = k(2k +1)%-1. (%) 2%k

Let G be a s-c-bigraph of parts (r,n). Denote by G the graph complemen-
tary to G with respect to the complete bipartite graph K, ,, which we call
bi-complementary. So G is bipartite with the same classes of vertices of G
and a vertex of V and one of V' are adjacent in G if and only if they are
not adjacent in G.

Proposition 4.8. Let G the s-c-bigraph bi-complementary of the bigraph

G corresponding to a doubly regular tournament T of order n = 2k 4 1.
k+1

Then the eigenvalues of G are *=(k + 1) of multiplicities 1 and + —

of multiplicities n — 1.

Proof: If (1.1) represents the graph G, then the adjacency matrix Aof G

N 0 J-B
Az[J—BT o]

where J has order n. Then

A\ Al -J+B
WCN=_siBT A ‘
=|X*I - (J - B)(J - BT)|
k+1 k+1
= 2_271 - -
-|(-55) -5
n—1
= (A= (k+1)2) - (,\2 - k%l) .
Last equality follows from the property that det(al — bJ) = (a + nb)*~1.
This implies the proposition. |

Corollary 4.9. Let T a doubly regular tournament of order n =4t+3, G
the corresponding s-c-bigraph and A, A the adjacency matrices of G and
G. Then |A| = (t+1)(2¢t+1)? and |E| = (t+1)(2t +2)2. In both the cases
they are positive integers.

Proof: It follows from Corollary 4.4 and Proposition 4.8. (]
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5 Semi-complete bigraphs having four distinct eigenvalues

In the preceding section we saw that a doubly regular tournament corre-
sponds to a s-c-bigraph with exactly four eigenvalues. The question arises
as to whether every connected s-c-bigraph having four eigenvalues necessar-
ily corresponds to a doubly regular tournament. In this section, we answer
that question in the affirmative.

Proposition 5.1. Suppose that B is an n x n tournament matrix and that
A= 0 B
~|BT o0

1
B has at most two distinct eigenvalues whose real part is not —=, and B
hais a single complex conjugate pair of eigenvalues with real part equal to

is an irreducible matrix with four distinct eigenvalues. Then

2
Proof: Recall that the nonzero eigenvalues of G are positive and negative
square roots of the eigenvalues of BBT. If G were singular and had spectral
radius r, then the eigenvalues of G would include +r, 0, and at least one
other nonzero eigenvalue, s say, the last since G must have at least four
eigenvalues. But then —s would also be an eigenvalue of G, contradicting
the fact that G has exactly four eigenvalues. Consequently, G must be
nonsingular, and so its eigenvalues are precisely the square roots of the
eigenvalues of BBT .

Since G is irreducible, its perron value has algebraic multiplicity one, and
it follows that the perron values of both BBT and BT B also have algebraic
multiplicity one. Further, since G has four distinct eigenvalues, we find
that both BBT and BT B have exactly two distinct eigenvalues: the perron
value, a say,and another eigenvalue b < a, with algebraic multiplicity n—1.

Let u be a perron vector for BBT, normalized so that uTu = 1; then the
eigenprojection matrix corresponding to a for BBT is uu”. Let E be the
eigenprojection corresponding to b for BBT. Using the spectral resolution,
we have BBT = auu” + bE, and uu” + E = I. Hence we find that BBT =
(@ — b)uuT + bI. A similar argument shows that BTB = (a — b)vvT + b1,
where v is the perron vector for BT B normalized so that vTv = 1.

Let s = B1, and let r7 = 1T B. Since BT = J — I — B, we find that

81T — B— B% = (a — b)uuT + b1 (5.1)
and that
1rT — B — B%2 = (a - b)vv” + bl (5.2)
In particular, (5.1) and (5.2) imply that
20 _
”—(’;—12 —17B1-1TB%1=17[s1T — B — B?|1=(a - b)(uT1)?’ - bn
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and
n’n—1) . TR21 _1T+T 2 T2
P _17B1-1TB1=1"[r" - B~ Bl1=(a - )(@"1) ~bn,
from wihch it follows that 71 = vT1. Further,
[B2+ B +bl1=[s1T — (a - b)uuT]1 = [1rT — (a — b)wvT]1
so that
ns — (a — b)(u 1)u (R(Lz_l—)) 1+(a-b@TL)v=0.

Hence we see that

(a=b)@TL) u—-v]=n [s - ("—;—1-)] 1 (5.3)
sothat u=v +e¢€ [s— (-7%1) 1], where € = (a_—:)u_Tl- > 0.

Since [B? + B + bls = [s1T — (a — b)uuT]s = [1rT — (a — bjv”]s, we
have

2D (a—b)@Ts) [s _n-l 1]
2 2
_1)2

— (a—b)e [sTs - ﬁll—l)—] v

(a—b)e [s s 1 ] 5
= (rTs)1 (54)
— 2 —

If ssT — n{n—1)7 _ 0, it follows that each entry in s must equal n-1

2 3
_1)2
so that B is regular. If sTs — 2(71—41)— # 0, then (5.4) implies that v is a

linear combination of 1 and s, and hence we see from (5.3) that u is also a
linear combination of 1 and s. In either case, we find from (5.1) that B%1
is a linear combination of 1 and s. Consequently, a result of Kirkland and
Shader [5] implies that B has at most two eigenvalues whose real part is
not equal to —-%. Moreover, since G is irreducible, it follows that n > 3,

and hence B must have at least one eigenvalue whose real part is —-;-.

Let w be an eigenvector of B corresponding to an eigenvalue A = —% +17.
Then w is orthogonal to both 1 and s (see [13], for example), and hence it
is orthogonal to u. Since [B2 + B + bllw = [s1T — (a — b)uuT|w = 0, we
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find that )\2 + A + b = 0. Substituting A = —— + iy into this last equatlon
yields b = ¢ 1+ ~2 = |)|2. Hence any elgenvalue of B whose real part is ——

is equal to either —5 + iy or —-2- — ¥y, where v = \/l:. Thus, B has a
single complex conjugate pair of eigenvalues with real part equal to —l. (u]
Theorem 5.2. Suppose that B is an n X n tournament matrix and that
nisodd If A= BT g is an irreducible matrix with four distinct
eigenvalues, then B is doubly regular.

Proof: By Proposmon 5. 1 B has at most two eigenvalues whose real part
is not equal to —— Now —5 is not an eigenvalue of B (indeed of any integral
matrix) since it i 1s not an algebralc integer. Consequently, all eigenvalues of
B with real part equal to —2 must come in complex conJugate pairs, and
we find that the number of eigenvalues with real part —§- is even. Since n
is odd, it follows that the number of eigenvalues of B with real part —5
must be n — 1. Since trace(B) = 0, we find that the perron value of B is

221, so that B must be regular (see [6], for example). Further Proposition
5.1 also implies that B has, apart from its perron value 23!, just two other
eigenvalues which form a complex conjugate pair. It now follows that B
must be a doubly regular matrix (see theorem 4.1). o

Theorem 5.3. Suppose that B is an n x n tournament matrix and that
niseven. If A = BOT Ig] is an irreducible matrix with four distinct

eigenvalues, then the eigenvalues of B are

n—2%/n? —dn+4+4(n-2)ya—1
4

and

_lii\/;—l —2vyn—1
: 2 2 )
Further, half of the row sums of B are equal to

Yr-1+{m-2)vn=1
3+ ) ’

-1 yYn-1+@m-2va-1

2 2 .

Proof: From Proposition 5.1, B has at most two eigenvalues with real part
not equal to —%. A result of Kirkland [8] implies that those eigenvalues

and the other half are equal to e
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n—2+\/n2—-h%z

4

are: the perron value’ p= and another eigenvalue

n—2—y n? - 162 —-1)2
o= id ,where62=sTs—n(nT)ands=Bl.ﬁom
Proposition 5.1, B has just two other eigenvalues — a complex conjugate

2. Since trace(B2) = 0,

2)2 1662
we find that 2((n Pant - )+(n—2)(%—72) = 0, which

pair of the form —% + i, each of multiplicity T

16

yields y2 = W It remains only to find § in order to sort out

the eigenvalues of B. As in Proposition 5.1, we have BBT = (a — b)uuT +
1 n?-2_ 8
TB = (q — T = —g42="_" n
bI and BTB = (a — b)uvv™ + bl (note that b 2 +7 yTE) ).
Considering the diagonal entries of BB, we see that for 1 < j <n s; =

% _: for 1 < 7 < n; a similar argument

(a — b)u? + b, whence u; =

n—1-—s;—-b
a—b

multiple of s— (9_—1) 1, we have for some ¥, \/s; —b—y/n—1—-3s;—b=

yields v; = for 1 < j < n. Moreover, since u —v is a

2

forl1 <j7<n. Nowsj;én_l for 1 < 7 < n; in fact the left side is an

2

integer while the right side is not. So it follows that s; =

n(n—1)
2

—1 +z for some

z. From the fact that 17s = , we deduce that % of the sjs are

2

equal to ~— 1 +2 and g of the s}s are equal to n=1_ . Since % =z?,
it remains only to find z in order to complete the proof.
1 1 n-1 . . : 2
Let y = %1 and let z = 3 (s - Tl) (= is unit vector). Since B*1

is a linear combination of 1 and s, a result in [9] implies that a perron vec-
tor p of B is a linear combination of ¥ and z, namely p = (pTy)y + (pT2)=.

-l
Since pTz = (—21——p) P , we see that p; = 1 —y+ = pzisaper—

7n 5
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ron vector for B. Now By = %s =2 3 y + j_z, and from the fact that
Bp, = weﬁndthath——iy+ p— 8 z—_iy_lz
m YA EICEN ) A

It now follows that

—1)2 52
BBTy = (-(n—l—)+%)y+égz

4
and
' BBTz_M +( +1)z.
n 4
Letting vy,--- 1¥nza be orthonormal eigenvectors of B which (collec-

tively) span the eigenspaces corresponding to —% + 4#y. (It can be shown
that any eigenvector of a tournament matrix corresponding to an eigenvalue
whose real part is -3 is always orthogonal to 1, s, and to the eigenspace
corresponding to any other eigenvalue, so such v;’s always exist).

We find that the matrix M = [ylz]vll .- I‘U%_a_ ] is unitary, and that

(-1, &  &a '
4 n 2 0
Svn & +1
M*BBTM = 2 no 4
b
0
I b

Since BBT has a as an eigenvalue of multiplicity one and b as an eigen-
value of multiplicity n — 1, it follows that the eigenvalues of the matrix
2
s
C= are a and b.

5y/n &8 1
_g __|.z
2

Calculating the eigenvalues of C and using the fact that % = z, we find

1 {n2- —2)2
a=§<#+2zz+n @4_2)_*_2:2 ,while

1{n2-2n+2 / —2)2 )
b=§(%+2zz—n @'—-4——)—+:c2 . But b is also equal to
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n? — 2 —8z2
so equating the two expressions for b yields, after some sim-

4(n-2) ’
- - 2 _
plifications, z4 + (n’_zl_) z2 — (n 1)(n16 5n+5) — 0, so that 2 =
n—1 n 2\/ . The formulae for the eigenvalues of B and for Bl
now follow. O

Lemma 5.4. If n is even, then \/ n —14 (n —2)v/n —1 is not an integer,
unless n = 2.

Proof: Suppose that it is an integer, j sa.y, and let n = 2k. Then 2k —
1+2(k—1)y2k—1€Z, and hence v2k —1€ Q. Let 2k -1 =~ w1th

ged(p, q) = 1. It follows that 2k —1 must be a square (nec&ssanlly odd) say
2k —1 =12, Thus {(I2 4+ 1 — 1) = j2. Let a be a prime factor of 2 +1 -1,
say with &*|l2+1—-1, o't} +1—1. Then a|j, so j = a™p for some
m, where a { S. Hence 2m > i.

If 2m > i, we have, since 12 + (12 — 1)l = 52, that a must divide I, a
contradiction.

Thus we see that 2m = i, so that every prime factor of {2 +1—1 has even
multiplicity. Thus I2+1—1 is the square of some integer, say I2+141 = p?
Certainly it is not possible ! > p, unlessl=pu=1.S0l < u,thenl+1< p
and I(l + 1) < p2. This implies {(I + 1) — 1 < p? , a contradiction. m]

Proposition 5.5. Let G be a connected s-c-bigraph, corresponding to
a tournament T and having an irreducible adjacency matrix. Then T is
doubly regular if and only if G has 4 distinct eigenvalues.

Proof: Let T doubly regular. By Theorem 4.3 G has 4 distinct eigenvalues.

Conversely, let G have 4 distinct eigenvalues. If n is odd, by Theorem 5.2

T is doubly regular. Suppose that n is even. Then by Theorem 5.3 half
n—1 \/n—1+‘(n—2)\/n—1

of the row-sums of B are 5 + 2 and the other

n-1_ \/n—1+(n—2)\/n—1
2 2

half are . Since the row-sums of B are
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integers, then so is

(,,,;1“/;_14_(,,_2)\/——,,_1)_

2
(n—l \/r:1+(n—2)\/m>
V2 2

=n-1+(m-2Va-1.

But by the lemma above, we must have n = 2, and it follows that A is not
irreducible, a contradiction. ]
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