On Smallest Maximally Nonhamiltonian Graphs

Lin Xiaohui, Jiang Wenzhou, Zhang Chengxue, Yang Yuansheng
Department of Computer Science & Engineering
Dalian University of Technology

ABSTRACT. Bollobas posed the problem of finding the least number of edges, f(n), in a maximally nonhamiltonian graph of order n. Clark, Entringer and Shapiro showed $f(n) = \lceil 3n/2 \rceil$ for all even $n \geq 36$ and all odd $n \geq 53$. In this paper, we give the values of f(n) for all $n \geq 3$ and show $f(n) = \lceil 3n/2 \rceil$ for all even n > 20 and odd $n \geq 17$.

1 Introduction

A graph G is maximally nonhamiltonian if G is not hamiltonian but G+e is hamiltonian for any edge $e \notin G$. Bollobos [2; p167] posed the problem of finding the least number of edges, f(n), in a maximally nonhamiltonian graph of order n. Bondy [3] has shown that any such graph with order $n \ge 7$ and containing m vertices of degree 2 has at least (3n+m)/2 edges. Thus, we have:

Lemma 1. $f(n) \geq \lceil 3n/2 \rceil$ for all $n \geq 7$.

A cubic graph is 3-edge-colorable if it is hamiltonian. Consequently 4-edge-chromatic cubics are candidates for smallest maximally nonhamiltonian graphs. Isaacs [5] was the first to construct an infinite family $\{J_k\}$ of such graphs. Clark, Entringer and Shapiro [4] have shown that the J_k and variations of them are maximally nonhamiltonian graphs which implies $f(n) = \lceil 3n/2 \rceil$ for all even $n \geq 36$ and all odd $n \geq 53$.

We show that further variations of the J_k are maximally nonhamiltonian graphs and hence, $f(n) = \lceil 3n/2 \rceil$ for all $n \ge 20$. A computer has been used in setting small cases. The values of f(n) for $3 \le n \le 19$ are given in Table 1. The notation is that of [1].

n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
f(n)	2	4	6	9	12	15	15	15	17	18	20	22	24	25	26	28	29

Table 1. The values of f(n) for $3 \le n \le 19$

2 Smallest maximally nonhamiltonian graphs of order $n \ge 20$

We define Isaacs graph J_k for odd $k \geq 3$ as follows:

Let
$$V(J_k) = \{v_i \colon 0 \le i \le 4k - 1\}$$
 and $E(J_k) = E_0 \cup E_1 \cup E_2 \cup E_3$ where
$$E_0 = \cup_{j=0}^{k-1} \{e_{4j,4j+1}, e_{4j,4j+2}, e_{4j,4j+3}\},$$

$$E_1 = \{e_{4j+1,4j+7} \colon 0 \le j \le k - 1\},$$

$$E_2 = \{e_{4j+2,4j+6} \colon 0 \le j \le k - 1\},$$

$$E_3 = \{e_{4j+3,4j+5} \colon 0 \le j \le k - 1\}.$$

Subscripts should be read as modulo 4k. We denote by P_j the subgraph of J_k induced by setting V_{4j} , V_{4j+1} , V_{4j+2} and V_{4j+3} for $0 \le j \le k-1$. Figure 1 shows J_5 and J_7 where we identify each vertex with its subscript.

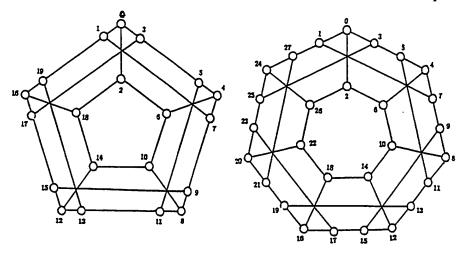


Figure 1. J_5 and J_7

To obtain additional maximally nonhamiltonian graphs we expand an edge to a triangle as follows: $e_{x,y} \in E(G)$ and $z \notin V(G)$, define $G(e_{x,y})$ by $V(G(e_{x,y})) = V(G) \cup \{z\}$ and $E(G(e_{x,y})) = E(G) \cup \{e_{x,z}, e_{y,z}\}$

Furthermore, we expand vertices to triangles. For $v \in V(G)$ with neighbors v_1, v_2, v_3 and $w_1, w_2, w_3 \notin V(G)$, define G(v) by $V(G(v)) = V(G-v) \cup \{w_1, w_2, w_3\}$ and $E(G) = E(G-v) \cup \{e_{v_1,w_1}, e_{v_2,w_2}, e_{v_3,w_3}, e_{w_1,w_2}, e_{w_2,w_3}, e_{w_3,w_3}, e_{$

 $e_{w1,w3}$ }. Let J_k (v_1,\ldots,v_s) denote the graph obtained from J_k by expanding v_1,\ldots,v_s to triangles. We abuse notation slightly by denoting by P_i the subgraph induced by the original vertices of P_i , together with the vertices of the expansion.

Define G_n (20 $\leq n \leq$ 59) as in Table 2.

\overline{m}	$G_{4k+m}(k=5)$	$G_{4k+m}(\text{odd }k\geq 7)$
0	J_5	J_k
1	$J_5(e_{11,13})$	$J_{oldsymbol{k}}(e_{16,18})$
2	$J_5(v_2)$	$J_k(v_0)$
3	$J_5(v_2,e_{11,13})$	$J_{k}(v_{0},e_{16,18})$
4	$J_5(v_2,v_7)$	$J_{m k}(v_0,v_4)$
5	$J_5(v_2,v_7,e_{11,13})$	$J_{m k}(v_0,v_4,e_{16,18})$
6	$J_5(v_2,v_7,v_{17})$	$J_{m k}(v_0,v_4,v_8)$
7	$J_5(v_2, v_7, v_{17}, e_{11,13})$	$J_{k}(v_0, v_4, v_8, e_{16,18})$

Table 2

It is easily seen that G is hamiltonian if G(e) is hamiltonian, and G is hamiltonian if and only if $G(v_1, \ldots, v_s)$ is hamiltonian. Since J_k is nonhamiltonian, we have:

Lemma 2. The graphs G_n are nonhamiltonian graphs for all $n \geq 20$.

We observe that a nonhamiltonian graph is maximally nonhamiltonian if and only if every two nonadjacent vertices are joined by a hamiltonian path.

With the help of a computer, we have verified that G_n (20 $\leq n \leq$ 59) are maximally nonhamiltonian graphs. Since $|E(G_n)| = \lceil 3n/2 \rceil$, we have $f(n) \leq \lceil 3n/2 \rceil$. By lemma 1, $f(n) \geq \lceil 3n/2 \rceil$, hence, we have:

Lemma 3.
$$f(n) = \lceil 3n/2 \rceil$$
 for $20 \le n \le 59$.

For a hamiltonian (u, v)-path P in J_k , let P(i, j) denote the set of edges of P joining $V(P_i)$ to $V(P_j)$. Note that $P(i, i+1) \ge 1$ while |P(i+1, i+2)| = 3 when |P(i, i+1)| = 1 provided $u, v \notin V(P_i) \cup V(P_{i+1}) \cup V(P_{i+2})$.

We say P_i is ordinary if there are at most 5 vertices in it.

Lemma 4. Assume odd $k \ge 11$ and $0 \le m \le 7$ and let P be a hamiltonian (u, v)-path of G_{4k+m} with $|P(i, i+1)| \ge 2$, where $u, v \in V(P_i) \cup V(P_{i+1})$ and P_i , P_{i+1} are ordinary. Then P can be extended to a hamiltonian path P' of G_{4k+8+m} connecting two vertices which correspond to u and v in the natural way so that: $E(P') \supseteq \{e_{s,t} : e_{s,t} \in E(P), 0 \le s, t \le 4i+3\} \cup \{e_{s+8,t+8} : e_{s,t} \in E(P), 4i+4 \le s, t \le 4k+3\}$.

Proof: The various instances of the path P' to be described can be examined using Figure 2.

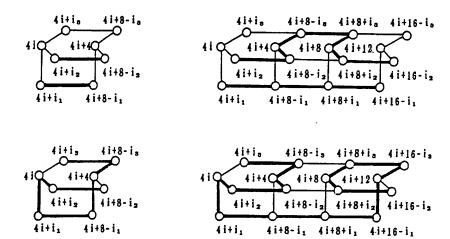


Figure 2. P can be extended to a hamiltonian path P'

First, assume |P(i,i+1)| = 2 and let $e_{4i+i_1,4i+8-i_1}$ and $e_{4i+i_2,4i+8-i_2}$ be those two edges contained in P and let $\{i_1,i_2,i_3\} = \{1,2,3\}$, then if we replace those edges by the following paths: $(4i+i_1,4i+8-i_1,4i+8+i_1,4i+16-i_1)$ and $(4i+i_2,4i+8-i_2,4i+4,4i+4-i_3,4i+12+i_3,4i+8,4i+8+i_2,4i+16-i_2)$.) We get a desired path P'.

Next, assume |P(i,i+1)|=3 and let $4i+i_1$ and $4i+i_2$ be the vertices neighboring 4i on P, and $4i+8-i_1$ and $4i+8-i_3$ be those neighboring 4i+4 on P. In this case, we get a desired path P' by replacing the following subpath: $(4i+i_3,4i+8-i_3,4i+4,4i+8-i_1,4i+i_1,4i,4i+i_2,4i+8-i_2)$ by $(4i+i_3,4i+8-i_3,4i+4,4i+8-i_2,4i+i_2,4i,4i+i_1,4i+8-i_1,4i+8+i_1,4i+12,4i+16-i_3,4i+8+i_3,4i+8+i_2,4i+16-i_2)$

When we replace a hamiltonian path P in G_{4k+m} by the hamiltonian path P' in G_{4k+8+m} in the manner just described we say that P is expanded at (i, i+1).

For G_{4k+m} form an isomorphic copy $G_{4k+m}(i, i+1)$ $(6 \le i \le k)$ of G_{4k-8+m} by deleting vertices $V(P_i) \cup V(P_{i+1})$ and adding edges $\{e_{4i-3,4i+11}, e_{4i-2,4i+10}, e_{4i-1,4i+9}\}$ if $u, v \notin V(P_i) \cup V(P_{i+1})$.

Lemma 5. The graphs G_{4k+m} are maximally hamiltonian graphs for all $k \ge 15$ and $0 \le m \le 7$.

Proof: From Lemma 1, G_{4k+m} are nonhamiltonian, we need only verify that for any two nonadjacent vertices $u, v \in V(G_{4k+m})$, u, v are joined by a hamiltonian path.

Case 1: $u, v \notin V(P_5) \cup V(P_6) \cup V(P_7)$.

By induction there exists special (u, v)-paths P in $G_{4k-8+m} \cong G_{4k+m}$ (6,7). By Lemma 4, expand P at (5,6) if $P(5,6) \geq 2$, otherwise expand P

at (6,7) to obtain special (u,v)-path in G_{4k+m} . Case 2:

$$(u, v \in V(P_5) \cup V(P_6) \cup V(P_7))$$
 or $(u \in V(P_5) \cup V(P_6) \cup V(P_7)$ and $v \notin V(P_8) \cup V(P_9) \cup V(P_{10}))$ or $(v \in V(P_5) \cup V(P_6) \cup V(P_7)$ and $u \notin V(P_8) \cup V(P_9) \cup V(P_{10}))$

By induction, there exists a special (u, v)-path P in $G_{4k-8+m} \cong G_{4k+m}$ (9, 10). By Lemma 4, expand P at (8, 9) if $P(8, 9) \geq 2$, otherwise expand P at (9, 10) to obtain a special (u, v)-path in G_{4k+m} . Case 3:

$$(u \in V(P_5) \cup V(P_6) \cup V(P_7) \text{ and } v \in V(P_8) \cup V(P_9) \cup V(P_{10})) \text{ or } (v \in V(P_5) \cup V(P_6) \cup V(P_7) \text{ and } u \in V(P_8) \cup V(P_9) \cup V(P_{10})).$$

By induction, there exists a special (u, v)-path in $G_{4k-8+m} \cong G_{4k+m}$ (12, 13). By Lemma 4, expand P at (11, 12) if $P(11, 12) \geq 2$, otherwise expand P at (12, 13) to obtain a special (u, v)-path in G_{4k+m} .

From Lemma 3 and Lemma 5, we have:

Theorem 1. $f(n) = \lceil 3n/2 \rceil$ for all $n \ge 20$.

3 Smallest maximally nonhamiltonian graphs with order $n \le 19$ We denote the values for f(n) in Table 1 as f_n for the upper bounds on f(n). We have:

Lemma 6. $f(n) \leq f_n$ for all $3 \leq n \leq 19$.

Proof: It is easily verified that the graph G_n shown in Figure 3 are all maximally nonhamiltonian graphs with order n, $(3 \le n \le 19)$. Since $|E(G_n)| = f_n$, we have $f(n) \le f_n$ for all $3 \le n \le 19$.

For n = 10, 11, 12, 13, 17, 19, $f_n = \lceil 3n/2 \rceil$. By Lemma 1 and Lemma 6, we have:

Lemma 7.
$$f(n) = f_n$$
 for all $n = 10, 11, 12, 13, 17, 19$.

Lemma 8. $f(n) = f_n$ for all n = 14, 16, 18.

Proof: By Lemma 1, $f(14) \ge \lceil 3n/2 \rceil$. By Lemma 6, $f(14) \le f_{14} = 22$. Hence, we need only show that $f(14) \ne 21$. Now, we show it by contradiction. Suppose there is a maximally nonhamiltonian graph H_{14} with order n = 14 and $|E(H_{14})| = 21$. By Bondy [3], H_{14} is a 3-regular graph. For $v \in V(H_{14})$ with neighbours v_1 , v_2 , v_3 and v_1 is not joined to v_2 , there is a cycle with 13 vertices in H_{14} because there is a hamiltonian (v_1, v_2) -path in H_{14} (see Figure 4).

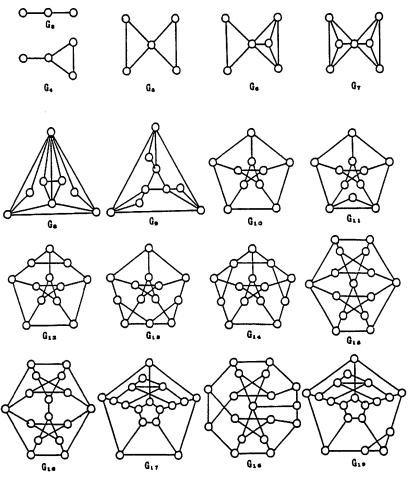


Figure 3. Maximally nonhamiltonian graphs G_n with order $n \ (3 \le n \le 19)$

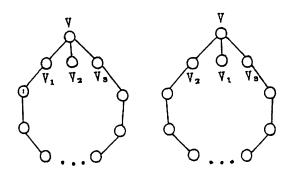


Figure 4. There is a cycle with 13 vertices in H_{14}

Now we begin with $H = C_{13} \cup \{v_{14}\} \cup \{e_{14,13}\}$, repeatly, add edges one by one into H until H is 3-regular. Let

$$S_{14} = \{H_{14}: H_{14} \text{ is maximally nonhamiltonian and } |E(H_{14})| = 21\}$$

Following algorithm will construct all the graphs in S_{14} .

Algorithm 1

```
Procedure construct-graph
1
2
    begin
    H\colon = C_{13} \cup \{v_{14}\} \cup \{e_{14,13}\};
3
    S: = \{H\}; S_2: = \Phi; Q: = 14; S: = \Phi;
    while Q < (3n + 1)/2 do
5
6
      begin
      for every graph H \in S_1 do
7
         for every e_{x,y} \notin E(H) and degree (v_x) \leq 2 and degree (v_y) \leq 2 do
8
9
         begin
         H_1\colon = H + e_{x,y};
10
         if H_1 is nonhamiltonian then S_2: = S_2 \cup \{H_1\}
11
12
         end;
      S_1: = S_2; S_2: = \Phi; Q: = Q + 1
13
14
      end;
15 for every graph H \in S_1 do
      if every two nonadjacent vertices of H are joined by
          a hamiltonian path then S: = S \cup \{H\};
17 output S;
18 end
```

With the help of a computer, we get |S| = 0, a contradiction to the supposition, hence we have f(14) = 22.

In a similar way, we get
$$f(16) = 25$$
 and $f(18) = 28$.

Lemma 9. $f(n) = f_n$ for n = 7, 8, 9, 15.

Proof: Suppose there is a maximally nonhamiltonian graph H_{15} with order n=15 and $|E(H_{15})|=23$. By Bondy [3], there are at most two vertices with degree 4 or one vertex with degree 5. Let

$$m = \sum_{\deg(v_i) \geq 3} (\text{degree } (v_i) - 3).$$

We change Algorithm 1 into Algorithm 2 by replacing the sentences 3,8

with the following sentences accordingly:

- 3* $H: = C_{14} \cup \{v_{15}\} \cup \{e_{15,14}\};$ 8* for every $e_{x,y} \in E(H)$ and $(m < 2 \text{ or degree } (v_x) \le 2$ and degree $(v_y) \le 2$) do
- Let $S_{15} = \{H_{15}: H_{15} \text{ is maximally nonhamiltonian and } |E(H_{15})| = 23\}$. Algorithm 2 will construct all the graphs in S_{15} . With the help of a computer, we get |S| = 0, a contradiction to the supposition, hence, we have f(15) = 24.

In a similar way, we get
$$f(7) = 12$$
, $f(8) = 15$, $f(9) = 15$.

For the $3 \le n \le 6$, it is easy to verify $f(n) = f_n$. So we have:

Theorem 2. $f(n) = f_n$ for all $3 \le n \le 19$.

4 Acknowledgement

The authors are grateful to the Computing Centre of DUT for help in utilization of the computer.

References

- [1] L.W. Beineke and R.J. Wilson, Selected Topics In Graph Theory 3, Academic Press, London, 1989.
- [2] B. Bollobas, Extremal Graph Theory, London: Academic Press, 1978.
- [3] J.A. Bondy, Variations on the hamiltonian theme, Canad. Math. Bull., 15 (1972), 57-62.
- [4] L.H. Clark, R.C. Entringer and H.D. Shapiro, Smallest Maximally Nonhamiltonian Graphs II, Graphs and Combin., 8 (1992), 225-231.
- [5] R. Isaacs, Infinite families of nontrivial graphs which are not Tait colorable. Amer. Math. Monthly, 82 (1975), 221-239.