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1 Introduction

Let K be a non-empty set of positive integers, and let v be a positive integer.
A pairwise balanced design of order v with block sizes from K (that is, a
PBDIv, K]) is a pair (V, B), where V is a v-set and B is a family of subsets
(blocks) of V which satisfy the properties:

1 If B € B then |B| € K;
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2 Every pair of distinct elements of V occurs in precisely one block of
B.

Let B(K) = {v:3 a PBD[v,k]}. Then B(K) is called the PBD-closure
of K.

Let o(K) = ged{k—1:k € K} and B(K) = ged{k(k—1):k € K}. Then
the conditions v — 1 = 0 (mod a(K)) and v(v — 1) = 0 (mod B(k)) are
easily seen to be necessary for the existence of a PBD[v, k]. R.M. Wilson
has shown that they are also asymptotically sufficient, that is, there exists a
constant vo = vo(K) such that if v > vo and these conditions are satisfied,
then there exists a PBD[v,k]. The estimates of the constant vo(K) as
determined by Wilson’s theory are extremely large, and in specific instances
much stronger results are possible. For example, in [12] the exact closure for
all subsets of {3,4,5,6,7,8,9,10} which contain 3 are determined. It is our
purpose here to investigate the closures of all subsets of {4,5,...,9} which
contain the element 4. As will be seen in the next section, this extends the
work of several authors.

2 Notation and Conventions

For convenience, let X = {5,6,7,8,9}. For notation and the definitions
of group divisible design (GDD), transversal design (TD), balanced incom-
plete block design (BIBD), and related designs and the notion of essential
elements in PBD-closed sets see [4]. Let X = {5,6,...,9}. Then the
sets to be considered are those of the form {4} UY, where Y belongs to
P(X), the power set of X. Thus there are in principle 32 sets to be in-
vestigated. Fortunately the size of this investigation is greatly reduced by
the work of other investigators. These results are summarized in the next
section. To present these results the following notation is introduced. Let
Ny, = {z:z € Z,z > n} and Nya(a1,az,...,a, mod m) = Uici{z:z €
N3n,z = a; (mod m)}. If K is a non-empty set of positive integers and
if m = min(K), then clearly the integers z satisfying 1 < z < m cannot
occur in B(K). Therefore we adopt the convention that B(K) is a subset
of N> Let K be any subset of positive integers. For convenience, we also
define By(K) by By(K) = {v:3 a PBD[v,K U {f*}}, that is, By(K) is
the set of orders of PBDs with block sizes in K which contain a flat of size
f. Similarly if S is a PBD-closed set, then Sy = {v:3 a PBD[v,SU{f*}].
Note that if v € Sy, and if f € S, then v € S.
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3 Known results

In this section existing results are surveyed, and in some instances, updated.

Result 3.1 (Hanani [13])
B({4}) = N»4(1,4 mod 12).

By removing a point from a PBD[12t + 1,{4}] or a PBD[12t + 4, {4}],
a {4}-GDD of type 3* or a {4}-GDD of type 3%+! is obtained. This is the
most frequently used ingredient GDD for recursive constructions.O

Result 3.2 (Wilson [{])
B({4,5}) = N4(0,1 mod 4) \ {8,9,12}.

Result 3.3 (Brouwer [5])
B({4,7}) = N>4(1 mod 3) \ {10,19}.

Result 3.4 (Bennett [2])
Let
E = {5,9,12,17,20,21, 24, 33,41, 44,45}

and S = {48,53, 60,65, 68,69, 72,77,81, 89,93, 96,101, 105, 108, 117,129, 153,
156,161,164, 165, 168, 173,177}. Then B({4,8}) D N>4(0,1mod 4)\ (E U
S). Further if v € E, then v ¢ B({4,8}).

The following is an update of that result.

Lemma 3.1 Let S; = {48,53,60,65,69,77,89,101, 161,164,173}, and let
E be as in Result 3.4. Then B({4,8}) 2 N»4(0,1 mod 4)\(EUS). Further
ifveEE, then v ¢ B({4,8}).

Proof. It is necessary to show that {68, 72,81, 93,96, 105, 108, 117, 129, 153,
156,165,168,177} € B({4,8}).

It is shown in [8] that {68,72} C B({4,8}).

In the following, an automorphism group and a set of base blocks for
each design on the specified number of points is given. (If no group is
specified, the design is based on the cyclic group of the given order.)

v=81:{0,3,5,9,22,33,47,74}, {0,15,60,61}, {0,18,26,49}.
‘U=93!G=Za><231.

Let B: = {(0,0),(0,1),(0,5),(0,25),(1,0),(1,2),(1,10),(1,19)} and
B; = {(0,0),(0,16),(1,29),(2,9)}. We obtain two more blocks by multi-
plying B, by (1,5) and (1, 25).
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v=96: {0,24,48,72} {0,1,3,7,18,32,40,45} {0,9,28,75}
{0,10,26,60} {0,12,35,55).

v=105: {0,1,8,33,35,38,48,52} {0,24,46,55}
{0,16,36,79} {0,6,18,82} {0,21,49,60}.

v=108: {0,27,54,81} {0,1,4,10,21,46,78,90}
{0,2, 15,73} {0,5,52,60} {0,7,23,82}
{0, 14, 38,79}

v=117: {0,1,21,33,44,50,52,113} {0,24,27,103}
{0,15,28,87} {0,9,16,55} {0,18,40,82}
{0, 10, 36,70}

Ifv=129: G=Za X Z43.
Let By = {(0,1),(0,6),(0, 36),(0,3),(0,18),(0,22),(1,0),(2,0)},
By = {(0,0),(0, 1)’(1:5):(2:33)}’ and
Bs = {(0,0),(0,9),(1,35),(2,23)}. We obtain four more blocks by multi-
plying B; and Bj by (1,6) and (1, 36).

v=153: {0,1,38,41,49,51,63,68} {0,18,24,52} {0,9,69,130}
{0,15,73,94) {0,33,72,108} {0,16,42,98}
{0,7,54,83} {0,4,57,122} {0,46,66,110}.

v=156: {0,1,25,62,69,71,92,105} {0,27,75,148} {0,22,60,63}
{0,19,45,74} {0,15,33,99} {0,5,103,107} {0, 14,128,139}
{0,10,50,150} {0,20,97,144} {0,39,78,117}.

v=165: {0,1,19,47,63,74,95,99} {0,13,30,54} {0,39,100,114}
{0, 40, 60,82} {0,12,69,162} {0,45,79,160}
{0,35,112,122} {0, 38,64,97} {0,23,31,159} {0,2,9,58}.

v=168: {0,1,25,62,69,71,92,105} {0,22,27,60} {0,75,78,94}
{0,4,57,83} {0,12,51,66} {0,45,73,154} {0,32,118,128}
{0,8,55,120} {0,11,31,150} {0,35,52,162} {0,42,84,126}.

v=177: {0,1,19,41,57,68,93,101} {0,4,30,51} {0,39,48,163}
{0,64,69,160} {0,12,54,99} {0,43,63,118} {0,72,79,145}
{0,24,34,131} {0,35,37,50} {0,23,106,171} {0,58,61,89}.
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Result 3.5 (Lenz [15])

(a) Let By = {6,11,12,14,15,18,19, 23,26, 27, 30, 38,42,51, 86,90},
B, = {62,66,74,78}, and Bs = {39,50,54,63}.

(i) B({4,5,7}) 2 N4\ (B1U B2 UB3 U {8,9}).
(1) B({4,5,7,8}) 2 N34\ (B1U B2 U {9}).
(iii) B({4) 5) 7: 8) 9}) 2 N24 \ Bl-

(b) LetCy = {8,9,10,11,12,14, 15,18, 19,23} and C; = {7,43,47}. Then

(1) B({4,5,6}) 2 N>4\ (C1UCy),
(") B({4,5,6,7}) 2 NZ4\CI- o

It is an immediate consequence of Result 3.2 that B({4,5,8}) = N>4(0,1 mod
4)\ {9,12}, B({4,5,9}) = N»4(0,1 mod 4) \ {8,12}, and B({4,5,8,9}) =
N>4(0,1mod 4) \ {12}.

In the other direction, Drake and Larson [7] have proved the following
result.

Result 3.6 [7] Let K be a set of posilive integers and let m denote the
smallest integer in K. Suppose that there ezists a PBD[v, k] which contains
blocks By, and By of sizes h and k respectively. Then

(i) v>(m—-1)k+h—m+1; hence

(ii)) v> (m— 1)k + 1, with equality if and only if there exists a resolvable
BIBD(k(m—2)+1,m-1,1).

It is known that 23 ¢ B({4,5,6,7}) (See [16]). Therefore the set C; of
Result 3.5(b) contains only elements which do not lie in B({4,5,6}) and
B({4,5,6,7}).

Let F = {10, 11, 12, 14, 15, 18, 19, 23}. Then the above observations
together with Results 3.5(b) and 3.6 show that B({4,5,6,8}) = N4\
({7,9}UF), and that B({4,5,6,9}) = N»4\({7,8}UF), B({4,5,6,7,8}) =
N>4\({9}UF), B({4,5,6,7,9}) = N>4\({8}UF), and B({4,5,6,7,8,9}) =
Nxa\(F)."

Lemma 3.2 {38,50,62,63,66,74,78,86,90} C B({4,5,7}).
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Proof. Greig [8] has shown that 38 € B({4,5,7}).

Gronau and Bennett [10] have shown that there exist a PBD[90, {4, 5, 7}]
and a PBD[86,{4,5,7}]. These results were obtained by deleting all but
one point on a block in a TD[5, 18] and TD[5,17) to obtain a {4,5}-GDD
of types 17418! and 16*17 respectively. A further ingredient employed is
a PBDI[21,{4,5,4*}] (which is also a PBD[21,{4,5,5%}]) which can be
created by deleting 4 points from the group of a TD[5,5]. Applying the
singular direct product (see [11] , Theorem 2.3). using the {4,5}-GDD of
type 17418! and the above ingredient (viewed as a PBD[21, {4,5,4"}]), a
PBD(90,{4,5,22*}] is obtained. Similarly using the {4,5}-GDD of type
16*17" with this ingredient (viewed as a PBD[21, {4,5,5%}]), a PBDI[86,{4,5,2
is obtained. Further there is a PBD[22, {4, 7}] (which can be obtained by
adjoining 7 “infinite” points to a Kirkman Triple System of order 15), so
the block of size 22 can be “broken up” to yield a PBD(86,{4,5,7}] and a
PBDI90,{4,5,7}]. Further we have {50, 62,74} C B({4,5,7}) as is shown
below.

v =50: Let V = {0,1} x (GF(5?), generated by z2 = z + 3), under the
action (—, GF(52%)).

Then the base blocks are

{(0,32),(0,3z + 2),(0,4z + 3),(1,0),(1,1),(1,2z + 1),(1,3z + 3)}
{(0,0),(1,0),(1,2),(1,4z + 2),(L,z + 1)}
{(0,0),(0,1),(0,2z),(1,3z)}.

Two additional base blocks are obtained by multiplying the second com-
ponents of the last block by 3z + 3 and 2z + 1.

v =62: V = {0,1} x Z3; under the action (—, mod 31). Then the base
blocks are

{(0,1),(0,5),(0,25),(1,0),(1,16),(1,18),(1,28)}
{(0,0),(1,0),(1,1),(1,5)(1,25) {(0,0), (1,12), (1,21), (1, 29)}
{(0,11),(0,24),(0,27),(1,0)}{(0,0),(0,21),(0, 22),(1,9)}

Two additional base blocks are obtained by multiplying the second compo-
nent in the last blocks by 5 and 25 (mod 31).
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v =63: V = {0,1} x Z2g under the action (—, mod 28) together with
the points 001,002, -,007. Then the base blocks are

{001,002, -+, 007}
{(0,0),(0,14),(1,0),(1,14)}*
{(0,0),(0,1),(1,2),(1,5)}"
{(0,0),(0,3),(1,6),(1,13)}"

{(0’ 0)! (0’ 7)) (ll 15)’ (1’ 26)}‘
{(0,0),(0,2),(1,18),(1,24)}
{(0,8),(1,0),(1,1),(1,5),(1,20)}
{(0,19),(1,0),(1,2),(1,18)}
{(0,0),(0,4),(0,9),(0,17)}
{(0,0),(0,6),(0,16),(1,23)}

(*) The first four blocks generate 7 parallel classes, say, C,,C3,...,C7. The
point oco; is added to each block of class C;, i=1,2,...,7.
v =66: V = {0,1} x Z33 under the action (—, mod 33). The base blocks

1(0,0),(2,0),(5,0), (9,0, (15,0),(0, 1), 8, 1)}
{(0,0),(0,4),(0,18),(1,2),(1,24)}
{(0,4),(0,15),(1,0),(1,8),(1,23)}
{(1,0),(1,1),(1,3),(1,7)}

{(0,0),(0,6),(1,7),(1,21)}
{(0,0),(0,13),(1,3),(1,27)}
{(0,22),(1,0),(1,5),(1,17)}
v="T4: V = {0,1} X Z37 under the action (—,mod 37). Then the base
blocks are

{(0,0),(0,1), (0,10), (0,26), (1,2),(1, 15), (1, 20)}
{(0,0),(1,0),(1,7),(1,33),(1,34)},{(1,0),(1,6),(1,8),(1,23)}
{(0,0),(0,2),(0,5),(1,32)},{(0,0),(0,8),(1,16),(1,25)}.

Two additional base blocks are obtained by multiplying the second compo-
nents of the last block by 10 and 26 (mod 37). D
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v=78: V = {0,1} x Z39 under the action (—, mod 39). Then the base
blocks are

{(0,0),(0,2),(0,5),(0,9),(0,15),(1,0),(1,8)}
{(0,0),(0,8),(0,19),(1,15),(1,29)}
{(0,8),(0,26),(1,0),(1,10),(1,27)}
{(1,0),(1,2),(1,5),(1,9)}
{(0,0),(0,12),(1,17),(1,28)}
{(0,0),(0,14),(1,18),(1,36)}
{(0,28),(1,0),(1,1),(1,16)}
{(0,25),(1,0),(1,6),(1,19)}
{(0,0),(0,1),(0,17),(1,26)}

Lemma 3.3 {43,47} C B(4,5,6).
Proof. See [18].

Let Dis7 = {6,8,9,10,11,12,14,15,18,19,23, 26,27} and let Py =
{30,39,42,51,54}.

Result 3.7 (i) If v > 4, then v € B({4,5,7}) with the ezception of
v € Dys7 and possible exceplion of v € Pygy.

(i) If v > 4, then v € B({4,5,7,8}) with the ezception of v € Dys7\{8}
and the possible exception of v € {30,42,51}.

(iii) If v > 4, then v € B({4,5,7,9}) with the ezception of v € D457\ {9}
and the possible exception of v € {30, 39,42, 50,51,54}.

(iv) Ifv >4, thenv € B({4,5,7,8,9}) with the ezeption of v € Dys7\{8, 9}
and possible ezception of v € {30,51}.

Proof. The result follows from those in [13] together with the results of
Lemma 3.2. O

4 Closure of the remaining two element sets

In this section, the closure of {4,6} and {4,9} is investigated. We use [1] as
our source for the TDs and ITDs employed in any constructions requiring
such ingredients.

Construction 4.1 Let S be a PBD-closed set whick contains {4}. Sup-
pose that there exists a TD[5,m], and that t is an integer satisfying 0 <t <
m. If3m+ f € Sy, then 12m + 3t + f € Sazyy.
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Proof. By deleting a point from PG(2, 3) and AG(2,4), {4}-GDDs of types
3% and 3° respectively are obtained. The result follows immediately from
Wilson’s Fundamental Construction (WFC), see ([11], Theorem 2.5) and
the singular direct product (SDP) (see [11], Theorem 2.3). O

Construction 4.2 Let S be a PBD-closed set which contains {4,6}. Sup-
pose that there ezxists a TD[6,m]. Let a and b be positive integers salisfying
a+b<m. If3m+ f €Sy, then 15m +5a + 6b+ f € Ssatep4s-

Proof. As noted in Construction 4.1, there exists a {4}-GDD of type 3°.
By adjoining a new point to the groups of a TD[4, 5] then deleting another
point, a {4,6}-GDD of type 3%5! is obtained. Also, by adjoining six points
to a KTS(15), a {4}-GDD of type 3°6! is obtained. Let Go,Gy,...,Gs
be the groups of a TD[6, m]. Assign a weight of three to every point in
G1,Gs,...,Gs, then assign a weight of five to a points of Gy, a weight of
six to b such points, and a weight of zero to the remaining points. The
result follows from WFC and SDP.O

Construction 4.3 [11] (Singular Indirect Product)

Let S be a PBD-closed set which contains an integer k. Suppose that
m+ f €Sy and that there ezists a TD[k,m + a]-TD[k, a] for some a satis-
fying0<a< f. Then km+(k—1)a+ f € S_1)ass-

For sake of completeness the following construction is also included.

Construction 4.4 Let S be a PBD-closed set which contains {4}. If3s+
1€S,then9s+4€8S.

Proof. Adjoin 3s + 1 points to a KTS(6s + 3).0

Lemma 4.1 Suppose that v is an inleger salisfyingv =1 (mod 3), v > 25.
If
v ¢ {34, 46,55,67,70,79, 82},

then v € B({4,6}).

Proof. If v = 1,4 (mod 12), v € B({4}). We only need to consider
when v = 7,10 (mod 12). If v = 31, or 91, then v € B({6}). If v = 43,
use the Extended Brouwer Construction [11] with ¢ = ¢ = 3 to obtain
43 € B({4,6}). If v = 58, take a TD[6,9] with a flat of order 4. If v > 94,
then v € B({4,31*}) by [20]. The result follows.D
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Lemma 4.2 Suppose that v is an integer satisfyingv =0 (mod 3), v > 21.
If
v & {24,27,33,39,45,51,57,63,75,87,93, 99,123, 129, 159},

then v € B({4,6}).

Proof. If v =0 (mod 6), v > 30, then there exists a {4}-GDD of type 6"
for all » > 5. We only need to deal with the case when v = 3 (mod 6).
If v = 21, take a T'D[4,5) and add a point to each group to obtain 21 €
B({4,6}). If v = 69, take a resolvable 3-GDD of type 6% and add one point
to each parallel class of blocks to obtain a {4}-GDD of type 6821'. This
gives 69 € B({4,6}). If v = 81, take a T'D[4,20] and add a point at infinity
to obtain 81 € B({4,6}). If v = 105, apply Construction 4.2 with m =5,
a=1,b=4and f = 1. For v = 111, the result follows easily from the fact
that 111 € B({6}). If v = 117, take a T'D[4, 29] and add a point at infinity.
If v = 135, apply Construction 4.2 withm =7, a=6and b= f=0. Ifv =
141, take a {4}-GDD of type 207 and add a point to each group. If v = 147,
apply Construction 4.2 with m =7,a=6,b=2and f = 0. If v = 153,
apply Construction 4.2 with m =7, a = 4, b = 3 and f = 10 by noting that
31 € B({4,10*}) [20]. Apply Construction 4.2 witha =1, b € {4,5,6,7,8},
m =9 and f =1 to obtain 165,171,177,183,189 € B({4,6}). If v = 195,
apply Construction 4.2 with m =11, e =1, b = 8 and f = 13, the required
IPBD is obtaining by adjoining infinite points from KTS(27). Applying
Construction 4.2 witha=4,b € {0,1,2,3,4,5,6,7}, m = 11 and f = 16 to
obtain 201,207,213,219,225,231,237,243 € B({4,6}). Finally, applying
Construction 4.2 witha=1,b € {4,5,...,m—1}, f =1and m > 13, odd,
m # 15,23,27, to obtain 15m + 30,15m + 36,...,21m € B({4,6}). This
gives v € B({4,6}) for all v > 225 and v = 3 (mod 6) with the exception
of v = 279. If v = 279, apply Construction 4.2 with m = 13, a = 13,
b =0 and f = 13. The existence of the ingredient IPBD is obtained by
adjoining infinite points to KT'S(39). The result follows.O
We also have some direct constructions.

Lemma 4.3 {55,57,63,67,70,82,93,99,123,129, 159} C B({4,6}).
Proof. If v = 55, let G = Z355. Then the base blocks are

{0,1,3,8,23,44},
{0,4,10,28},
{0,9,25,38}.
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If v=67,let G = Z¢7, B, = {1,2,7,29,37,58} and
B, = {0,2,14,17}.
We can multiply Bz by 37 and 29 to obtain 2 further blocks. It is easy to
check that they form a difference family.

For v = 57, we use a non-abelian group. Let V = Z3 x Z,9 under the
action of addition (—,mod19) and 7 : (¢,u) — (¢ + 1,7u). Then the base

blocks are
{(0,0),(0,8),(1,0),(1,18),(2,0),(2,12)}
{(0,6),(0,10),(1,4),(1,13),(2,9),(2,15)}
{(0,0),(0,13),(0,18),(1,15)}
{(0,0),(0,12),(0,10),(1,5)}
{(0,1),(0,3),(1,4),(2,10)}
{(0,13),(1,0),(1,2),(2,9)}
{(0,6),(1,15),(2,0),(2,14)}.

For v = 63, we use the group used for v = 57, together with the six invariant
points 003, 007, 0010, 0012, 0013, 0015. Then the base blocks are

{(0,0),(0,3),(1,0),(1,2),(2,0),(2,14)}
{(0,6),(0,15),(1,4),(1,10),(2,9),(2,13)}
{(0,0),(0,1),(0,5),(0,7)}
{(1,0),(1,7),(1,11),(1,16)}
{(2,0),(2,1),(2,11),(2,17)}
{(0,0),(0,8),(1,9),(2,10)}
{(0,13),(1,0),(1,18),(2,6)}
{(0,4),(1,15),(2,0),(2,12)}

{o0s (0,165),(1,17:),(2,5:)} © € {3,7,10,12,13, 15}

{o03,007,0010, 0012, 0013, 0015}
For v = 70, let V = Zgg U {00}. Then the base blocks are

{0,1,3,7,15,40}
{0,5,18,27}

{0, 10, 26,45}
{0,11, 28, 49}
{00,0,23,46}.

Ifv="79,let G = Z79. For base blocks, take B, = {1,2,23,31, 46,55},
B, = {0,12,28,39} and
B3 = {0,6,37,75}.
We multiply Bs by 23 and 55 to obtain 2 further blocks. It is easy to check
that this is the required difference family. O
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For v = 82, let V = Zg; U {c0}. Then the base blocks are

{0,1,5,11,23,53}
{0,2,9, 64}
{0,3,16,47}
{0,8, 32,56}
{00,0,27,54}.

For v = 93, again we use a non-abelian group. Let V = Z3 x Z3, under the
action of addition (—,31) and 7(t,u) — (¢ + 1,5u). Then the base blocks

are
{(0,0),(0,1),(1,0),(1,5),(2,0),(2,25)}
{(0,2),(0,4),(1,10),(1,20),(2,7),(2,19)}
{(0’0)’(0’3)’(1’ 1)’(2’4)} '
{(0,0),(0,4),(1,7),(1,21)}
{(0,0),(0,5),(1,15),(1,28)}
{(0,0),(0,10),(1,22),(1,24)}
{(0,0),(0,6),(0,23),(1,25)}
{(0,0),(0,7),(0,18),(1,27)}.

For v = 99, we use the group used for v = 93, with six invariant points
009, 0019, 0012, 0014, 0019, 0024. The base blocks are

{(0,0),(0,1),(1,0),(1,5),(2,0),(2,25)}
{(0,2),(0,4),(1,10),(1,20),(2,7),(2,19)}
{(0,0),(0,3),(1,1),(2,4)}

{(0,0),(0,4),(0,9),(0,15)}
{(0,0),(0,7),(1,3),(1,22)}

{(0,0),(0.8),(1,25), (1, 28)}
{(0,0),(0,14),(1,21),(1,23)}

{00z, (0,82),(1,9z), (2, 142)} = € {2,10,12,14,19, 24}

{002, 0010, 0012, 0014, 19, 0024}-



For v = 123, we use (Z3 x Z39)U{o0;, i € {1,3,4,7,11,12} where Z3x Z39
is under the action of (—, 39) and (,u) — (t+1,16u). The base blocks are

{(0,0),(0,1),(1,0),(1,16),(2,0), (2,22)}
{(0,3),(0,7),(1,9),(1,34),(2,27), (2,37)}
{(0,1),(0,8),(1,6),(2,18)}
{(0,1),(0,11), (1, 18), (2, 12)}
{(0,0),(0,6),(0,26),(1,34)}
{(0,0),(0,9),(0,11),(1,22)}
{(0,0),(0,18),(0,23), (1,4)}
{(0,0),(0,3),(0,15),(1,29)}
{(0,0),(0,22), (0,14), (0, 32)}

{001, (0,84), (1,114),(2,204)}, i € {1,3,4,7,11,12}
{o0: : i€{1,3,4,7,11,12}.

For v = 129, we use a non-abelian group. Let V = Z3 x Z43 under the
action of addition (—, mod 43) and 7 : (t,u) — (¢ + 1,6u). Then the base

blocks are
{(0,0),(0,1),(1,0),(1,6),(2,0),(2,36)}
{(0,2),(0,4),(1,12),(1,24),(2,15),(2,29)}
{(0,0),(0,3),(1,1),(2,5)}
{(0,0),(0,4),(1,7),(1,16)}
{(0,0),(0,5),(1,2),(1,9)}
{(0,0),(0,8),(1,34),(1,37)}
{(0,0),(0,7),(0,32),(1,25)}
{(0,0),(0,9),(0,19),(1,33)}
{(0,0),(0,12),(1,35),(1,39)}
{(0,0),(0,13),(1,30),(1,32)}
{(0,0),(0,17),(1,28),(1,38)}.

For v = 159, we use the same group as for v = 129, together with the
set of 30 invariant points {oo; : i € S} where

S=1{2,3,4,7,9,11,12,14,16,17,18,19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32,
33, 34, 35, 36,37, 38, 39, 40}
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The base blocks are

{(0,0),(0,1),(1,0),(1,6),(2,0),(2,36)}
{(0,2),(0,4),(1,12),(1,24),(2,29),(2,15)}
{(0,1),(0,4),(1,2),(2,6)}
{(0,0),(0,4),(0,9),(0,31)}
{(0,0),(0,6),(0,19),(0,29)}
{(0,0),(0,7),(0,15),(0,32)}
{o0:,(0,264),(1,274),(2,334)},i € S,

together with a PBD(30, {4,6}) defined on the set of 30 invariant points.
a

Let Dg={7, 9, 10, 12, 15, 18, 19, 22, 24, 27} and
Pye= {33, 34, 39, 45, 46, 51, 55, 75, 87 }.

The following proof requires the use of packing numbers (see [19]).

Lemma 4.4 If v € Dyg, then v ¢ B({4,6}).

Proof. If v # 1,4 (mod 12), then v & B({4}). So if v € B({4,6}), then
any such PBD must have a block of size six. Applying Result 3.6, we have
v > 19.

If v = 19, then there must be a point lying on at least two blocks of size
six. Apply Result 3.6 to obtain v > 21, a contradiction.

If v = 22, every point must be on 0 (mod 3) lines of size six. In par-
ticular, there must be a point on at least three lines. If the point is on six
six-lines, then there is a contradiction since the structure has more than 22
points. Assume that there is a point which lies on exactly three six-lines.
By removing the point, a {4,6}-GDD of type 325% is obtained. Now, a
point on a group of size three must also lie on a six-line, but it is impossible
to have a line of size six because there are only five groups.

If v = 24, and every point is on exactly one six-line, then this is equiva-
lent to a T'D[4, 6] which is known not to exist (See [4]). Again, it is trivial
to see that every point must be on 1 (mod 3) lines of size six. It is impos-
sible to have a point on seven or more six-lines because the structure must
have at least 36 points. Hence, there must be a point lying on exactly three
six-lines. By removing the point, we obtain a {4,6}-GDD of type 53!. By
a simple parity argument, a point on the group of size three must be on at
least one block of size six. However, there are only five groups, so this is
impossible. Hence, we have 24 ¢ B({4,6}).

If v = 27, every point must be on 1 (mod 3) blocks of size six. Suppose
there is a point on at least seven blocks of size six, this gives a contradiction
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since the structure would have at least 31 points. Hence, every point is on
at most four blocks of size six, it must have at most 18 blocks of size six.
By counting pairs, it is easy to see that the number of block of size six must
be odd. By removing a point on four blocks of size six, we obtain a {4, 6}-
GDD of type 5432, this means that we must have at least three more blocks
of size six. Hence, the number of blocks of size six is at least seven. Let b;
be the number of point on 7 blocks of size six. Trivially, bgp42 = bar = 0
for all k and b3p47 = 0 for all k > 0. Let b be the number of blocks of size
6. A simple counting argument reveals that 2b — 9 = by. If b = 7, there
are five points lying on four blocks of size six, dually, this means that we
can pack seven points into 5 blocks of size 4 without repeating a pair, and
this is impossible. If there exists a PBD(27,{4,6}] containing b blocks of
size six, we must able to pack b points blocks of size four in 26 — 9 points
for some 9 < b < 17. However, this violates the pair packing number (see
[19]). Hence, there does not exist a PBD[27,{4,6}].0

Theorem 4.1 In view of the above, if v > 4, v = 0,1 (mod 3) and v ¢
D4g U Pyg, then v € B({4,6}). Moreover, if v € Dy, then v € B({4,6}).

We now consider the closure of {4,9}.

It is easy to see that the necessary condition for v € B({4,9}) is
v = 0,1,4,9 (mod 12). In the case v = 1,4 (mod 12), we have v €
B({4}) C B({4,9}). Hence, we only need to deal with the case when
v=0,9 (mod 12).

Lemma 4.5 36t,36t + 9 € B({4,9}) for allt > 0.

Proof. The result follows from the existence of {4}-GDD of type 9* and
9%+1 (See [14]).0

Lemma 4.6 24t +9 € B({4,9}).

Proof. This follows by taking a {4}-GDD of type 83'*! (See [14]) and add
a point at infinity.0

From the above lemmas, we only need to consider v if v = 12, 21, 24,
48, 60,69 (mod 72).

Lemma 4.7 120,132, 141,165, 168,213 € B({4,9}).

Proof. If v = 120,136, apply Construction 4.3 with ¥ = 4, m = 29,32,
‘a = 0 and f = 4 respectively. If v = 141, apply Construction 4.1 with
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m=9,t=8and f=9. If v =165, apply Construction 4.1 with m = 11,
t =11 and f = 0. If v = 168, apply Construction 4.3 with k = 4, m = 41,
a=0and f = 4. If v = 213, apply Construction 4.1 with m = 15, ¢t = 11
and f=0. 0

Lemma 4.8 {228,237,240, 264,276,285} C B({4,9}).

Proof. If v = 228 or v = 237, apply Construction 4.1 withm = 16,t =9 or
t=12and f = 9. If v = 240, take a T'D[9, 9] and remove four points from a
block to obtain a {5,8,9}-GDD of type 8%9%. Assign weight three to every
point and use ingredient {4}-GDDs of type 3" for r = 5,8,9 to get a {4}-
GDD of type 24*27°. Adjoin a flat of size nine to obtain 240 € B({4,9)}).
If v = 264, apply Construction 4.1 with m =19, t =12and f = 0. If
v = 276, apply Construction 4.3 with k=4,a=0,m=68and f=4. If
v = 285, apply Construction 4.1 with m =19,t=19and f=0. O

Lemma 4.9 {300,309, 312, 336,348,357} C B({4,9}).

Proof. If v = 300, take an RT'D[9,27] and adjoin four points to each of the
14 parallel classes of blocks, and one point to the groups for a total addition
of 57 points. Replace each block of size 13 by a PBD[13,{4}] in such a
fashion that the four adjoined points form a block, then delete that block.
Fill in the hole by a PBDI[57,{4,9}]. If v = 309, take a {4}-GDD of type 47
and assign weight 11 to each point to obtain a {4}-GDD of type 447. The
result follows by adding an infinite point to each group. If v = 312, apply
Construction 4.3 with m =77, k =4,a=0and f = 4. If v = 336, take
a RTDI[9,13] and remove eight points in one block. Use another parallel
class to define a {8,9,13}-GDD of type 839%. Assign weight three to each
point and take a flat of size nine to obtain 336 € B({4,9}). If v = 348,
take a RT'D[9,9] and add 4 infinite points each to the 26 parallel class of
block and a point to each group in analogy with the case v = 300. Fill in
the hole with a PBD[105, {4,9}]. If v = 357, apply Construction 4.1 with
m=27,t=11and f=0. 0

Lemma 4.10 {372,381,384,408,420,429} C B({4,9}).

Proof. If v = 372, by adding an exterior point in the {0, 8}-arc of order 120
embedded in the PG(2, 16) to obtain a {8,9}-GDD of type 8'49'. Assigning
weight three to each point and take a flat of order nine to obtain 372 €
B({4,9}). If v = 384, apply Construction 4.3 with k =4, m=93,a=1
and f = 13. The required IPBD is obtained by taking a {4}-IGDD of
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type (8,1)" [21] and adding a point together with filling in the hole with a
block of size 13. If v = 408 or v = 420, apply Construction 4.3 with k = 4,
m =101 or m = 104, ¢ = 0 and f = 4. If v = 429, apply Construction 4.1
withm=32,t=12and f=9. 0

Lemma 4.11 Ifr =0 (mod 4), r > 40 and 3(r —4)+9,3(r—3) +9,3r +
9,3(r+1)+9 € B({4,9*}), then 12r+33,12r+36,12r+45,12r +48,12r +
57,12r + 60, 12r + 69, 12r + 72 € B({4,9}).

Proof. Apply Construction 4.1 with m = », ¢ = 8 and f = 9 to obtain
12r + 33 € B({4,9}). Take m =r,t = 9 and f = 9 to obtain 12r 4 36 €
B({4,9}). Take m =r, t = 12 and f = 8 to obtain 12r + 45 € B({4,9}).
Take m = r+1,¢ =9 and f = 9 to obtain 12r + 48 € B({4,9}). Take
m=r,t=12and f =9 to obtain 12r + 57 € B({4,9}). Take m =r — 4,
t =33 and f =9 to obtain 12r + 60 € B({4,9}). Take m=r+1,t =16
and f = 9 to obtain 12r + 69 € B({4,9}). Take m = r — 3, t = 33 and
f =9 to obtain 12r + 72 € B({4,9}). D
The next two lemmas are a variant of Lemma 4.11.

Lemma 4.12 Ifr =0 (mod 4), r > 56 and 3(r—4)+9,3r+9,3(r+4)+9 €
B({4,9}), then 12r+33,12r +36, 12r +45, 12r +48, 12r + 57, 12r+ 60, 12r+
69,12r + 72 € B({4,9)).

Proof. In view of the proof of Lemma 4.11, we only need to concern
with the case 12t + 48,12t + 69 and 12¢ + 72. Apply Construction 4.1 with
m=r—8,t =45and f = 9 to obtain 12r+48 € B({4,9}). Take m = r—4,
t =36 and f = 9 to obtain 12r + 69 € B({4,9}). Take m =r — 4, t = 37
and f =9 to obtain 12t + 72 € B({4,9}). O

Lemma 4.13 Ifv > 432 and v = 0,9 (mod 12), then v € B({4,9}).

Proof. From the proof of Lemma 4.11, if we take r = 32, we establish the
result for 12(32)+48 = 432 and 12(32)+69 = 453. If v = 12(32)+60 = 444,
this is obtained by applying Construction 4.3 with m =109, k =4,a =5
and f = 13, the ingredient IPBD is simply obtained by taking a TD[9, 13].
If v = 12(32) + 72 = 456, apply Construction 4.3 with m = 113, k = 4,
a = 0 and f = 4. If we take r = 36, we obtain 12(36) + 33,12(36) +
36, 12(36) + 45, 12(36) + 48,12(36) + 57,12(36) + 69 € B({4,9}). For v =
12(36) + 60 = 492, apply Construction 4.1 with m = 35,¢ = 24 and f = 0.
For v = 12(36) 4 72 = 504, this is simply obtained by taking a {4}-GDD of
type 9°6. For any r = 0 (mod 4) with 40 < r < 140 and r # 48, it is easy
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to verify that r satisfies the conditions of at least one of the Lemma 4.11
or Lemma 4.12. Hence, we obtain the conclusion for v > 432 and v < 1752
with the possible exceptions in the interval from 609 to 648. When r = 48,
from the proof of Lemma 4.11, we only need to deal with 12(48) +48 = 624
and 12(48) + 69 = 645. If v = 624, apply Construction 4.1 with m = 41,
t=41and f = 9. If v = 645, apply Construction 4.1 with m =43, ¢ = 43
and f = 0. Therefore, we have obtained for any v € [432,1752] and v = 0,9

(mod 12), we have v € B({4,9}). The result follows by induction and
Lemma 4.11. O

Let Dyo= {12, 21, 24, 48} and

Py = {60, 69, 84, 93, 96, 192 }.

Lemma 4.14 {156,204} C B(4,9).

Proof. For v = 156, note that there are 4-GDDs of type 6° and 6%9?
(see[11])). Take a {5}-GDD of type 4% and give all but one of the points
weight 6 and give the remaining point weight 9. This produces a {4}-GDD
of type 24527}, Adjoin 9 new points to this GDD, making use of the fact
that {33,36} C B(4,9,9%). The result is a PBD[156, {4,9}]. For v = 204,
it is know that there exists a {4}-GDD of type 8" which contains nine
parallel classes (Greig, [8]). Adjoin 9 points to this to obtain a {4,5}-GDD
of type 879!. Give all points of this GDD weight 3 to produce a 4-GDD
of type 24727!. Adjoin a further 9 points to this GDD using the fact that
{33,36} C B(4,9,9") to produce a PBD[204, {4,9}]. O

Lemma 4.15 12,21,24,48 ¢ B({4,9}).

Proof. Trivially, 12,21,24,48 ¢ B({4}). So if 12,21,24,48 € B({4,9}),
a corresponding PBD must have at least one block of size nine. Applying
Result 3.6, we have v > 28. This proves 12,21,24 ¢ B({4,9}). If v = 48,
suppose to the contrary, a PBD(48, {4,9}] exists. Let z be a point in the
design and r; be the number of blocks of size i that point z is on. Evidently,
47 = 3r4+8ro. This gives rg =1 (mod 3). Hence, every point in on at least
a block of size nine. Let b be the number of blocks of size nine. Trivially,
b > 6 holds. Let a; be the number of points in the design so that it is on ¢
blocks of size nine. We have shown that a3; = asr4.2 = 0 for all £, a positive
integer. It is easy to see that a; = 0 for all i > 7 since otherwise, there must
be at least 48 points in this design. So, we must have 48 = a; + a4. Also,
we know that 9b = a; + 4a4. This gives a3 = 3b — 16. Consider only the
blocks of size 9. In the dual, it forms a packing design with b points and
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3b— 16 blocks of size 4 with replication number at most 9. The pair packing
number for b points is at most |2[25t]]. This gives a contradiction. O

Theorem 4.2 If v = 0,1,4,9 (mod 12), v > 4 and v € Dyg U Py, then
v € B({4,9}). Moreover, if v € Dyg, then v ¢ B({4,9}).

Proof. This is a summary of the foregoing. O

5 Closure of three element sets containing 4
and 6 but not 5

In this section, the closures of {4,6,7}, {4,6,8} and {4,6,9} are investi-
gated.

We now deal with the closure of {4,6,7}.

It is easy to check that the necessary conditions are v = 0,1 (mod 3).

Since the necessary conditions for the closure of the set {4,6} are also
v = 0,1 (mod 3), we eliminate numbers that are in the list of possible
exceptions for B({4,6}). First of all, we note that if v = 1 (mod 3) and
v # 10,19, then v € B({4,7}). So, we only need to deal with multiples of
3.

Lemma 5.1 {39,51,75} C B(4,6,7).

Proof. If v = 39, take a T'D[5,8] embedded in the PG(2,8) and line-flip a
five-line [11].

If v = 51, note that D ={ 0,1,3,9,27,81,61,49,56,77} is a difference set
for PG(2,9). Let X={ 1, 2, 3, 6, 8, 9, 11, 13, 14, 16, 18, 19, 20, 22, 24, 26,
27, 29, 31, 33, 34, 35, 37, 39, 40, 42, 48, 52, 53, 54, 55, 57, 58, 60, 61, 65,
66, 67, 68, 71, 72, 73, 74, 78, 79, 80, 81, 83, 85, 87, 89}. It is possible to
verify that X is an {1,4,6,7}-arc of order 51 in PG(2,9). Hence, we have
51 € B({4,6,7}).

For v = 75, note that 21 € B(4,6,4*). Apply Construction 4.3 with
k=4, m=17,anda =1 to get 75 € B({4,6,7}. O

Let Dy4e7 = {9, 10,12,15,18,19,24,27} and P47 = {33, 45,75, 87}.

Lemma 5.2 For any v € Dag7, v € B({4,6,7}).

Proof. Evidently, Dss7 C D4 and it is proved in Theorem 4.1 that if
v € Dyg, then v & B({4,6}). If v € Dyg7 C Dys and v € B({4,6,7}), then
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a PBD|v,{4,6,7}] must have a block of size seven. Applying Result 3.6,
we have v > 22.
If v = 24 and a design exists, by a simple argument, every point is on 1

(mod 3) blocks of size six. If every point is on one block of size six, then it
cannot have a block of size seven. Also, if there is a point on at least seven
blocks of size six, then this must have at least 43 points. Hence, there must
be a point on exactly four blocks of size six. Removing this point yields a
{4,6,7}-GDD of type 5*3!. Since such a design cannot have a block of size
seven, this implies 24 € B({4,6}), a contradiction.

If v = 27 and a design exists, by a similar argument, there must be a
point lying on exactly four blocks of size six. Removing this point yields a
{4,6,7}-GDD of type 5*32, but such a design cannot have a block of size
seven. This implies 27 € B({4,6}), a contradiction. O

This yields the following theorem.

Theorem 5.1 If v > 4, v = 0,1 (mod 3) and v & Dyg7 U Pyer, then
v € B({4,6,7}). Moreover, if v € D¢y, then v & B({4,6,7}).

Proof. Clearly B({4,6}) C B({4,6,7}), so B({4,6,7}) C Nn>0(0,1 mod
3)\{7,9,10,12,18,19,22,24, 27, 33, 34, 39, 45,46, 51,55, 75,87}. But
{22,34,46,55} C B({4,7}), and by Lemma 5.1, we have {39,51} C B({4,6,7}),
and trivially 7 is also in this set. The result follows. O

We now deal with the closure of {4,6,8}.

First of all, we note that by the results for B({4,6}) and B({4,8}),
a simple argument shows that we only have to get a closure result for
v = 2,11 (mod 12). For the other congruence classes, all we need to do is
to eliminate some exceptions from the list of B({4,6}) and B({4,8}) using
the extra flexibility gained by permitting all three block sizes.

We start off with some direct constructions from finite projective planes.

The following construction is due to M. Greig [9].

Lemma 5.3 {38,44,45,46} C B({4,6,8}).

Proof. For v = 38, note that in [3], it is established that there is a
{0,1,5,7,9}-arc of order 47 in the projective plane of order 8. By deleting
a line of size nine from this arc, we obtain 38 € B({4,6,8}). For v = 44,
note that the Denniston arcs in [11] are nested. In a PG(2,8), remove 28
points of the {0,4}-arc to obtain a {5,9}-arc of order 45. The result follows
by performing a line-flip of a 5-line. O

For v = 45, note that D = {0,1,3,9,27,81,61,49,56,77} is a difference
set for the desarguesian projective plane of order nine. Let X ={1, 2, 3, 6,
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7, 8,9, 10, 11, 16, 18, 20, 21, 22, 24, 27, 29, 30, 31, 33, 34, 37,40, 48, 53,
54, 55, 60, 61, 63, 64, 66, 68, 71, 72, 73, 74, 79, 81, 82, 85, 87, 88, 89, 90}.
It is easily verified that X is a {1,4,6,8}-arc of order 45 in this plane.

For v = 46, note that it is shown in [3] that there is a {5, 7, 9}-arc of order
55 in PG(2,8). By deleting an exterior line, we obtain a PBD[46, {4, 6, 8}].
(m]

Next, we deal with the cases where v is relatively small. In dealing
with the next cases, we often use the fact that if v = 7,10 (mod 12), and
v # 10,19 then v € B({4,7*}).

Lemma 5.4 {74,83,86,98, 119,122, 146, 155,182, 215,266} C B({4, 6, 8}].

v="T4: V ={0,1} x Z37. under the action (—,37). Then the base
blocks are

{(0,0),(0,5),(0,13),(0,19),(1,0),(1,3),(1,4),(1,30)}
{(0,9),(0,12),(0,16), (1,18),(1,24), (1, 32)}
{(1,0),(1,2),(1,15),(1,20)} {(0,0),(1,1),(1,10),(1,26)}
{(0,0),(0,2),(0,28),(1,33)}

Multiply the 2nd components in the last block by 10 and 26 mod 37, to
obtain two more additional base blocks.
Proof. v = 83: V = Z75 U {00g,004,...,007}.
Then the base blocks are
{o0i, 55 + 4,6 +5j + 4,27+ 55 + 4,13 4+ 55 + 4,29 + 55 + i},
i=0,1,...,4; j=0,1,...,14.
{o054i,3j +14,55+3j +14,38+3j+1},i=0,1,2;5=0,...,24
{000, e ,007}
{0,3,12,36}, {0,15,34,26}, {0,18,28,50}, {0,30,31,35}.
v =86: V = Zgs U {c0}. Then the base blocks are

{0,2,22,26, 66,69, 74,75}, {0,7, 30,57}, {0, 15, 46, 71},
{c0,0,17,34,51,68}.

v=98: V{0,1} x Z,9, under the action (—,49). Then the base blocks
are

{(Osy)’ (0,18y), (0, 303/))(1:0)} fory=1,2,3,7
{(0,0),(0,4), 0,22),(0,23),(1,0),(1,24). (1, 34), 1, 40)}
{(0,24),(0,34),(0,40), (1,7),(1,14),(1,28)}
{(1,0),(1,3), 1,5), (1,4} {(1,0),(1,1),(1,18), (1,50}
{(0,0),(0,41),(1,7),(1,33)}
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Multiply the 2nd components in the last block by 18 and 30 mod 49, to
obtain two additional base blocks.

For v = 119, we use a non-abelian group. Let V = (Z3x Z37)U{00;,i €
{14,28,23,24,28,30, 31,33} where the action Z3 x Z37 is given by (-, 37)
and T'(¢,u) — (¢ + 1,10u). Then the base blocks are

{(0,0),(0,1),(1,0),(1,10),(2,0), (2,26)}
{(0,0),(0,2),(1,3),(2,4)}
{(0,0),(0,3),(1,5),(2,1)}
{(0,0),(0,4),(0,9),(1,15)}
{(0,0),(0,6),(0,18),(1,22)}
{(0,0),(0,7),(0,20),(1,22)}
{(0,0),(0,8),(0,23),(1,21)}
{(0,0),(0,10),(0,21),(1,29)}

{ooi : i € {14,18,23,24,28,30,31,33}}.

v =122: V = {0,1} x Zg;, under the action (—,61). Then the base
blocks are

{(0,),(0,13y),(0,47y),(1,0) for y = 1,18,31
{(0,0),(1,9),(1,13y),(1,47y)} for y = 28,36
{(0,0),(0,3),(0,19),(0,39),(1,0),(1,32),(1,40), (1,50)}
{(0,16),(0,20), (0,25),(1,43),(1,10),(1,8)}
{(1,0),(1,1),(1,13),(1,47)}

{(1,0),(1,3),(1,19),(1,39)}

{(0,0),(0,13),(0,53),(1,17)} {(0,0),(0,24),(1,33),(1,39)}

Multiply the 2nd components in the last 2 blocks by 13 and 47 mod 61, to
obtain four additional base blocks.
v=146: V = Z145 U {co0}. Then the base blocks are

{0,1,5,17,49,72,80,94}, {0, 25,60, 117}, {0, 11, 20, 30},
{0,21, 27,64}, {0, 13, 47,54}, {0, 26, 62,95}, {0, 2,40, 86},
{0,3,18,42}, {cc 0,29, 58,87, 116}.

v=155: V = (23 x Z49) U {o0; : i € {6,20,24,39,43,44,45,46} where
the action on Z3 x Z49 is (—,49) and T'(¢,u) — (t+1,30u). Then the base
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blocks are

{(0,0),(0,1),(1,0),(1,30),(2,0), (2,0, (2, 18)}
{(0v5)'(0:21)»(113):(1742):(2741)’(2)35)}
{(0,7),(0,35), (1,19),(1,21),(2,28), (2,42)}
{(0,8),(0,19),(1,44), (1,31), (2, 46), (2, 48)}
{(0,9),(0,40), (1,25), (1,24), (2, 15), (2, 34)}
{(0,18),(0,42), (1,1), (1, 35), (2, 30), (2,21)}
{(0,24),(0,43), (1, 34), (1, 16), (2, 40), (2, 39)}
{(0,0),(0,2),(1,3),(2,4)}
{(0,0),(0,3),(1,5),(2,1)}
{(0,0),(0,4),(0,9),(1,13)}
{(0,0),(0,6), 0,13), (0, 23)}
{(0,0),(0,8),(0,20), (0,35)}

{004, (0,22i),(1,234),(2,4i)}i € {6,20,39,43,44,45,46}
{ooi : i€ {6,20,24,39,43,44,45,46}}.

v =182: V = {0,1} x Zq; under the action (—,91). Then the base
blocks are

{(0) y)r (0$ lSy)x (0! 74y)s (1, 0)} for y=1,7,22,45
{(0,0), (l,y), (1,16y),(1, T4y)} for y = 3,9, 25,33
{(0,0),(0,3),(0,40),(0,48),(1,0),(1,34),(1,59), (1,89)}
{(0,34), (0,559, (0, 89), (1, 50), (L, 60), (1,72)}

{(0,50), (0.60), (0,72). (1.13), (1,26), (1,52)}
{(1,4),(1,8),(1,23),(1,37),(1,46),(1,64)}
{(0,0),(0,44),(0,67),(0,71)}
{(0,0),(0,1),(0,7),(1,65)}
{(0,0),(0,13),(1,20),(1,27)}
{(0,0),(0,19),(1,79),(1,80)}

Multiply the second component in each of the last three blocks by 16 and
74 (mod 91) to obtain an additional six base blocks.
v =215: V = Z5 x Z43. Then the base blocks are

{(01 0)’ (1’ 0)’ (2l 9)! (2l 11)7 (2’ 23)’ (3| 1)’ (3l 6)7 (3’ 36)}
{(0,0),(1,10),(1,16),(1,17),(2,4), (2, 15),(2,24),(3,0)}
{(0,5),(0,8),(0,30),(2,3), (2, 18),(2,22)}
{(0,0),(0,10),(1,1),(3,13)}, {(0,0),(1,2),(2,20),(3,24)}

Multiply the last 2 blocks of size 4 by (1,y) for y = 6 and 36, to obtain
four additional base blocks.
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v =266: V = {0,1} x Z,33 under the action (—, mod 133). Then the
base blocks are

{(0,3),(0,11y), (0,121y),(1,0)} for y = 1,7, 14,17, 28, 29, 30, 45, 47
{(0,0),(1,), (1,11y), (1,121y)} for y = 1,2, 16, 23, 26, 29, 34,40
{(0,0),(0, 36), (0,100), (0, 130), (1,0), (1, 60), (1, 78), (1, 128)}

{(0’ 18): (0’ 50)1 (0, 65)) (13 27)) (l) 31)1 (1! 75)}
{(1,0),(1,9),(1,11y),(1,121y)} for y = 7,30
{(0,0),(0,1),(0,19),(1,66)},{(0,0),(0,72),(0,113),(1,7)}
{(0,0),(0,43),(0,128),(1,62)},{(0,0),(0,27),(1,48),(1,85)}
{(0,0),(1,39),(1,90),(1,125)},{(0,0),(1,73),(1,113),(1,130)}

Multiply the second components by the last six blocks by 11 and 121 (mod 133)
to obtain an additional twelve base blocks. O

Lemma 5.5 {107,134,143,158, 164, 167,173,179,191,194, 203,218} C B({4,6,8}

Proof. The results follows from Construction 4.2, using the following table.

v m a b f

107
134
143
158
164
167
173
179
191
194
203
218

DL © ©w©©®©ommaan
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This establishes the lemma. O
Lemma 5.6 Ifv =11 (mod 12) and v > 227, then v € B({4,6,8}).

Proof. Apply Construction 4.2 with m = 4t + 1 wheret > 3, f = 7 and
choose 5a + 6b so that a + b < 13 and 5a + 6b + 7 € {32,44,56,68,80}. O
We now only deal with the case when v =2 (mod 12).
To aid in this, we introduce the following construction.
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Construction 5.1 Suppose that there ezists a TD[8,m)] and that z,y and
z are nonnegative integers satisfyingz+y+z <m. Lel w =z + 18y +62.
If {6m,w} C B({4,6,8}), then 42m + w € B({4,6,8}).

Proof. For the RTDs, RGDDs, and GDDs required below, see [11]. From
an RTD(6,7) together with a new point adjoined to the groups, a {6,8}-
GDD of type 671! is obtained. From a 3-RGDD of type 67, a 4-GDD of type
6718! is obtained by adjoining 18 new points one to each resolution class,
together with a new group consisting of the 18 new points. Also there exist
4-GDDs of type 67 and 68. Let G be a group of TD[8,m]. Assign a weight of
6 to every point in the remaining groups of this design and assign a weight
of 1 to z points, a weight of 18 to y points and a weight of 6 to z points of
G1, and assign a weight of 0 to the remaining m — (z + y + z) points of G;.
Then apply Wilson’s Fundamental Construction to obtain a {4, 6,8}-GDD
of type (6m)7w!. This can be viewed as a PBD[42m + w, {4,6,8}]. O

Lemma 5.7 {242, 254,278,290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410}
C B({4,6,8)}).

Proof. For v = 242, start with a TD[7,17) and give all points weight two.
(There exists a 4-GDD of type 2", see [11]), to obtain a 4-GDD of type 347.
Since 38 € B({4,6,8,4"}), we can adjoin four new points to the group of
this GDD to get 242 € B({4,6,8}).

For v = 290, note that there exists an RTD[6,8]. First view this as a
{6,8}-GDD of type 6%. In the last group of this TD, give one point weight
zero, and all remaining points weight six. It is noted in [11] that there
exists a 4-GDD of type 6" for all n > 5, so the necessary ingredients exists
to produce a 4-GDD of type 36730 from the above weighting. Since 38
and 44 are in B({4,6,8,8"}), we can adjoint eight new points to obtain a
PBD[290, {4, 6, 8}].

For v = 302, note that there exists a {6,8}-GDD of type 772! (see [11]).
Adjoin a point to each group to obtain a PBD[52, {6,8,3°}]. Now apply
Construction 4.3 with k = 6, f = 3 and a =1 to obtain a PBD[302, {6, 8}].
For N € {326,350, 386,410}, we apply Construction 5.1 in accordance with
the following table.
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v m z y z

326 7 32 2 1 2
350 7 56 2 3 0
386 9 8 2 0 1
410 9 32 2 1 2

For the remaining values we use Construction 4.2 in accordance with the
following table.

254 15 5 0 4
278 16 5 2 1
314 19 2 3 1
338 20 5 2 1
362 17 2 16 7
3714 23 5 0 4
38 19 2 17 1

This establish the lemma. O
Lemma 5.8 Ifv=2 (mod 12), v > 422 then v € B({4,6,8}).

Proof. It is easy to see that for any v =2 (mod 4), v > 26 then 3v+1 €
B({4,6,8}). For v =2 (mod 4), v > 26 and v # 40, apply Construction
4.2 with f = 1 and a and b chosen so that 5a+ 6b+ 1 € {32, 44, 56, 68,80}.
This takes care all v > 422, v # 662,674,686,698,710. For the remaining
values, we use construction 4.2 in accordance with the following table.

n m a b f

662 37 1 17 0O
674 43 3 2 1
686 38 4 16 9
698 4 4 3 O
710 38 4 20 0

This establishes the lemma. O

Let D4ss={5, 7, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 24, 26, 27}
and Pyues={33, 34, 35, 39, 41, 47, 50, 51, 53, 59, 62, 65, 71, 75, 77, 87, 89,
95, 101, 110, 131, 161, 170}.
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Lemma 5.9 If v € Dygs, then v € B({4,6,8}).

Proof. If a PBD[v,{4,6,8}] which contains a block of size 8 exists,
then by Result 3.6, v > 25. Hence, if v < 24, v € B({4,6,8}) im-
plies v € B({4,6}) and by the results for B({4,6}), this eliminates v €
{5,7,9,10,11,12,14,15,17, 18,19, 20, 23,24}. If v = 26, it is easy to see a
PBDI26,{4,6,8}] must have a block of size six and a block of size eight.
Applying Result 3.6, we have v > 27, a contradiction. If v = 27 and a
PBD|27,{4,6,8}] exists, a simple counting argument reveals that either it
has zero blocks of size eight or at least three blocks of size eight. In the
first case, this implies 27 € B({4,6}), a contradiction. In the second case,
apply Result 3.6 to obtain v > 29, a contradiction. O

Theorem 5.2 Ifv > 4 and v & Dass U Pysg, then v € B({4,6,8}). More-
over, if v € Dyes, then v & B({4,6,8}).

Proof. For v # 2 or 11 (mod 12), the result follows from the results for
B({4,6}) and B({4,8}) with the exceptions of v € {44,45,46,164,173},
which have been treated in this section.

For v = 11 (mod 12), the result follows from Lemma 5.6, with the
exception of v € {83,107,119, 143, 155,167,179, 191, 203, 215}, all of which
have been treated in this section.

For v = 2 (mod 12), the results follows from Lemma 5.8 with the excep-
tion of v € {38, 86, 134, 146, 158, 182, 206, 218, 230, 254, 278, 302, 314, 326, 338,
350,362, 374, 386,398,410}, all of which, with the exception of v € {206,230}
have been treated in this section.

For v = 206, apply Construction 4.1 with m = 14, t = 10 and f = 8.

For v = 230, apply Construction 4.1 with m =16, t=10and f =8. O

We now consider the closure of {4,6,9}.

It is very easy to check that the necessary conditions for v € B({4,6,9})
are v =0 or 1 (mod 3). As in the situation of the closure of {4,6,7}, we
only eliminate possible exceptions from the closure of {4,6} and {4,9}.

Lemma 5.10 {39,46,51} C B(4,6,9).

Proof. For v = 39, there exists a 4GDD of type 6°9! (see [11]). For
v = 46, apply Greig’s ¢ — 2 construction with ¢ — 9 and z = 5 (see [11]).
For v = 51, there exists a 4-GDD of type 9°6! (see [11]). O

Let Dago = {7, 10,12, 15,18, 19,22, 24,27} and
P469 = {34,75,87}
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Lemma 5.11 Ifv € Dyey, then v ¢ B({4,6,9}).

Proof. Note that Dsg9 C Dys, by Theorem 4.1, we can assume if v € Dygg
and a PBDJv, {4, 6,9}] exists, then it must have a block of size nine. Apply
Result 3.6, we have v > 28, a contradiction. O

Theorem 5.3 If v = 0,1 (mod 3), v > 4 and v € Dygo U Pyeg, then
v € B({4,6,9}). Moreover, if v € Dagy, then v & B({4,6,9}).

Proof. This is a summary of the foregoing. O

6 Closure of three element sets containing 4
and 7 but not 5 or 6

In this section, we deal with the closure of the set {4,7,8} and {4,7,9}.

Construction 6.1 Let S be a PBD-closed set which contains {7,8}. Sup-
pose that there ezists a TD[8,m). Let a be a non-negative integer satisfying
a<m. Ifme€S, then Tm+a€S,.

Proof. Truncate one group .to a points. O

Construction 6.2 Suppose there ezists a TD[9,m], and u,v,z, and y are
non-negative integers satisfying x +y < m and u+v < m. Suppose further
that {3m+a, 3u+Tv+a}eSs. Then 21m+3u+Tv+32+Ty+a € Saz47y4a-

Proof. In [2], it is shown that a resolvable PBD[36, {4, 8}] exists. It is easy
to check that every point of the design lies on exactly two of the 8-lines.
By deleting one point of the design, one obtains a {4,8}-GDD of type 3772.
As noted in [11), there exists {4}-GDDs of type 3% and 3°. A {4,7}-GDD
of type 37 can be obtained by removing a point not on the block of size 7
in a PBD([22,{4,7*}]. Take a TD[4,7] and add a point to each group, then
delete another point to obtain a {4,7,8}-GDD of type 377!. Also, take a
TD[4,8] and delete a point to obtain a {4,8}-GDD of type 3%7!. In the
T D[9, m], assign weight three to every point in the first seven groups. Then
one can assign weights of 0,3 or 7 to points in the last two groups. . The
result follows by Wilson’s Fundamental Construction and filling in holes.
m]

We first consider the closure of {4,7,8}.

We first deal with small cases.



Lemma 6.1 {50,53,60,63,95,98,99,107,119, 135,155,170, 171,179, 182,
183,191} C B({4,7,8}).

Proof. For v= 50, 53, 63, 95, 98, 99, 119, 179, 182, 183 and 191, apply
Construction 6.1 with (m,e) = (7,1), (7,4), (8,7), (13,4) (13,7), (13,8),
(16,7), (25,4), (25,7), (25,8) and (25, 16) respectively.

If v = 60, remove four points from AG(2,8).

For v = 107 and v = 135, apply Construction 4.3 taking k = 4, m
25, f = 4 and a = 1, noting that 29 € B({4,8,4°}) and k = 4, m
32, f=4and a = 1, using 36 € B({4,8,4"}), respectively.

If v = 155, take a {4,7}-GDD of type 47 and 77 together with a
PBDI[22,{4,7}] to obtain a {4,7}-GDD of type 227. The result follows
by adding an infinite point.

For v = 170, note that there exist {4}-GDDs of type 5° and 3%6!.
By deleting a point from a TD(6,8), a {5,6}-GDD of type 857! can be
obtained, and this can be inflated by the above ingredients, by assigning
weight 3 to all points in the groups of size 8 and weight 6 to the remaining
points, to obtain a {4}-GDD of type 24542!. Since 32 and 50 belong to
B({4,7,8,8*}), we can “fill in holes” to obtain 170 € B({4,7,8}). O

Lemma 6.2 {86,122, 134, 146, 147, 158, 194} C B({4,7,8}).
v = 86: V = {0, 1} x Z43 under the action (—, mod 43). The base blocks

are
{(0,0),(0,1),(0,6), (0,36), (1,0), (1,9), (1, 11), (1, 23)}
{(0,0,(0,2),(0,12),(0,29), (1,26), (1, 27), (1,33))
{(0,0),(0,4),(0,15),(0,24)}
{(0,0),(1,2),(1,12),(1,29)}, {(1,0), (1,5), (1,8), (1,30}
{(0,0,(0,3),(1,35),(1,39)}

Multiply the second components in the last block by 6 and 36 (mod 43) to
obtain two additional base blocks.
v=122: V = {0,1} x Z¢; under the action (—, mod 61)

{(0: y)t (Os 13y)' (01473/)! (1) 0)} fory=1,6
{(0,0),(1,¥),(1,13y),(1,47y)} for y = 8,12
{(0,0),(02),(0,26),(0,33),(1,0),(1,11),(1,21),(1,29)}
{(0,0),(0,9),(0,56),(0,57),(1,1),(1,18),(1,47)}

{(1) 0)1 (11 y)r (1! 13y)a (1) 47‘!/)} for y = 16,31
{(0,0),(0,19), (0,44),(1,16)},{(0,0),(0,18),(1,7),(1,54)}
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Multiply the second components in the last two blocks by 13 and 47 (mod 61)
to obtain four additional base blocks.

Proof. v = 134: Let V = {0,1} x Z¢7 under the action (—,67). Then the
base blocks are

{(0,0),(0,1),(0,29), (0,37),(1,0), (1,4), (1, 14), (1,49)}
{(0,9),(0,60), (0,65, (1,3), (1,20), (1,44)}
{(0,10),(0,22),(0,35), (1,8), (1,28), (1, 31))

{(1,25), (1,27, (1,46), (1, 54), (1,55), (1, 61}
{(0,0),(0,6),(0,21),(0,40)}
{(0,0),(0,2),(0,20),(1,45)}
{(0,0),(0,24), (1,19), (1,31)}
{(0,0),(0,22), (1,23), (1,39)}.

Multiply the 2nd components in the last 3 blocks by 29 and 37 (mod 67)
to obtain six additional base blocks.

v =146: V = {0,1} x Z73 under the action (—, mod 73). Then the base
blocks are

{(Oly)!(o’sy)’(0764y)’(1’0)} fory=1,2,5,6
{(0,0),(1,¥),(1,8y),(1,64y)} for y = 1,4,7,12
{(0,0),(0,4),(0,32),(0,37),(1,0),(1,43),(1,51),(1,52)}
{(0,0),(0,43),(0,51),(0,52),(1,5),(1,28),(1,40)}
{(1,0),(1,9),(1,8y),(1,64y)} for y = 13,14
{(0,0),(0,15),(0,70),(1,31)},{(0,0),(0,19),(1,22),(1,63)}

Multiply the second components in the last two blocks by 8 and 64 (mod 73)
to obtain an additional four base blocks.
v=147: Let V = Z3 X Z49. Then the base blocks are
Bl = {(0, 0): (0: 7): (0) 14): (0’ 21)) (0’ 28)’ (01 35); (01 42)}
By = {(Ox 0),(1, 0)1 (lv 1),(1,18), (1’30):(2r 5)’ (2r3)x (2’31)}
By = {(0,0),(0,3), (1,29), (2,43))
By = {(0,0),(0,24),(1,17),(2,30)}.
Multiply Bz and B, by (1, 30) and (1, 18) to obtain 4 additional base blocks.
v = 158: V = {0,1} x Z79 under the action (—,mod 79). The base
blocks are
{(0,v),(0,23y), (0,55y),(1,0)} for y = 1,3,4,11,25
{(0,0),(1,y),(1,23y),(1,55y)} for y = 3,9,11,12,18
{(0,0),(0,2),(0,31),(0,46),(1,0), (1,22),(1,25),(1,32)}
{(0,0),(0,12), (0, 28), (0, 39), (1,41), (1,43),(1,74)}
{(1,0),(1,9),(1,23y),(1,55y)} for y = 15,34
{(0,0),(0,23),(0,65),(1,37)},{(0,0), (0, 26),(0, 34), (1,64) }
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Multiply the second components in the last two blocks by 23 and 55 (mod 79)
to obtain an additional four base blocks.
v=171: V = Z;7;. The base blocks are

{0,1,5,7,35,49,57, 74}, {0, 12,75, 84, 94, 145, 160}
{0,3,46,138}, {0, 18,47, 106}

Multiply the last two blocks of size 4 by 7 and 49 (mod 171) to obtain four
additional base blocks.

v = 194: V = {0,1} x Zg7 under the action (—,mod 97). The base
blocks are

{(073/)1(01353/)!(0!613/)! (1:0)} fory=1,2,4,5,7
{(0,0,(1,9), (1, 359), (1,61y)} for y = 1,4,6,11,12
{(0,0),(0,6),(0,16),(0,75),(1,0),(1,30), (1,80), (1,84)}
{(0,0),(0,49),(0,66),(0,79),(1,7),(1,39), (1,51)}
{(1,0),(1,9),(1,35y),(1,61y)} for y = 23,33
{(0,0),(0,20),(0,55), (1,37)},{(0,0), (0, 11), (0,83), (1,42)}
{(0,0),(1.3),(1,65), (1,73)}, {(0,0),(0,43), (1,23), (1, 71)}

Multiply the second component of the last four blocks by 35 and 61 (mod 97)
to obtain an additional eight base blocks. O

The following observation is very important.

Let A, be the set of integers {0,3,6,...,3n}. Then it is easy to see that
every integer in the set {0, 3, 6, 12, 15, 21, 24, 27, 28, 30, 31, 33, 35, 36,
56, 59, 62} can be written in the form 3a + 7b where 0 < a,b and a+b < 8.
Every integer satisfying v = 0 (mod 3) and v < 57 can be written in the
form 3a + 7b where 0 < a,b and a + b < 11. Every integer v =0 (mod 3)
and v < 75 can be written in the form 3a+7b where 0 < a,b and a+b < 13.
Every integer v = 0 (mod 3) and v < 117 can be written in the form 3a+7b
where 0 < @,b and a + b < 19. Finally, every integer v = 0 (mod 3) and
v < 159 can be written in the form 3a + 7b where 0 < @,b and a + b < 25.

We now consider the case when v =0 (mod 3).

Lemma 6.3 Ifv =0 (mod 3) and v > 204, then v € B({4,7,8}).

Proof. We apply Construction 6.2. Take m = 8, Tu + 3v = 35 and
3z+7y € {0,3,6,12,15,21,24,27, 30,33, 36} with a flat of size one to obtain
v € B({4,7,8}) for 204 < v < 240 and v # 213,222. Note that 213 €
B({4,8}) and 222 € B({4,7,8}) by taking Tu + 3v = 31 and 3z + Ty = 18
with a flat of size 4. Take m = 9, Tu + 3v = 35,56,59 and 32 + Ty €
{0,3,6,12,15,21,24,27,30,33,36} with a flat of size one to obtain v €
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B({4,7,8}) for 225 < v < 285 with the exception of v = 234 and v = 243.
When v = 243, take 7u + 3v = 31 or and 3z + Ty = 18 with a flat of
size four. Further 234 € B({4,8}). Take m = 11, Tu + 3v = 35,56, 59, 62
and 3z + 7y € Ay with a flat of size one to obtain v € B({4,7,8}) for
288 < v < 329. Take m = 13, Tu+3v = 35,56, 59,62 and 3z+7y € Az with
a flat of size one to obtain v € B({4,7,8}) for 330 < v < 411. If m = 16, we
can similarly obtain v € B({4,7,8}) for 393 < v < 474. If m > 19 and there
exists a TD[9,m], Tu + 3v = 35,56,59,62,71,83,98 and 7z + 3y € Ay to
obtain v € B({4,7,8}) for 21m+35+22 < v < 21m+ 98+ 117. Since there
is a TD[9, m] for one of every six consecutive integers (See [1]), and we have
produced a full interval of size 158. Hence, we can apply the construction
recursively to obtain the result. O
We now consider the case when v =2 (mod 3).

Lemma 6.4 Ifv > 197 and v =2 (mod 3), then v € B({4,7,8}).

Proof. We apply Construction 6.2. If we take 7v +3u = 28,31, Tz + 3y €
Ay,, for appropriate m, we obtain v € B({4,7,8}) for 2lm+ 28+ 1< v <
21lm+31+3fm +1. Apply with (m, fn) = (8,12),(9,12),(11,19), (13, 25),
(19,39),(25,53) and (k,53) for all k such that k > 25 and there exists a
TD[9,k]. It is a simple matter to check that it gives the desired result. O

Lemma 6.5 Ifv € {71,198}, then v € B({4,7,8}).

Proof. For v = 71, delete 5 points from the groups of a TD[8, 9] to obtain
a {7,8}-GDD of type 974'. Now consider PG(3,2) as a PBD[13, {4,4"}]
and use this in a singular direct product (see [[11], Theorem 2.3]) to fill in
the holes. :

For v = 198, we need as ingredients {4, 7, 8}-GDDs of types 4611,4711 47
and 48. The latter two are readily obtained from transversal designs. A
{4}-GDD of type 4%1! by adjoining a new point to the groups of a resolvable
{4}-GDD of type 38 (such a design exists, see [11]). A {4}-GDD of type
471! is obtainable by adjoining a new point to the group of an RTD[4,7].
Now take a TD(8, 7). In the first six groups, give all points weight 4. In the
second last group, give two points weight one and five points weight zero.
In the last group give two points weight 4 and the remaining points weight
zero. By using the above input designs, this produces a {4,7,8}-GDD of
type 28%22!81. Since {8,28,22} C B({4,7,8}), the result follows. O



Let D4z = {5,6,9,10, 11,12, 14, 15,17, 18, 19, 20, 21,23, 24, 26, 27, 30,
33,35,38,39,41,42,44} and Py7s = {45,47,48,51,54,59,62, 65,66, 69, 74,
75,77,78,83,87,89,90,101,102,110,111, 114, 123,126, 131, 138, 143, 150,
159,161,162, 164,167,173, 174, 186,195}.

Lemma 6.6 If v € Dyzg, then v ¢ B({4,7,8}).

Proof. If v = 10 or 19, it is known that v ¢ B({4,7}) by Result 3.3. So
if there exists a PBD[v, {4,7,8}] then it must have a block of size eight.
Also, if v # 1 (mod 3), then a PBD[v, {4,7,8}] must contain a block of
size eight. Apply Result 3.6 to obtain v > 25. If v = 26 or v = 27, by
counting pairs, we can assert that if a PBD[v, {4, 7,8}] exists then it must
have a block of size seven. Apply Result 3.6 to get v > 28, a contradiction.
If v =30 or v = 33 and a PBD[v,{4,7,8}] exists, then every point must
be on 2 (mod 3) blocks of size eight. Hence, there must be a point on
at least five blocks of size eight, which is impossible. If v = 35 and a
PBDI[35,{4,7,8}] exists, then every point must be on 1 (mod 3) blocks of
size eight. Hence, there must be a point which lies on exactly four blocks of
size eight. Removing this point yields a {4,7,8}-GDD of type either 3274
or 6!7%. In either case, there are at most six groups, so all blocks must
be of size four. Calculating the number of blocks of size 4 through a point
on a group of size either three or six yields a fractional result, which is
impossible. The case of v = 38 is treated similarly. If a PBD[39, {4,7,8}]
exists, then every point must be on 2 (mod 3) blocks of size eight. As
above, there must be a point on five blocks of size eight. By removing
a point, we obtain a {4,7,8}-GDD of type 317°. But since the number
of groups is six, all remaining blocks must be of size 4, which is again
impossible. If a PBD[41, {4, 7,8}] exists, every point must be on 1 (mod 3)
blocks of size eight. In particular, every point must be on either one or
four blocks of size eight. Let b; be the number of points on i blocks of size
eight and b be the number of blocks of size eight in the PBD. We must
have b4 = WT“. Dually, this yields a packing of b points in b4 blocks of
size 4. This is impossible for b € {7,10,13,16,20} (See [19]). Since every
point is on at most four blocks of size eight, it is easily seen that b < 20.
Hence, 41 ¢ B({4,7,8}). If v = 42 and a PBD[42,{4,7,8}] exists, as in
the case when v = 39, there must be a point on five blocks of size eight.
By removing this point, we obtain a {4,7,8}-GDD of type 7°32 or 7561.
In either case, there must be a block of size eight in the design. This is
impossible since there are at most seven groups. If v = 44, we proceed as
in the case when v = 41 and we are required to pack b = 8";44 blocks of
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size four on b points. This is impossible for b € {7,10,13, 16,20} but b < 22
by a simple counting argument. We conclude that 44 ¢ B({4,7,8}). O

Theorem 6.1 If v > 4 and v € Dy7g U Pazs, then v € B({4,7,8}). More-
over, if v € Dyzg, then v & B({4,7,8}).

Proof. For v =1 (mod 3), the lemma follows from the result for B({4,7}).

For v = 0 (mod 3), if v > 204, the result follows from Lemma 6.3.
Apart from those cases handled by the result for B({4,8}), we have v €
{60,63,99, 147,183} to consider. These values were treated in this section.

For v = 2 (mod 3), if v > 197, the result follows from Lemma 6.4.
Apart from those cases handled by the result for B({4,8}), we have v €
{50,53,71,95,98,119, 134,155,179, 182,191} to consider. All of these val-
ues were treated in this section. O

We now consider the closure of {4,7,9}.

It is easy to see that the necessary conditions are v = 0,1 (mod 3). In
view of the result of {4,7} and {4, 9}, we only need to establish the closure
result for v = 3,6 (mod 12).

We need constructions.

Construction 6.3 Let S be a PBD-closed set conlaining {4,9}. Suppose
there exists a TD[10,m]. Let a and b be integers satisfying 0 < a,b < m.
If3a+1,80+1,3m+1€S, then 24m+3a+8+1€S.

Proof. As noted in Construction 4.1, there exist a {4}-GDD of type 3°
and 3°. By adjoining a new point to the groups of a TD[4, 8], then deleting
another point, a {4,9}-GDD of type 388! is obtained. Also, adjoining eight
points to a KT'S(27), a {4}-GDD of type 3°8! is obtained. In a TD[10,m],
assign weight three to every point in the first eight groups, weight zero or
eight to each point in the ninth group and weight zero or eight to every
point in the last group. By Wilson’s Fundamental Construction, we obtain
24m+3a+8+1€S5.0

Construction 6.4 Let S be a PBD-closed set which contains {4}. Suppose
that there exists a TD[6,m). Let a be an integer satisfying 0 < a < m. If
3m+ f €Sy, then 15m +6a+ f € Seats-

Proof. As noted in Construction 4.1, there is a {4}-GDD of type 3°. By
adding six infinite points to KTS(15), we obtain a {4}-GDD of type 3°6'.
Take a T'D[6, m), assign weight three to every point in the first five groups
and weight zero or six to each point in the last group. The result follows
by Wilson’s Fundamental Construction and Singular Direct Product. O
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Construction 6.5 Let n be an integer satisfying n > 4, n # 6. Then
9n € B({4,7,9}).

Proof. In view of the result for B({4}) and B({4,7*}), there exists a
{4,7}-GDD of type 3" for alln > 4, n # 6.

By giving all points weight three, we obtain a {4,7}-GDD of type 97,
so 9" € B({4,7,9}) foralln>4, n#6. 0

Corollary. If n > 4, then 9" € B({4,7,9}).

Proof. We need only consider n = 6. But there exists a TD[4, 9], which
disposes of this case. O

Clearly if v =0 (mod 3), then a PBD[v,{4,7,9}] must contain a block
of size nine. Since we have 4 and 7 € B({4,7,9}), for every m # 3,6, we
have 3m+1 € S. We use the notation [, b]s to represent the set of integers
from a to b which are multiples of 3.

We first deal with small values of v.

Lemma 6.7 {123,192,219,222} C B({4,7,9}).

Proof. If v = 123, apply Construction 4.3 with m =29, k =4, a =1 and
f=4. If v = 192, apply Construction 6.3 with m = 9,a =8 and f = 9.
If v = 219, apply Construction 6.3 with k =4, m =53, f=4,anda =1,
using the fact that 57 € B({4,9,4°}). If v = 222, apply Construction 4.3
with k=4, m=50,ea=5and f=7.0

Lemma 6.8 Ifv =0 (mod 3) and v > 225, then v € B({4,7,9}).

Proof. If v = 0 mod 9, use Construction 6.5. We use a specialization of
Construction 6.3. Suppose that there exists a TD[10, m] and r is an integer
satisfying 0 < @ < m and a # 3 or 6. Also let ¢ be an integer such that
3t +1 < m. Now r satisfies the conditions for lying in B({4,7}), and since
8(3t+1)+1 = 24t+9, then 8(3t+1)+1 € B({4,9}) by Lemma 4.6. Further,
since either m =0 or 1, or m > 9, then 3m+ 1 € B({4,7}), so 2dm + 3a +
8(3t+1)+1=24m+3a+8t+9 € B({4,7,9}). For m = 9, the possible
values of a are {0,1,2,4,5,7,8,9} and the admissible values of ¢ are {0, 1, 2},
so the admissible values of 3a + 24t + 9 are [9,84]5\{18, 27,42, 51,66, 75}
so [225,300]3\ {234, 243, 258, 267, 282,291} C B({4,7,9}). Similarly, taking
m = 11, we obtain [273, 378]3\ {282,291, 315, 339,363} C B({4,7,9}). For
m = 13, we obtain {321, 456]3\{330, 339, 363,387,411,435} C B({4,7,9}).
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For m = 16, we obtain [393, 537]5\{402,411} C B(4,7,9). Form > 17, it is
easily verified that if there exists a TD[10,m], then [24m + 30,24m + 3m +
8(m —2) + 1) C B({4,7,9}). Since it is known that a TD[10,m] exists
for some m in any set of six consecutive integers the least of whichis 9, a
straightforward induction establishes that if v > 414 and v = 0 (mod 3)
then v € B({4,7,9}). To complete this lemma, we need to consider the
cases of v € {258,267,282,291, 339,363,411}. If v = 258, we remove points
from a T'D[10,11] to obtain a {7,8,9,10}-GDD of type 1173% and assign
weight three to each point to obtain 258 € B({4,7,9}). If v = 267, take
a TDJ[11,11] and remove points to obtain a {7,8,9,10,11}-GDD of type
1173% and assign weight three to each point to obtain 267 € B({4,7,9}).
If v = 282, we can remove points from T'D[10,11] to obtain a {7,8,9,10}-
GDD of type 11832 and assign weight three to each point to obtain 282 €
B({4,7,9}). If v = 291, we can similarly obtain a {7,8,9,10,11}-GDD of
type 11833 and gives weight three to each point. If v = 339, we can obtain
a {10,11}-GDD of type 11!°9' and gives weight three to each point. If
v = 363, take a TD[11,11] and gives weight three to every point to obtain
363 € B({4,7,9}). If v = 411, apply Construction 4.3 with k =4, m = 92,
a=17and f =13 to get 411 € B({4,7,9}). D
Let D479 = {6,10,12,15,18,19,21,24,27, 30, 39, 42, 48} and

Py79 = {51, 54, 60, 66, 69, 75, 78, 84, 87, 93, 96, 102, 111, 114, 138, 147,
150, 159, 174, 183, 186, 195, 210 }.

Lemma 6.9 Ifv € D79, then v & B({4,7,9}).

Proof. Recall that 10,19 ¢ B({4,7}). Also if v € B({4,7}), then

v = 1(mod 3). Therefore we can conclude that if v € D479 and a PBD
[v,{4,7,9}] exists then it must have a block of size nine. Applying Result
3.6, we obtain v > 28. If v = 30, every point must be on 1 (mod 3) blocks
of size nine. Also there must be a point on at least four blocks of size
nine but this is impossible since there would be too many points in this
structure. If v = 39, again every point must be on 1 (mod 3) blocks of
size nine. It is easy to see that every point is on either one or four blocks
of size nine, otherwise there would be too many points. Also, there must
be a point which is on four blocks of size nine. By removing the point, we
obtain a {4,7,9}-GDD of type 83% or 8*6*. In either case, a point on the
short group must be on a block of size nine by a simple counting argument.
However, this is impossible since there are at most eight groups. If v = 42,
we can apply a similar argument as in the case when v = 39 to obtain a
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contradiction. If » = 48, the argument is analogous that that of proving
48 ¢ B({4,9}) and is thus omitted. O

Theorem 6.2 If v > 4, v = 0,1 (mod 3) and v & D479 U Pyzg, then
v € B({4,7,9}). Moreover, if v € Dazg, then v & B({4,7,9}).

Proof. For v =1 (mod 3), the lemma follows for the result for B({4,7}).

For v = 0 (mod 3), if v > 225, the result follows from Lemma 6.7.
Apart from those cases which follows from the result for B({4,9}) and
Construction 6.5, we have v € {123,186,192,202,222}. But these cases
were treated in this section. O

7 Closure of {4,8,9}

In this section, we consider the closure of {4,8,9}. It is very easy to show
that the necessary conditions for v € B({4,8,9}) are v=10,1 (mod 4). In
view of the results on B({4,8}) and B({4,9}), not much need to be done.

Lemma 7.1 {65,89} C B({4,8,9}).

Proof. For v = 65, simply take a TD(8, 8] and add a point to each group.
For v = 89, take a TD[10,9], and assign a weight of one to each point of
the first nine groups, and a weight of zero to all but two of the points of
the remaining group, and assign these points a weight of four. Note that
the required ingredient GDDs exist. There is trivially a 9-GDD of type 1°
and a 4-GDD of type 1°4! is easily obtained from PG(3,2). O

Let Dygo = {5,12,17,20,21,24} and
Pago = {41°,44*, 48,53, 60, 69, 77,96, 101, 156, 161, 164, 173}.
*Note: M. Greig [9] has shown that neither 41 nor 44 lies in B(4,8,9).

Lemma 7.2 If v € Dygo, then v & B({4,8,9}).

Proof. Since the members of Dygg do not lie in B({4,8}), then if v € Dygg
and a PBD[v, {4,8,9}] exists, then it contains a block of size 9, which
contradicts Result 3.6. O

Theorem 7.1 If v > 4, v = 0,1 (mod 4) and v & Dygg U Pygg, then
v € B({4,8,9}). Moreover, if v € Dagg, then v ¢ B({4,8,9}).

Proof. This is a summary of the foregoing.
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8 Closure of sets containing more than three
elements and excluding 5

In this section, we consider the closure of sets containing more than three
elements.

First of all, we consider the closure for {4,6,7,8}. We obtain the closure
based on the closure of {4,7,8}, {4,6,7} and {4,6,8}.

The following observation is very useful.

Lemma 8.1 Suppose there ezists a TD[8,m). If a and b are integers such
that 0 < a,b < m and a,b,m € B({4,6,7,8}), then we have 6m+a+b €
B({4,6,7,8}).

Proof. Trivial. O
Lemma 8.2 {47,59,87,89,101,110,161,170} C B({4,6,7,8}).

Proof. We use Lemma 8.1 in connection with the following table

v m a b v m a b
47 T 4 1 101 16 4 1
5 8 7 4 110 16 7 7
87 13 8 1 161 25 7 4
89 13 7 4

This completes the lemma. O
Let D4s7s=1{5, 9, 10, 11, 12 , 14, 15, 17, 18, 19, 20, 23, 24, 26, 27} and
Pas73={33, 35, 41, 65, 77, 131}.

Lemma 8.3 If v € Dygrs, then v ¢ B({4,6,7,8}).

Proof. It is shown in Theorem 5.1, 5.2 and 6.1 that if v € Dyg7s, then
v & B({4,6,7}), v & B({4,6,8}) and v ¢ B({4,7,8}). Hence, if there exists
a PBD[v, {4,6,7,8}], then it must have a block of size seven and a block
of size eight. Apply Result 3.6, we have v > 28. O

Theorem 8.1 If v > 4 and v & Dyg7s U Pagvs, then v € B({4,6,7,8}).
Moreover, if v € Dsgrg, then v & Dygvs.
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Proof. This is a summary of the foregoing. O

We now deal with the closure of the set {4,6,7,9}. We obtain most of
the results by taking the results for {4,6,7}, {4,6,9} and {4,7,9}.

It is straightforward to check that the necessary conditions for v €
B({4,6,7,9}) are v=0,1 (mod 3).

Lemma 8.4 {87} C B({4,6,7,9}.

Proof. Take a TD[7,13] and delete four points in one group to obtain
87 € B({4,6,7,9}). O
Let Dys79 = {10,12,15,18,19,24,27}.

Lemma 8.5 If v € Dyerg, then v & B({4,6,7,9}).

Proof. It is proved in Theorem 5.1, 5.3 and 6.2 that if v € Dygrs,
then v ¢ B({4,6,7}), v € B({4,6,9}) and v ¢ B({4,7,9}). Hence, if a
PBDI[v,{4,6,7,9}] exists, then it must have a block of size seven and a
block of size nine. Apply Result 3.6 to obtain v > 31. O

Theorem 8.2 If v > 4, v = 0,1 (mod 3) and v & Dygre, then v €
B({4,6,7,9}). Moreover, if v € Dasrs, then v & B({4,6,7,9}).

Proof. This is a summary of the foregoing. O
We consider the closure of {4,6,8,9}. In this case, we heavily rely on
the results for the {4, 6,8}, {4,6,9} and {4,8,9}.

Lemma 8.6 {74,110,161,290} C B({4,6,8,9}).

Proof. For v = 74, M. Greig [9] has pointed out that all non-desarguesian
planes of order 9 contain a projective plane of order 2. By deleting the
points of such a plane and an external line from a non-desarguesian plane, a
PBD[74, {6,8,9}] is obtained. Therefore 74 € B({6,8,9}) C B({4,6,8,9}).

If v = 110, take a T'D[9, 13] and remove seven points in one group to
obtain 110 € B({4,6,8,9}).

If v = 161, first note that 44 € B({4,6,8,6°}). Applying Construction
4.3 with k = 4,m = 38,a = 1, and f = 6 yields a PBD[161, {4,6,8,9"}].
If v = 290, apply Construction 4.2 withm = 15,a =8,b=4and f = 1.
o

Let Dygso = {5,7,10,11,12, 14, 15,17, 18, 19,20, 22, 23, 24, 26,27} and
Pyego= {34, 35, 41, 47, 50, 53, 55, 59, 62, 71, 75, 77, 87, 95, 101, 131, 170
}.
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Lemma 8.7 If v € Dyegs, then v & B({4,6,8,9}),

Proof. It is proved in Theorems 5.2, 5.3 and 7.1 that if v € Dygsg,
then v ¢ B({4,6,8}), v ¢ B({4,6,9}) and v ¢ B({4,8,9}). Hence, if a
PBD[v,{4,6,8,9}] exists, then it must have a block of size eight and a
block of size nine. Apply Result 3.6 to obtain v > 35. O

Theorem 8.3 If v > 4 and v & Dyggo U Passs, then v € B({4,6,8, 9}).
Moreover if v € Dagsg, then v & B({4,6,8,9}).

Proof. This is a summary of the foregoing. O
We consider the closure of {4,7,8,9}.
The following result is useful below.

Theorem 8.4 (18] For any v > 7, v € B({7,8,9}) ezcept possibly when
v € E7g9, where E7g9 = Ergg = [10,48] U [51,55] U [59,62] U [93, 111] U
[116,118]U{132) U (138, 168]U[170, 216]U[219, 223) U[228, 230] U [242, 279] U
[283,286] U [298, 307] U [311, 342].

Lemma 8.8 Suppose there ezists a TD[9,m]. If a and b are integers such
that 0 < a, b < m and a,b,m € B({4,7,8,9}), then we have Tm+a+b e
B({4,7,8,9}).

Proof. Trivial. D
Lemma 8.9 {101,102,111,138,186, 194,195} C B({4,7,8,9}).

Proof. Apply Lemma 8.8 in accordance with the following table.

v m a b v m a b
101 13 9 1 138 16 13 13
102 13 7 4 186 25 7 4
111 13 13 7 195 25 13 7

This leaves v = 194. For this value, use a (4, {0,1,2}, 1,1, 1,16)-thwart
(see [17]). O

Let D470 = {5,6,10,11,12,14,15,17, 18,19, 20, 21, 23, 24, 26, 27, 30} and
Pa789={35, 38, 39, 41, 42, 44, 47, 48, 51, 54, 59, 62, 110, 143, 150, 159, 161,
164, 167, 173, 174 }.

Lemma 8.10 If v € Dyzso, then v ¢ B({4,7,8,9}).
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Proof. It is shown in Theorems 6.1, 6.2 and 7.1 that if v € Dyzgg, then
v ¢ B({4,7,8}), v & B({4,7,9}) and v & B({4,8,9}). Hence, if there exists
a PBD[v,{4,7,8,9}], then it must have a block of size eight and a block of
size nine. Apply Result 3.6 to obtain v > 35. O

" Theorem 8.5 Ifv> 4 and v & Dyrgg U Pyzgy, then v € B({4,7,8,9}).
Moreover, if v € Dyzgg, then v & B({4,7,8,9}).

Proof. This is a summary of the foregoing.
Finally, we consider the closure of {4,6,7,8,9}.
We can just simply combine the results of {4,6,7,8} and {4,7,8,9}.
Let Dae780 = {5,10,11,12,14,15,17,18,19, 20,23, 24, 26,27} and
Ea4g789 = {35,41}.

Lemma 8.11 If v € Dagrse, then v & B({4,6,7,8,9}).

Proof. It is shown in Theorems 8.1, 8.2, 8.3 and 8.5 that if v € Dyg7ss,
then v ¢ B({4,6,7,8}), v ¢ B({4,6,7,9}), v ¢ B({4,6,8,9}) and v ¢
B({4,7,8,9}). Hence, if there exists a PBD[v,{4,6,7,8,9}], then it must
contain a block of size eight and a block of size nine. Apply Result 3.6 to
obtain v > 35. O

Theorem 8.6 Ifv > 4 and v & Dyg7s9 U Pagrse, then v € B({4,6,7,8,9}).
Moreover, if v € Dygrsy, then v & B({4,6,7,8,9}).

Proof. This is a summary of the foregoing.

9 Conclusion

The results of the foregoing are summarized in the following table.
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Subset Necessary Possible exceptions
Conditions | Bold face indicates known exceptions

4 l4mod 12 |-

4,5 0,1 mod 4 8,9,12

4,6 0,1 mod 3 7,9,10,12,15,18,19,22,24,27,33,34,39,45,46,51,75,87

4,7 1 mod 3 10,19

48 0,1 mod 4 5,9,12,17,20,21,24,33,41,44,45,48,53,60,65,69,77,89,
101,161,164,173

4,9 0,1,4,9 med 12 | 12,21,24,48,60,69,84,93,96,192

4,56 N 7,8,9,10,11,12,14,15,18,19,23

4,5,7 N 6,8,9,10,11,12,14,15,18,19,23,26,27,30,39,42,51,54

4,58 0,1 mod 4 9,12

4,5,9 0,1 mod 4 8,12

4,6,7 0,1 mod 3 9,10,12,15,18,19,24,27,33,45,87

46,8 N 5,7,9,10,11,12,14,15,17,18,19,20,22,23,24,26,27,33,
34,35,39,41,47,50,51,53,59,62,65,71,75,77,87,89,95,
101,110,131,161,170

4,69 0,1 mod 3 7,10,12,15,18,19,22,24,27,34,75,87

4,7,8 N 5,6,9,10,11,12,14,15,17,18,19,20,21,23,24,26,27,30,
33,35,38,39,41,42,44,45,47,48,51,54,59,62,65,66,69,74,
75,77,78,83,87,89,90,101,102,110,111,114,123,126,131,138,
143,150,159,161,162,164,167,170,173,174,186,195

4,79 0,1 mod 3 6,10,12,15,18,19,21,24,27,30,39,42,48,51,54,60,66,
69,75,78,84,87,93,96,102,111,114,138,147,150,159,174,
183,186,195,210

4,89 0,1 mod 4 5,12,17,20,21,24,41,44,48,53,60,69,77,101,161.164,173

4,5,6,7 N 8,9,10,11,12,14,15,18,19,23

4,5,6,8 N 7,9,10,11,12,14,15,18,19,23

4,569 N 7,8,10,11,12,14,15,18,19,23

45,78 N 6,9,10,11,12,14,15,18,19,23,26,27,30,42,51

4,5,7,9 N 6,8,10,11,12,14,15,18,19,23,26,27,30,51,54

4,5,8,9, 0,1 mod 4 12
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Subset Necessary | Possible exceptions
Conditions | Bold face indicates known exceptions

46,78 N 5,9,10,11,12,14,15,17,18,19,20,23,24,26,27,33,35,41,65,
77,131

4,6,7,9 0,1 mod 3 | 10,12,15,18,19,24,27

4,6,8,9 N 5,7,10,11,12,14,15,17,18,19,20,22,23,24,26,27,34,35,41,
47,50,53,55,59,62,71,75,77,87,95,101,131,161,1 70

4,789 N 5,6,10,11,12,14,15,17,18,19,20,21,23,24,26,27,30,35,38,
39,41,42,44,47,48,51,54,59,62,110,143,150,159,161,164,167,
173,174

4,5,6,1,8 N 9,10,11,12,14,15,18,19,23

4,5,6,7,9 N 8,10,11,12,14,15,18,19,23

4,5,6,8,9 N 7,10,11,12,14,15,18,19,23

4,5,7,8,9 N 6,10,11,12,14,15,18,19,23,26,27,30,51

4,6,78,9 N 5,10,11,12,14,15,17,18,19,20,23,24,26,27,35,41

4,5,6,7,8,9 N 10,11,12,14,15,18,19,23
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