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ABSTRACT. A Coin tossing game — with a biased coin with
probability ¢ for the tail — for n persons was discussed by Moritz
and Williams in 1987, in which the probability for players to
go out in a prescribed order is described by what is commonly
called the “major index” (due to Major MacMahon), which is
an important statistic for the permutation group S,. We first
describe a variation on this game, ‘for which the same ques-
tion is answered in terms of the better known statistic “length
function” in the sense of Coxeter group theory (also called “in-
version number” in combinatorial literature). This entails a
new bijection implying the old equality (due to MacMahon) of
the generating functions for these two statistics.

Next we describe a game for 2n persons where the ‘same’
question is answered in terms of the Coxeter length function
for the reflection group of type B,. We conclude with some
miscellaneous results and question.

Introduction

In a 1987 article [8], Moritz and Williams described a coin-tossing game
discussed a combinatorial problem based on the game. The authors, Moritz
and williams, raised a few natural questions but left them unanswered.
Their questions were related with the elements of the permutation group
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S.. For any element o € Sy, the statistics “descent set”, “major index”,
and “inversion number (length of the permutation)” are well known. The
equality of the generating functions for the two statistics major index and
inversion number is originally due to MacMahon [6], [7], (see also page
16, in [5]). Later in 1968 Foata (cf., [3]) constructed a bijection implying
this equality. To answer the questions put up by Moritz and Williams, we
interpret their statistic in terms of descent set, which readily relates their
statistic with the major index.

It is well-known in Coxeter group theory that the permutation group S,
corrresponds to the Coxeter group of type An_;. Using the “root system”
of the Coxeter group S,, we modify the game in such a way that the prob-
lem discussed in [8] actually boils down to computing the length (inversion
number) of the element o € Sy,. In the process we show that the generating
function for the statistics considered by Moritz and Williams in [8] and the
new statistics (inversion numbers) is the same. Using the two games, we
give a bijection between the statistics major index and inversion number
distinct from that given by Foata. In Section 2, we define another game
which consists of 2n players out of which n players are dummy (correspond-
ing to each of the n players we have dummy players playing the game as
well). The player and its dummy go out of the game as soon as one of
them tosses a head. For this game, the question regarding the probability
of players going out according to a prescribed order is given by the length
function for the Coxeter group of type B. Finally, we conclude this paper
by giving some results and asking a question to the interested readers.

Section 1

In [8], Moritz and Williams considered the following coin-tossing problem:
Players Py, P,, ... , P, each toss a (possibly biased) coin, in turn (in cyclic
order). If a player tosses a head, he goes out of the game and doesn’t toss
again. The remaining players continue to toss until all go out. For any
permutation o of the n players, find the probability that the players will go
out in the order 0(1),0(2),...,0(n). We denote this game by GAME]1.
On page 27 of their paper, Moritz and Williams left a few questions
unanswered. Before coming to the questions let us make our notations
clear most of which have been borrowed from [8]. Let p = Prob(head) and
g = 1 — p = Prob(tail). We will always write a permutation o € S, in
one line notation. That is, if o = [i1,12,...,is] then we have o(j) = i;
for 1 < j < n. For the above o € S,, we write Prob(P,,, P,,,...,P,) to
mean Prob(c), i.e. we have deleted the parentheses. For any permutation
0 € Sy, let us define L4(o) to be the least (minimum) number of players
who must toss tails in order for ¢ to be the order in which the players go
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out. Define forn=1,2,...,
nly=(1+q¢)(1+g+¢%)...Q+g+F+...+¢")).

Note that for ¢ = 1, nl, specializes to the order of the group S,. The
statement and proof of Theorem 1 has been taken from [8] for the sake of
completeness.

Theorem 1. Let us consider GAME 1. Then for o € S,,,

qLA (o)
nly

Prob(o) =

Proof: One can easily verify the result for n = 1. Let the result be true if
the number of players is less than or equal to n — 1. We need to show the
validity for n players. Let o(1) = k. Then

. _d1-9)
Prob(o(1)is the first player to go out of the game) = o
For
_{1 2 3 ... k k+1 k+2 - =n
°=\k 0@ o@B) - o(k) o(k+1) ok+2) --- a(n))’
we define
5= 1 2 e n—-%k eer n—1
~\a(2) @8) --- (n—k+1) --- G(n))’

where 5(i) =o(i) —k (mod n) for 2 <i < n.

Claim: La(c) =k — 1+ L4(5).

The game starts with player P;. We want the player Pi(= Py(1)) to
be the first player to go out with the least number of tails being tossed.
This number is k — 1 as each player beginning with player P, and ending
with player P;_; must all toss tail and the player P comes out of the
game after tossing a head. Now we are left with n — 1 players with player
Py.+1 supposed to start the tossing of the coin. Therefore, in the definition
of & we need to make a cyclic shift of k (the game moves cyclically and
the definition of & clearly fits into this). Hence La(c) = k — 1 + L4(3).
Therefore,

Prob(s) = %;:—") . Prob(3)

qLA (0)

!
Tilq
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using the induction hypothesis and the Claim. Hence the result follows. O

Theorem 1 tells us that for ;1,02 € Sp, Prob(o,) = Prob(o2) if and only
if L4(01) = La(oz). Hence, a partition of S, is induced by taking equal
probabilities as an equivalence relation. These set partitions in turn raised
the following questions:

(a) Is there some other way to characterize this set partition of 5,7
(b) Is there a more algebraic method for computing L4(o)7?

(c) Let us write b(n, k) = Card{o € Sy : L4(0) = k}. Moritz and Williams
in [8] show that b(n, k) equals the coefficient n!;, which also follows
from our interpretation of L4(o) (and known fact about major index
which we discuss presently). The authors, Moritz and Williams, also
asked whether there is a simple formula for the numbers b(n, k)?

To the best of my knowledge, there is no simple answer to (c), except .
the following recursions:

1. For n and k both positive, one has b(n,k) = Y_ b(n — 1, 5), where the
sum is over those integers j that lie between max{0,k—n+1} and k;
with initial values b(n,0) =1 for all n > 0, and b(0,k) =0 for k > 1.

2. b(n, k) =b(n—1,k) +b(n,k—1) if k <n.

Before going to the answers, let us note the following definition.

A Coxeter system is a pair (W,S) where W is the Coxeter group and S
is the set of generators for the group W. The elements of the set S have
relations of the form s? = 1(identity), and (s;s;)™¢ =1 for s; #s; €S
with m;; a positive integer. To get the Coxeter group W using S, it suffices
to have relations only of the above form. Each element w # 1 in W can be
written in the form w = 8155 ...3, for some s; ( not necessarily distinct )
in S. If q is the smallest integer for which the above expression is possible,
then g is called the length of w, written &(w). .

For questions (a) and (b), we define a set Des(o’) ( known in the literature
as the descent set of o € S,,, first defined by MacMahon, see e.g. page 16,
[5] ). For any o € S,, define Des(c) = {i: o(i) > o(i + 1)} and inv(s) =
Card{(s,7) : ¢ < j4,0(3) > o(4)}. The inversion number of any permutation
o € 8, is a combinatorial object which we have denoted by ‘inv’. In
the language of Coxeter groups this number is known as ‘length function’.
For this section, we will write £4(c) in place of (o) to emphasise that
the Permutation group S, is a Coxeter group of type A,—;. For example,
if o = [68125743)], then Des(c) = {2,6,7} and inv(c) = 16. MacMahon
defined the indez (now a days commonly known as major index or in short
“maj”) of a permutation o € S,, to be equal to 2 icDes @ i. Using the above
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definition he showed that the number of permutations having a given major
index k, is the same as the number of permutations having (k inversions)
length k. One can also use this fact to get our interpretation in Lemma 2
below. We now give the answer to the questions (a) and (b). Check that
La(c)=(8-2)+(8—-6)+(8-7)=6+2+1=(5+1)+2+1=09.

Lemma 2. In GAME 1, for o € S,

L) = Y (i)
i€ Des (o)
= n Card{Des (0)} — maj(o).

For t > 1, let us understand a term ‘tth cycle of the game’, before coming
to the proof of Lemma 2. Let the game start with n players, Py, Ps, ..., P,
with Py tossing the coin after P; for 1 < i < n—1. Then the first cycle of
the game ends as soon as the player P, tosses the coin, i.e. the first cycle
consists of exactly n tosses with each player tossing the coin (beginning
with player P; and ending with player P,) exactly once. Suppose that the
players P;,, Pi,,--- , Py, 1 €41 < ip < --+,4; < n are in the game after
the completion of the first cycle. Since player P, has already tossed the
coin, the next player to toss the coin according to the rule of GAME 1 is
P;, . Hence the second cycle of GAME 1 begins with the tossing of the coin
by player P;, and ends with the tossing of the coin by the player P, i.e.
for the 2nd cycle of the game to end each of the I players P;,, P;,,---, P,
has tossed the coin exactly twice from the initial stage of the GAME 1..
In general, suppose that after (¢ — 1)st cycle, the players still playing the
game are P, P;,,... , P, with 1 <14; <i3--- < it < n. Then the tth cycle
consists of k tosses, tossed successively by P;,, P, ..., P;,. That is, for the
tth cycle to be over all the k players starting with P;, and ending with P;,
must have tossed exactly ¢ times after the game began.

Observation: A cycle of the game starts with the player having the
least number tag and ends with the tossing of the coin by the player having
the highest number tag, i.e. each player present in a given cycle has tossed
the coin exactly once in that particular cycle.

Consider o = [68125743]. As mentioned earlier Des(o) = {2, 6, 7}. Since
we want to compute L4 (o) which by definition is the minimum number of
tails required for the players to go out according to the permutation o, we
must have the following:

1. In the first cycle of the game, only the players Pg and P; toss head
and all others toss tails.

2. The players in the second cycle are Py, P2, Ps, Py, Ps and P; (8—2 =6
players in number) who all had tossed tails in the first cycle.

280



3. In the second cycle of the game, the players Py, P;, Ps and P; must
all toss head. The players P; and P, (8 — 6 = 2 players in number)
have to toss tail for the game to move according to the permutation
o (when one is interested in getting the minimum number of tails).

4. In the third cycle of the game, player P3 (8 — 7 = 1 player) tosses a
tail and player P, tosses a head and goes out of the game.

5. Lastly player P tosses a head in the fourth cycle and the game ends.

Proof of Lemma 2: Let Des (¢) = {i1,12,...,im}. Consider the case
of minimum number of tails. In the first cycle, obviously o(1),...,0(i;)
toss heads, but o(i; + 1) does not, since o(i; +1) < o(%;). Similarly, in the
(t+1)st cycle, o(i¢+1),... ,0(it41) toss heads. Thus, in the (£+1)st cycle
there are n — 4, players playing the game, and all these must have tossed
tail in the previous, tth cycle, in order to remain in the game. Thus, the
total number of tails in the minimal case is }_,(n — i,), as required. = O

We now modify GAMEI1 so that we need to find the length (inversion
number) of the permutation o for computing Prob(c) in the modified game.
We note that in GAME]1, the movement of the game was cyclic, i.e. the
player P,, +1 tosses the coin after the player P;, had tossed a head and gone
out of the game, i.e. one can think of the players sitting in a circle and
playing the game. But in the modified game, we replace the above rule by
another rule. The modified game for Sy, is as follows:

GAME 2: The players P, P, ... , P, sit in a row. Assoon as the player
P;, tosses a head, he goes out of the game and doesn’t toss again. But now
the game proceeds a fresh with the first player in the row starting to toss
the coin, i.e. everytime a player goes out, the game starts with the first
player seated in the row.

Note that to compute Prob(c) for o € S, in GAME2, it is enough to
compute the least (minimum) number of players who must toss tail in
order for o to be the order in which the players go out. Suppose o =
[P, P, ...P;] then we need minimum i; — 1 tails before the player F;,
goes out of the game. But that is same thing as saying that the number of
inversions is i; — 1. In general, if P,, is the kth player to go out then we
just need to check how many players P; are after P;, with ¢ < i, to get the
least (minimum) number of tails required for P;, to be the kth player to go
out. Hence, we have the following result.

Theorem 3. In GAME, for o € Su , Prob{a) = L where £4(0) is
defined on page 4.

Remark: 1. Note that, in general L4(o) # La(o™!). For example,
forn =4and o = [2341] we get La(o) = LA(PaP3PyPy) =1 #£ 3 =
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Lo(PyP\P;P;) = La([4123)) = La(o™!), whereas it is well-known that
€a(0) =Ea(0)7!

2. From Lemma. 2, for any o € S, we have Ls(0) =3, p,, (a)(n —1)
Now we get the obvious bijection, say 1, between “L4(-)” and “maj” index,
given by (o) = [n+1-0o(n),n+1-0(rn-1),... ,n+1—-0(1)]. Itis
easily verified that

La@)= Y. (-j)= )Y i=majo)
i€Des (¥(a)) i€Des (o)

and vice-versa:

i €Des (¥(0)) += (0)(3) > ¥(o)(i+1)
< n+l-on-i+l)>n+1-0o(n-1i)
= on-i)>on-i+1)
< n—1¢€ Des(o).

3. Using GAME]1 and GAME2, we get another bijection (basically com-
position of two bijections) between the statistics major index and inversion
number via the bijection 1 mentioned in Remark 2.

Let'7 : S, — S, be a bijection such that for 0 € S,, La(o) = £a(7(a)).
We now give the algorithm for the map 7 : Let the n players be numbered
Py, P,,...,P,. Suppose g = [0(1),0(2),... ,0(n)]. Note that for GAME],
the n players are seated in cyclic order whereas in GAME2 the n players
are seated in a row.

(i) Define 7(¢)(1) = o(1); and assume that we have already defined
7(o)(3) for 1 < i < k. Thus there are exactly n — k players left in both
games.

(%) Suppose according to GAME] the players P;,, P;,, ..., P; _, arestill
in the game and the player P;, has to begin coin-tossing. We also suppose
that in GAME2 the players still in the game are P;,, P;,,...,P;,_, with

P;, the first person seated in the row and is to begin the tossing of the coin.

Suppose the player P;_ is the next player to go out according to o (i.e.
o(k+1) =1i,) in GAMEL. Then the minimum number of tails required for
the player P;_ to go out is r — 1. We define 7(c)(k + 1) = j,..

(ii2) If k = n, then we have got the permutation (o) and the algorithm
clearly indicates that L4 (o) = £4(7(0)).

For example let o = [385972146]. Then Des(c) = {2,4,5,6} and La(o) =
(9-6)+(9—5)+(9—4)+ (9—2) = 19. The algorithm gives: 7(c)(1) = 3,
m(0)(2) = 6, 7(0)(3) =7, T(0)(4) =4, T(o)(5) =9, T(0)(6) =2,
7(0)(7) =8, 7(0)(8) =1, and 7(0)(9) = 5. That is, 7(c) = [367492815]
and check that £4(7(0)) = 19.
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4. The two bijections between major index and inversion number, namely,
the one given by Foata (cf., [3]) using the map, say F and the other due to us
are different. For example, let n = 5 and o = [53124]. Then ¥(0) = [24531]
and 7(o’) = [53214] whereas F(y(0)) = F([24531]) = [42531]. Note that

£4([42531]) = ma([24531]) = La([53124]) = £a([53214]) = 7.
F Y

Section 2

In this section, we propose to modify GAME2 of Section 1 in such a way
that the answer in Theorem 3 which involved the length function for the
Symmetric group (viewed as a Coxeter group) now gets replaced by the
corresponding object for the Coxeter group of type B, (n > 2).

There is an interesting interpretation for the length function of any finite
Coxeter group W in terms of standard combinatorial object known as root
systems (cf., Humphreys [4]). Since we need this interpretation for our
result we briefly recall it.

Given a Coxeter system (W,S), let R be the set of all conjugates of
S in W; sometimes these are known as ‘reflections’. Taking an abstract
second copy —R of the set R, on the disjoint union & = RU (—R) it
is possible to define an action of the group W with certain interesting
geometric properties. Instead of this formal approach (cf., Bourbaki [1]),
we can describe the W action on @ in terms of the set Il of ‘positive roots’,
by which we mean the copy of R inside ®. By —II we mean the copy of
—R. In this case the length function £&(w) for w € W is also given by,
¢(w) = Card(I1 N w~!(~II)), which is equal to the number of roots in I
being sent to —II by w.

By the Coxeter group of type B, is meant the group generated by all
‘reflections’ corresponding to the “type-B, root systems” which is given
by

®:={te;, 1 <i<n}U{xeitell <i<j<n}

I :={e;, 1 <i<n}U{e; tej|l <i<j<nandCard(Il)=n?

For the Coxeter group B,,n > 2 the game is defined as follows. For
each of the n players P;,1 < i < n, we have a dummy player as well.
The players are again made to sit in a row so that the sitting arrangement
looks like Py, Py, ... , Pa,Pa, Pa1,- - - , P1; where P; represents the dummy
player corresponding to player P;. If a player or its dummy tosses a head,
both of them leave the game and do not toss again. Here we have 2n players
playing the game and the game ends as soon as n players have tossed a head
each.

Any element w € B, is an one-to-one map from {1,2,...,n} into {-n,
—(n-1),...,-1,1,2,... ,n} such that {|w(i)|} equals the set {1,2,... ,n}.
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Note that S, is a subgroup of B,, (to be more precise, B, is the semi-direct
product of S, (which permutes e;) and (ZZ/2 ZZ)™ (acting by sign changes
over e;) the latter normal in By,). For w € By, we have the correspondence
between the numbers and the players as follows: if w(i) € {1,2,...,n} then
w(P;) is not a dummy player, but if w(i) € {-1,-2,...,—n} then w(P;)
is & dummy player and we put a bar above the player to indicate this. For
w € B, the last Theorem shows that £g(w) (we are writing £5(w) in place
of é(w) because we are considering the Coxeter group of type By,) gives the
least (minimum number of players including the dummy players who must
toss tails in order for w to be the order in which the players go out.

Theorem 4. Consider the game defined in seéction 2. Here for w €
Lp(w
B,, Prob(w)= 93%25)1 where

R.(q) = JJa+q+@+---+¢*?)
i=1

n

= H(I+Q)(1+q2+q4+...+q2i-2)

=1

n
= 4+ [0+ +d" +--+¢*?)
=1

= (1+¢)"nlpa.

Note that the order of the group B, is equal to R,(1) = 2" nl.

Proof: We shall prove the result by induction. The result is clearly true
for n = 2. Let the result be true if the number of players playing the game
is less than or equal to 2n — 2. Now let us prove it for 2n players. We know
that the positive roots for the Coxeter group of type B, are

1'I:={e,-, 15£Sn}U{e.-:hej|lsi<an}.

We consider two cases:

Case (i): Let w € B, with w(1) = k. Then the minimum number of
tails required for the player Py to be the first to go out of the game is k—1.

We will show that the contribution due to w(1) = k to €g(w) is k — 1.
Since we are considering w(1), we only take roots of the form e; £ e; €
I,2 < j < n. The action of w sends e; £ ¢; to ex % ey(y) if w(j) is a
positive integer, and to ex F eju(j) if w(j) is a negative integer.

Subcase (a): Suppose that w(j) is a positive integer. Then ex + ew(y)
doesn’t belong to —II whereas ex — e,,(;) € —II if and only if w(j) < k.

Subcase (b): If w(j) is a negative integer then ex + €jw(j) doesn’t belong
to —II whereas e — €}, (j) € —II if and only if |w(j)| < k.
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In both the subcases we see that the condition for an element of II to be
sent to —II is |w(j)| < k. And the cardinality of {j : |w(j)| < k} is exactly
k — 1. Hence case (i) is done.

Case (ii): Let w € B, with w(1) = —k. Then the minimum number
of tails required for the player Py to be the first to go out of the game is
n+n—k=2n—k.

We will show that the contribution due to w(1) = —k to £p(w) is also
2n — k. Since we are considering w(1), we only take roots of the form
e1te; €I1,2 < j < n and e;. The action of w sends e; % € to —ex % ey(j)
if w(j) is a positive integer, and to —ex Feju(y)) if w(7) is a negative integer
and e; is sent to —e; € —II.

Subcase (a): Suppose that w(j) is a positive integer. Then —ex — ey(j)
always belongs to —II whereas —ex + €y(;) € —II if and only if w(j) > k.

Subcase (b): If w(j) is a negative integer then —ex —ey(j) always belongs
to —II whereas —ei + €j(j)] € —I1 if and only if |w(j)| > k.

Considering both the subcases, we get the contribution due to w(1) = —k
to be equal to 14+ n—1+4n —k = 2n — k (1 because of —ex, n —1 due
t0 —ek — €ju(s) and n — k due to the cardinality of {j : [w(5)| > k}). So
we have the proof for case (ii) as well. Therefore by induction we get the
required result as far as the numerator is concerned. It is an easy exercise
to show that the denominator is Rn(g)- a

a

Remark 1. Let W be any Coxeter group. Then for w € W, we know
that &(w) = €(w™!). Therefore, for the game on By, of Section 2, we get
£p(w) = €p(w™).

2. For the group B, we have observed that Card(IT) = n? and therefore,
for w € B,, 0<{p(w)<nl

8. One can also generalize the game of Moritz and Williams for the
Coxeter group By (or of type B), (i.e. the players are made to sit in a
circle in the following order: Py, Ps, ..., Pn, P1, Py, ... , P ) and get results
which are similar to what we have in Section 2. This gives rise to computing
another statistics. Now using a slight variation of the map ‘7’ of Remark 3
in Section 1, we can get a bijection between the two statistics which arises
due to the two games in section 2.

Open problem: Is it possible to define a coin-tossing game for each
Coxeter group W such that the problem of finding the required probability
boils down to computing the length of the element w € W.

Acknowledgements: I wish to thank Professor R.B. Bapat for bring-
ing this problem to my attention, Professor D.-N. Verma for some helpful
suggestions, and finally the anonymous referee for critically going through
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