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ABSTRACT. Bollobas posed the problem of finding the least
number of edges, f(n), in a maximally nonhamiltonian graph of
order n. Clark, Entringer and Shapiro showed f(n) = [3n/2]
for all even n > 36 and all odd n > 53. In this paper, we give
the values of f(n) for all n > 3 and show f(n) = [3n/2] for all
even n > 20 and odd n > 17.

1 Introduction

A graph G is maximally nonhamiltonian if G is not hamiltonian but G +e
is hamiltonian for any edge e ¢ G. Bollobos [2; p167] posed the problem
of finding the least number of edges, f(r), in a maximally nonhamiltonian
graph of order n. Bondy [3] has shown that any such graph with order
n > 7 and containing m vertices of degree 2 has at least (3n +m)/2 edges.
Thus, we have:

Lemma 1. f(n) > [3n/2] foralln > 7.

A cubic graph is 3-edge-colorable if it is hamiltonian. Consequently 4-
edge-chromatic cubics are candidates for smallest maximally nonhamilto-
nian graphs. Isaacs [5] was the first to construct an infinite family {Ji}
of such graphs. Clark, Entringer and Shapiro [4] have shown that the Ji
and variations of them are maximally nonhamiltonian graphs which implies
f(n) = [3n/2] for all even n > 36 and all odd n > 53.

We show that further variations of the Ji are maximally nonhamiltonian
graphs and hence, f(n) = [3n/2] for all n > 20. A computer has been used
in setting small cases. The values of f(r) for 3 < n < 19 are given in Table
1. The notation is that of [1].
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Table 1. The values of f(n) for 3<n <19

2 Smallest maximally nonhamiltonian graphs of order n > 20

We define Isaacs graph Ji for odd k > 3 as follows:
Let V(Ji) = {vi: 0 < i <4k —1} and E(J;) = EyU E; U E; U E5 where

Eo = USZg{eajaz+1, €aj,4542: €45,4543},
Ey, = {eqj+1,4547: 0<j <k -1},
E; = {eqj+24546: 0<j <k -1},
E3 = {e4j13,4545: 0<j < k-1}.

Subscripts should be read as modulo 4k. We denote by P; the subgraph
of Ji induced by setting Vij, Vajt1, Vijy2 and Vijy3 for 0 < j < k- 1.
Figure 1 shows J5 and J; where we identify each vertex with its subscript.

Figure 1. Js and J;

To obtain additional maximally nonhamiltonian graphs we expand an
edge to a triangle as follows: e, € E(G) and z ¢ V(G), define G(ez,y) by
V(G(ezy)) = V(G) U {z} and E(G(es)) = E(C) U {ez,z, €,:}

Furthermore, we expand vertices to triangles. For v € V(G) with neigh-
bors vy, v2, v3 and wy, we, w3 ¢ V(G), define G(v) by V(G(v)) = V(G—-v)U
{w1, w2, w3} and E(G) = E(G — v) U {ev1,w1, €v2,w2, €3,u3) Cw1,w2, €w2 w3,
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w1 w3}. Let Ji (v1,...,v,) denote the graph obtained from Ji by expand-
ing vy, ..., v, to triangles. We abuse notation slightly by denoting by P; the
subgraph induced by the original vertices of P;, together with the vertices
of the expansion. :

Define Gy, (20 <n < 59) as in Table 2.

m Carm(E=5) Car(0dd k> 7)

0 J5 Jk '

1 Js(e1n,13) Jk(e1s,18)

2 Js(ve) Jx(vo)

3 Js(vz,en,13) Jk(vo, €16,18)

4  Js(ve,vr) Jx(vo, v4)

5 Js(va,v7,€11,18) Jik(vo, v4, €16,18)

6 Js(va,ve,v17) Jk(vo,v4, v8)

7 Js(vz,v7,v17,€11,18)  Ji(vo, Vs, vs, €16,18)
Table 2

It is easily seen that G is hamiltonian if G(e) is hamiltonian, and G
is hamiltonian if and only if G (v1,...,vs) is hamiltonian. Since Ji is
nonhamiltonian, we have:

Lemma 2. The graphs G, are nonhamiltonian graphs for alln >20. 0O

We observe that a nonhamiltonian graph is maximally nonhamiltonian
if and only if every two nonadjacent vertices are joined by a hamiltonian
path.

With the help of a computer,we have verified that G, (20 < n < 59)
are maximally nonhamiltonian graphs. Since |E(G,)| = [3n/2], we have
f(n) < [3n/2]. By lemma 1, f(n) > [3n/2], hence, we have:

Lemma 3. f(n) = [3n/2] for 20 < n < 59. o

For a hamiltonian (u, v)-path P in Ji, let P(3, 5) denote the set of edges of
P joining V(P;) to V(P;). Note that P(i,i+1) > 1 while |[P(i+1,i+2)| =3
when |P(i,i+ 1)| = 1 provided u,v ¢ V(B,) UV (Piy1) U V(Piy2).

We say P; is ordinary if there are at most 5 vertices in it.

Lemma 4. Assume odd k > 11 and 0 < m < 7 and let P be a hamiltonian
(u,v)-path of Gakim With |P(i,i+1)| > 2, where u,v € V(P;) UV(Fiy1)
and P;, P, are ordinary. Then P can be extended to a hamiltonian
path P' of Gax484+m connecting two vertices which correspond to u and
v in the natural way so that: E(P') 2 {e,:: esr € E(P),0 < 5,0 <
4343} U {est8,048: €5t € E(P),4i +4 < 5,t <4k +3}.

Proof: The various instances of the path P’ to be described can be exam-
ined using Figure 2.
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Figure 2. P can be extended to a hamiltonian path P’

First, assume IP (i,i + l)l =2 and let €4itiy 4i+8—i, and €4i4ig,4i+8—ig be
those two edges contained in P and let {iy,is,13} = {1,2,3}, then if we
replace those edges by the following paths: (4i 4 4;,4i + 8 —i;,4i + 8 +
11,4+ 16 — ;) and (4i+ 43,4+ 8 —ip,4i + 4,48 +4 — i3,4i + 12+ ig, 4i +
8,41 + 8 4 i2,4i + 16 — i3).) We get a desired path P’.

Next, assume |P(i,i+ 1)| = 3 and let 4i + 4; and 4i + i be the vertices
neighboring 4i on P, and 4i + 8 — 4, and 4i + 8 — i3 be those neighboring
4i+4 on P. In this case, we get a desired path P’ by replacing the following
subpath: (4i+143,4i+8 —i3,4i+ 4,49+ 8 — iy, 4i+ 1y, 46, 4i + 42, 4i+ 8 — i)
by (4i+13,4i+8—i3,4i+4,4i+8 — iz, di+ip, 44, 4i+14y,4i+8 — 4y, 4i + 84
i1,4i+16—1;,4i4+12, 4i+16—13,4i+8+413,4i+8,4i+8+13,4i+ 16 —43) O

When we replace a hamiltonian path P in G4 by the hamiltonian path
P’ in G4484m in the manner just described we say that P is expanded at
(5,i4+1).

For Gyiim form an isomorphic copy Gaxim(i,i+ 1) (6 < i < k) of
G4k—8+m by deleting vertices V(R)UV(P,.{.]) and adding edges {e4i_3,4,-+11,
€4i—2,4i+10, €ai-1,4i49} if u,v ¢ V(B) U V(Piyy).

Lemma 5. The graphs Gyk4m are maximally hamiltonian graphs for all
k>15and 0 <m <.

Proof: From Lemma 1, G4 are nonhamiltonian, we need only verify
that for any two nonadjacent vertices u,v € V(G4ktm), u,v are joined by
a hamiltonian path.
Case 1: u,v ¢ V(Ps)UV(Ps) UV (Py).

By induction there exists special (u,v)-paths P in Gyk—g+m = Gakim
(6,7). By Lemma 4, expand P at (5, 6) if P(5,6) > 2, otherwise expand P
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at (6,7) to obtain special (u,v)-path in Gakim.
Case 2:

(u,v € V(Bs)UV(Ps) UV(Py)) or A
('u. € V(P5) U V(Ps) U V(P-;') and v ¢ V(Pg) U V(Pg) U V(Plo)) or
(v e V(Ps)UV(Ps)UV(P) and u ¢ V(Ps) U V(Po) UV (Pro))

By induction, there exists a special (u,v)-path P in G4k—8+m = Gikim
(9,10). By Lemma 4, expand P at (8,9) if P(8,9) > 2, otherwise expand
P at (9,10) to obtain a special (u,v)-path in Gkm.

Case 3:

(u € V(Ps) UV (Ps) UV(Py) and v € V(Ps) UV(Ps) U V(Py)) o
(v € V(Ps)UV(Ps) UV(Py) and u € V(Ps) UV (Py) UV (Py)).

By induction, there exists a special (u,v)-path in Gak—s+m = Gakim .
(12,13). By Lemma 4, expand P at (11,12) if P(11,12) > 2, otherwise
expand P at (12,13) to obtain a special (u,v)-path in Gakim. o

From Lemma 3 and Lemma 5, we have:
Theorem 1. f(n) = [3n/2] for all n > 20.

3 Smallest maximally nonhamiltonian graphs with order n <19

We denote the values for f(n) in Table 1 as f, for the upper bounds on
f(n). We have:

Lemma 6. f(n) < fn forall 3<n <19.

Proof: lt is easily verified that the graph G, shown in Figure 3 are all
maximally nonhamiltonian graphs with order n, (3 < n < 19). Since
|E(Gp)| = fn, we have f(r) < fn for all 3<n <19. a

For n = 10,11,12,13,17,19, f, = [3n/2]. By Lemma 1 and Lemma 6,
we have:

Lemma 7. f(n) = f, for aﬂ n=10,11,12,13,17,19. m]
Lemma 8. f(n) = f, for all n=14,16,18.

Proof: By Lemma 1, f(14) > [3n/2]. By Lemma 6, f(14) < fis =
22. Hence, we need only show that f(14) # 21. Now, we show it by
contradiction. Suppose there is a maximally nonhamiltonian graph Hj4
with order n = 14 and |E(H14)| = 21. By Bondy (3], Hi4 is a 3-regular
graph. For v € V(Hy4) with neighbours v;, v2, vs and v, is not joined to
va, there is a cycle with 13 vertices in Hy4 because there is a hamiltonian
(v1,v2)-path in Hy4 (see Figure 4).
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Figure 3. Maximally nonhamiltonian graphs G, with
order n (3 <n <19)

¥ v
@ @
Figure 4. There is a cycle with 13 vertices in Hj4
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Now we begin with H = Cj3U {v14} U {€14,13}, repeatly, add edges one
by one into H until H is 3-regular. Let

S14 = {H14: Hy4 is maximally nonhamiltonian and |E(H14)| = 21}

Following algorithm will construct all the graphs in Sy4.

Algorithm 1

© 00U b W

10
11
12
13
14
15

Procedure construct-graph
begin
H: =Ci3U {via} U {e1q,13};
S: ={H};S3: =%;Q: =14;S: =9&;
while Q < (3n+1)/2 do
begin
for every graph H € 5 do
for every ez, ¢ E(H) and degree (v;) < 2 and degree (vy) < 2 do
begin
Hy: =H+ €z,y;
if Hy is nonhamiltonian then Sp: = S, U {H,}
end;
S1: =82;82: =9;Q: =Q+1
end;
for every graph H € S; do

16 if every two nonadjacent vertices of H are joined by
a hamiltonian path then S: =SU {H};

17 output S;

18 end

With the help of a computer, we get |S| = 0, a contradiction to the
supposition, hence we have f(14) = 22.

In a similar way, we get f(16) =25 and f(18) = 28. o
Lemma 9. f(n) = f, for n=171,8,9,15.

Proof: Suppose there is a maximally nonhamiltonian graph H;s with order
n = 15 and |E(H;5)| = 23. By Bondy [3], there are at most two vertices
with degree 4 or one vertex with degree 5. Let

m= Y (degree (v;) —3).

deg(v:)2>3

We change Algorithm 1 into Algorithm 2 by replacing the sentences 3,8
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with the following sentences accordingly:

3* H: =CuU{vis}U{ess1a};
8* for every ez € E(H) and (m < 2 or degree (v;) < 2
and degree (vy) < 2) do

Let Si5 = {His: H)5 is maximally nonhamiltonian and |E(H;5)| = 23}.
Algorithm 2 will construct all the graphs in S;5. With the help of a com-
puter, we get |S| = 0, a contradiction to the supposition, hence, we have
F(15) = 24.

In a similar way, we get f(7) =12, f(8) =15, f(9) = 15. a]
For the 3 < n < 6, it is easy to verify f(n) = fa. So we have:
Theorem 2. f(n) = f, forall 3 <n <19
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