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ABSTRACT. Achromatic index of a graph G is the largest in-
teger k admitting a proper colouring of edges of G in such a
way that each pair of colours appears on some pair of adjacent
edges. It is shown that the achromatic index of Kj2 is 32.

Let f : E(G) — [1,k] = {1,...,k} be a proper colouring of edges of
a graph G, i.e. f(e1) # f(ez2) whenever edges e;,ez are adjacent. The
least possible k, the chromatic index of G, is, according to the well-known
theorem of Vizing, x'(G) € {A(G), A(G) + 1}. If edges of G are properly
coloured by x’(G) colours, then evidently the colouring is complete—each
pair of colours can be observed on some pair of adjacent edges (we shall
say each of these edges realizes the join of corresponding two colours).
Maximizing the number of colours in a proper complete colouring of edges
of G we obtain the aechromatic indez of G. The achromatic index of K, will
be denoted by A(n). ‘

The problem of determining A(n) has been raised probably by Bosék in
1972—see Ninéék [6], where a solution for n < 7 can be found; another solu-
tion for these values of n is disponible in Bories and Jolivet [1]. Bouchet [2]
showed that to wait for a complete solution is practically hopeless. Indeed,
he proved that, for a positive odd integer g and n = ¢+ q+1, A(n) =¢n
if and only if a projective plane of order g exists. This explains probably
why only a modest development of the problem has been recorded, corre-
sponding to solutions for n = 8,9 (Bouchet), n = 10 (Turner et al. [7])
and n = 11 ([7) and Kundrfkové [6]). As concerns the first unknown value
A(12), Jamison [3] found a lower bound 31 and subsequently improved it
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to 32—see [2]. It is easy to see that A(12) < 4(%?) = 33 [3,6]. The aim of
this paper is to determine the exact value of A(12).

Theorem. A(12) = 32.

Proof: Suppose there exists a proper complete colouring f : E(K3) —
(1,33]. For I C [1,33] let G be the graph induced by f~1(I); especially,
for I = {3, k} the graph Gx = G can be one of the following five graphs:
P3U2K; (a disjoint union of a path on three vertices and two K ’s), P4UK>,
2K),2, Ps, Cy. Further let S; be the set of all i-element subsets I of [1, 33]
with G; decomposable into two (edge-disjoint) K s and S; 2 the subset of
8; which contains exactly I's possessing a 2-element subset J with Gy = Ps.

(i) Any edge e yields at most 20 pairs of colours containing f(e), hence
all colour classes induced by f must contain two edges.

(ii) If f(e1) = f(e2) = 4, ey # ez, there are 36 edges adjacent to at
least one of ey, ez, and consequently four pairs of them are coloured by
the same colour; denote the set of corresponding four colours by R(?). To
distinguish between colours from R() and from [1,33] — R(3) — {i} note
that for j € R(?) no component of G;; containing an edge coloured by jis
K>, while for k € [1,33] — R(3) — {i} (exactly) one component of G;; with
an edge coloured by k is K.

(iii) For I C [1,33] let D(I) be the set of all colours from 1,33 -1
appearing on an edge which realizes at least [1|1]] joins with colours from I.
From the completeness of f it follows D(I) = [1,33]—1 and | D(I)| = 33—|I|.

(iv) We have G; # 2K 3 for every 3-element set I C [1,33]. Indeed,
provided Gy = 2K 3 the set D(I) can consist only of colours of edges
incident to one of the centres of involved K 3’s (and their number is at
most 15) and of colours of edges between leaves of these K, 3’s hanging
on differently coloured edges (at most 12 colours), which implies |D(I)| <
27 < 30 =33 — |I| in contradiction with (iii).

(v) If §; is empty, so is 8;_2. To see this let I be an (i — 2)-element,
subset of [1, 33] with G; decomposable into two K ,i-2'sand J its 2-element
subset with G; = Ps. If edges of G are Vi¥+1, 5 =1,2,3,4, any of 35 — ¢
colours of [1,33] — I must occur either on an edge incident to v or v4 (at
most 25 — 2i colours) or on an edge incident to v3 (at most 9 colours) or
on the edge v1v5 or on two independent edges, one incident to v; and the
other to vs. In such a case the number of colours of the last kind is at least
i in contradiction with the emptiness of ;.

(vi) Evidently, S5 = @, since otherwise the colour i of the edge between
the centres of two K s’s forming G with |I| = 5 would contradict (ii) for
|R(3)| = 5. Thus according to (v) 832 = 0.

(vii) If I € Sy, using (iv) and 84,2 = 0 (a trivial consequence of 83 = )
it is clear there exist disjoint 2-element subsets I',I2? of I with Gn =
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Cs = Gp. Let z1, x5 be vertices of G of degree 4 and let Y* = {y},73} =
V(Gp) = {z1,22}, i = 1,2. Three cases are to be distinguished according
to the position of the edge 2122 # z1z2 coloured by the colour k = f(z122).

(viii) If 2,22 ¢ Y! U Y?, the cardinality of D(I U {k}) can be bounded
from above by 12 (colours of edges incident to z; or z3) + 8 (of edges
between 21, z; and Y1 UY2) + 4 (of edges joining Y! to Y2) = 24 which is
insufficient since |[1,33] — (I U {k})| = 28.

(viiii) Provided |{z1,22} N (Y! UY?)| =1 it is easy to see analogously
as in (vii.i) that |D(I U {k})| < 25, still a contradiction with (iii).

(viidii) In the last case there is ¢ € {1,2} such that 2;z; = yiy}. The
cardinality of D(I U {k}) is at most 12 (colours of edges incident to z;
or z3) + 12 (of edges from Y* to V(K12) — ({z1,z2} U Y UY?2)) + 4
(of edges connecting Y! to Y?2); with respect to (iii) the inequality turns
into equality. Let J be the set of 24 colours of the first two kinds, J(v)
the subset of J formed by colours of edges incident to a vertex v and let
J(v1,v2) = J(v1) U J(wg) for v1,v2 € V(K12). Then |J(z1)| = |J(z2)| =
|J(21)| = |J(22)] = 6, J(z1) N J(z2) = O = J(21, 22) N I (21, 22), J (21, 22) C
J(@3~%,437%) (for joins of colours from J(z1, zp) and those from I3~*) and
| (21, 22) N (3, 457%)] < 1 (there are exactly 13 edges incident to 33 ~*
or y3~* which are “free” for colours from J).

Now the colour ! = f (y?“yg") can realize its join with k in two manners.

If f(z;v) = ! for some j € {1, 2} and consequently I € J(z;)NJ(¥3 7, 537%),
then the colour joins between colours from J(z3_;) and the colour !/ can be
realized only at the vertex v, hence J(z3_;) — {f(x3—;v)} € Ss in contra-
diction with (vi).

If f(yjv) =1 for some j € {1,2}, then at least 11 colours from J(z1, z2)
must appear on edges incident to v (due to the join with {) which is impos-
sible since one of 11 edges incident to v is coloured by I ¢ J(z,, z2).

Thus all possibilities lead to a contradiction and we have 84 =0 = S; 5.

(viii) From the assumption I € S5 by help of (iv) and 832 = 0 it follows
there exists a 2-element set J C I such that G; = C,. The graph Gy has
two vertices z;,z, of degree 3, two vertices yi, ¥ of degree i, i = 1,2, and
the set I consists of colours f(z137) = f(z293), f(z133) = f(z23}) and
f(z19l) = f(z2y3)-

Any of 30 colours from [1,33] — I must occur either on an edge incident
to z; or zo (maximum 15 colours) or on one of edges y,-‘y_,z-, i,7 = 1,2,
or simultaneously on an edge incident to y} or ¥ and on an (other) edge
incident to y} or y3. There exists a set J of 11 colours of the last kind.
Then J(y},35) = J, [J(}) N J(@8)| < 1, ¢ = 1,2, and max{|J(y;)};4,5 =
1,2} < 6—if |J(3)| > 7, there is k € {1,2} with |J(y%) N J(g3~)| > 4 and
any 4-element subset of J (y_‘;) N J(y2™*) belongs to 84 which is forbidden
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by (vi). From analogous reasons we have 2 < |J(y}) N J(y,?)l < 3 and
8 < |J(yl,¥})| <9 fori,j=1,2.

Now consider the colour k = f(z3z2); the second occurrence of k must be
on an edge joining two from among vertices of the set Y = {y1,43,%%,%2} -
we have evidently |J(v)| < 4 for each v € V(K32) —Y and as a consequence
|J(v1)] + |J(v2)| < 10 for any edge vvz fulfilling {v;,v2} € Y. We have
seen above that also edges y! yJ, 1,7 = 1,2, are insufficient for the colour
k. Thus we know there is i € {1,2} with f(yiy}) = k. The colour ! =
f (yl "‘) # k due to its join with k must then be used also for an edge
lnmdent to some of vertices z,z2,yt,yh. However, the incidence to z; or
zo must be excluded for otherwise the set {f (a:ly:f"'"), I} would be in 822
in contradiction with (vii). Finally, there exists j € {1,2} and an edge
incident to y} coloured by I.

The colour { has all properties for being able to be chosen to the set J,
hence without loss of generality ! € J. In such a case J(33*)nJ(! 3"2 {1}
and analogously as above |J(y; )| = |J(y3™*)| =6 and |J @5)nJ B )=
[J(5) N J(¥3%)| = 3. As the 4-element set (J@) N J(y =)Hu J@)n
J(y5*)) — {I} belongs to R(l) and R(l) contains also 3 — i colours from I,
we get |[R(l)] > 7—1i > 5, a contradiction with (ii). A conclusion is that
the set S3 must be empty.

(ix) Consider two edges z1z2 and y1y2 coloured by 1. In view of S22 = 0
at most two colours of R(1) are present on the edges z;y;, ¢,5 = 1,2 (for
each such colour k necessarily G1x = Cy4). That is why there exists a colour
of R(l), say 2, occurring on edges w, 21, wa2o between two vertices w;, wy €

= {z1,Z2,%1,y2} and two vertices 21,22 € V(Ky2) — W. From among
colours of 12 edges joining V(K12) — W — {21, 22} to W — {wy, wa} (they
are pairwise different due to the necessity of their joins with the colour 2)
at most three occur on an edge incident to w; or ws, since in such a case
they are in R(1). Thus there exists a set I of at least nine of these colours
which realize their join with 2 on edges incident to 2; or z;. Then we can
find w € W — {wy, wa} with |I(w)| > 5 and i € {1, 2} such that |I(z)| > 3.
As [I(w) N I(z)| > 3 and f(wz;) € I, any 3-element subset of I(w) N (z,)
belongs to 83 and we have obtained a contradiction with (viii).
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