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Introduction

A well-covered graph (introduced by Plummer [9] in 1970) is one in which
every maximal independent set of vertices is a maximum. Whereas deter-
mining the independence number of an arbitrary graph is NP-complete,
for a well-covered graph one can simply apply the greedy algorithm. The
problem of characterizing the well-covered graphs has not been so straight-
forward however. The reader is referred to [1] to [12] for results on this
problem and to [10], especially, for an excellent survey of progress. The
particular attack that the author has been involved with involves restrict-
ing the girth (size of the smallest cycle). In particular, Finbow and Hartnell
[4) characterized well-covered graphs of girth 8 or more and then Finbow,
Hartnell and Nowakowski [5] extended this characterization to include the
well-covered graphs of girth 5 or more. In addition, the same three authors
[6] characterized those well-covered graphs in which there were no 4-cycles
nor 5-cycles (triangles, however, are allowed).

As background and to help the reader appreciate the motivation for the
investigation carried out in this paper, we first need to review the general
structure of the well-covered graphs in [5] and [6]. A vertex v in a well-
covered graph G is said to be extendible if and only if G — v is also well-
covered and the independence number of G — v is the same as G. For
example, any vertex of a graph which is a 5-cycle (or a 3-cycle or a K3)
is extendible. On the other hand, the leaves of a path on 4 vertices are
not extendible whereas the other 2 vertices are. Extendible vertices play
an important role as they can be used as attachment points to join well-
covered graphs to form larger ones. In particular, two 5-cycles can be joined
by an edge or a 5-cycle and a K, can be joined by an edge (see Figure 1
where the extendible vertices are colored black).
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Figure 1

In fact, one can start with any collection of K»’s and 5-cycles and des-
ignate one vertex of each K> as well as any two non-adjacent vertices of
each 5-cycle as attachment points and then form a connected graph by
arbitrarily joining attachment points. The graph so formed will be well
covered. In [5] it is shown that a well-covered graph of girth 5 or more
with an extendible vertex must in fact belong to this family. The rather
startling result is that there are only six other well-covered graphs (namely,
having no extendible vertices) of girth 5 or more. Hence the K3 and the
Cs are essentially the two basic building blocks used to form the family.
In [6], the authors focus on a collection of K»’s, with exactly one attach-
ment point, and 3-cycles, with either one or two attachment points. Again
one can form a well-covered graph that is connected by arbitrarily joining
attachment points with new edges.

The authors establish that any well-covered graph with no 4- nor 5-cycle,
but with an extendible vertex, must belong to this family. Again, it turns
out there are only two other graphs (having no extendible vertices) in the
collection.

Gasquoine, Hartnell, Nowakowski and Whitehead [7], in their attempt to
generalize the characterization to include all well-covered graphs without
4-cycles, have determined over a dozen new basic building blocks which
can be used to build well-covered graphs without 4-cycles (see Figure 2, for
some examples).
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Figure 2

For instance, the well-covered graph in Figure 3 is formed by joining
various basic building blocks with edges between extendible vertices.

Figure 3

The hope is that, similar to the well-covered graphs of girth 5 or more as
well as those without 4-cycles and 5-cycles, one can show there are a reason-
ably small number of basic building blocks (each has at least one extendible
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vertex) and then a limited number of exceptional graphs (those with no ex-
tendible vertices). The purpose of this paper is to gain insight into the
structure of the basic building blocks (other than the already known ones
of K3, the 3-cycle and the 5-cycle). Our main result is that an extendible
vertex v in a well-covered graph without 4-cycles is either part of one of the
already known special K»’s, 3-cycles or 5-cycles or is a vertex of a special
induced subgraph which we shall call Sg (see Figure 2).

For instance, the reader can readily verify that an induced S is present
in G; and G, shown in Figure 2.

Before we proceed, a few definitions are required. A vertex will be called
a stem if it has a leaf as a neighbor. A 3-cycle will be called basic if at
least one of its vertices is of degree two. A 5-cycle will be called basic if it
contains no adjacent vertices of degree three or more.

If G is well-covered and I is an independent set of vertices in G and N[I]
represents the set consisting of all vertices in I as well as any neighboring
vertex, then G — N|[I]| must also be well-covered (see [5], for example).
It is also shown in [5] that if v is an extendible vertex in a well-covered
graph G, then it is not possible to find an independent set I in G such that
G — N[I] = {v}. That is, it is not possible to isolate v. It also follows
that if v is extendible in G, that v is still extendible in the component of
G — N|J}, for any independent set J, containing v. If G has at least 3
vertices, a leaf in G is not extendible (since it can be isolated). If v is an
extendible vertex on a basic 5-cycle, then both neighbors of » on the 5-cycle
must be of degree two. Similarly, if v is extendible and on a basic 3-cycle,
then at least one of its neighbors on the 3-cycle must be of degree two.

It will be very useful to note that certain subgraphs are impossible in a
well-covered graph. In particular, we observe that the induced subgraphs
illustrated in Figure 4, where z and y are not adjacent to any other vertices
in G, but s and others may be, are impossible in a well-covered graph. This
follows by extending {s} to a maximal independent set, say I, of G and
then by considering J = I U {z,y} — {s}. J is an independent set of larger
size than I which cannot occur in a well-covered graph.

)\/y x\ / V} xi : i[y
s S s
Figure 4

To simplify the explanation we shall refer to these subgraphs as a double-
leaf (namely, z and y at s), a leaf-triangle (namely, z and y at s) and a
double-triangle (again z and y at s) in the work that follows.
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We will use Na(v) to refer to the set of vertices at distance two from v.

The Main Result

Theorem. Let G be a well-covered graph without 4-cycles. Let v be a
vertex in G satisfying the following conditions:

(i) v is extendible.

(ii) v is not a stem nor on either a basic 3-cycle or a basic 5-cycle.

Then v must be a vertex on an induced Sg.

Proof: Let G and v be as described in the hypothesis. We first note
that v is of degree three or more. This is easy to verify since a leaf is not
extendible and if v were of degree two then the lack of 4-cycles implies v
is on a basic 3- or 5-cycle or is a stem. If G has a vertex w such that
v still satisfies (i) and (ii) in G — N[w], then consider the component of
G — N[w] containing v instead. That is, we consider the minimal graph
G containing v where G and v have the required property. This implies
that for any w not belonging to N[v], that G — N[w] no longer satisfies the
hypothesis. Certainly G — N[w) is still well-covered and without 4-cycles
and (i) still holds. Thus it must be the case that now v either has a leaf
as a neighbor (in this case we say w is of type [2] in G), or is on a basic
3-cycle in G — N[w] (in this event we say w is of type [3] in G) or v is on
a basic 5-cycle in G — N[w] (we say w is of type [5] in G). Hence we may
assume that all vertices other than v and its neighbors are of type [2], [3]
or [5]. Since G contains no 4-cycles, no neighbor of v is adjacent to more
than one neighbor of any vertex w. Thus if w is of type [2], the resulting
leaf in G — N|w] must be of degree 2 in G itself. If w is of type [3], then
in G — N[w] the vertex v is on a basic 3-cycle implying that a neighbor
of v is now of degree 2. Hence, in G, that neighbor must be of degree 3.
Similarly, if w is of type [5], then in G — N[w)] the vertex v is on a basic
5-cycle meaning that two neighbors of v are now of degree two. Thus, in
G, those neighbors must be of degree two or three.

Hence, in G, v must have at least one neighbor of degree two or three.
For instance, if we consider (see Figure 2) a vertex v that is on both the
7-cycle and 3-cycle in S, and any other vertex, say w, not adjacent to v,
we observe that in Sg — N[w], the vertex v is now either a stem or on a
basic 3- or 5-cycle.
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Case (1):

Assume » has at least two neighbors of degree 2, say z; and x2, with
neighbors y; and y; respectively. If y; and y; had a common neighbor, say
z, then G — N|[2] would contain a double-leaf (namely z; and z at v) which
is forbidden. Similarly if 4, and y2 had independent neighbors, say z; and
2o Tespectively, then G — N[{z1, z2}] would contain the same double-leaf.
Hence any neighbor (3 x;) of ¥, must be adjacent to any neighbor (# z2)
of y2. Since G has no 4-cycles, this forces both y; and y2 to be of degree
two. :

If y; and yp were adjacent, then v would be already on a basic 5-cycle,
namely, vz;y,y2x2 which is not the case. Furthermore, if either y; or ys,
1 say, were of type [2], then y; must be adjacent to ys, say, where ys3
and v share a degree two neighbor, zg say. But again this is impossible as
vz171y3z3 would be a basic 5-cycle.

Let the neighbor (# ) of y1 be yn and neighbor (# z2) of y2 be yn
where ¥, and y, are adjacent (by preceding paragraph). Since y; and y2
are of type [3] or [5], v and y,, have a common neighbor z,, of degree 3
and v and ¥, have a common neighbor z,, of degree 3.

First assume z,, # Z,. If the remaining neighbor (# v,# ym) of T,
say a, as well as the remaining neighbor (# v,# yn) of z, say b, are both
adjacent to v, then G—N|[{y1, y2}] would contain a double-triangle (namely,
z, and z,, at v) which is impossible since G is well-covered.

On the other hand if a, say, is not adjacent to », then y; cannot be of
type [3]. But y; of type [5] implies that G — N[y;] has a basic 5-cycle vz,
a ys Ts Where z, is adjacent to v. This implies z; is of degree 2 in G since
the only neighbors of y; are z; and y,, (and y,, adjacent to z, would yield
a 4-cycle). But then, noting that y, and a are not adjacent since there are
no 4-cycles, we have that G — N[{yn,a}] contains a double-leaf (namely,
Zo, Z, at v).

Hence we must have z,,, = z,,. However, vZ1y1¥m¥yny2%2 and z,, form
an Sg (since z; and z are of degree 2 in G, it is, in fact, an induced Ss)
and we are done.

Case (2):

Next we consider the case in which v has exactly one neighbor, say z, of
degree 2. Let y be the other neighbor of z.

Case 2(a): Let y be of type [5] and vz1y1y2z2 be the basic 5-cycle in
G — N[y]. Let the shared neighbor of y and z; be y; and the common
neighbor of y and z, be y5. Note that both z; and z; are of degree 3 in
G. Furthermore, either y; or yo, say ¥, is of degree 2 in G — N([y] since
vZ1y1Y2%2 is a basic 5-cycle. Thus, in G, y; is of degree 2 or 3.

If it is of degree 2, then y; must be of type [5] and the basic 5-cycle in
G — N[y] is vz2yhyz. This implies that 5 must be of degree 2 (since y
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not) in G — N[y;] and hence of degree 2 in G as well (if y3 and y» adjacent,
then vz1y 15235y and z, form an induced Sg). But this is impossible as
G — N[{z1,%2}] would contain a double-leaf (namely, = and y5 at y). Hence
y1 is of degree 3 in G.

Let the neighbor, other than z; and ys, of y; be w. Then w is also
adjacent to y. If w = y], then vz2y2y1y1yz and z; form an induced Ss.

If y, is of type [5], we first note that the basic 5-cycle in G — N[y]
cannot be vzsysyz as then zsysyw would form a 4-cycle since w must be
adjacent to z3. Now let the basic 5-cycle in G — N[y;] be vzayjyszs where
z3 # = and w is adjacent to x3 (and ¥) in G. But this is impossible since
G — N[{y1,%5}], has a double-leaf (namely, z and z3 at v). Thus z3 =«
and the basic 5-cycle in G — N{y;] must be vzyyszs. Since one of y and 5
must be of degree 2 in G — Ny;] (basic 5-cycle) it must be y5. In G, 35 is
either of degree 2 or of degree 3 in which case it is adjacent to w (recall that
y2 and 5 adjacent forces an Sg). In either case, G — N[{z1,%2}] contains
a double-leaf or leaf-triangle (namely, z and y5 at y) which is impossible.
Thus y; cannot be of type [5].

If y, is of type [3], then y, is adjacent to y3 which shares a neighbor, say
z3, with v. In G, z3 is of degree 3. But this is impossible since G—N{[{y,y1}]
contains a leaf-triangle (namely, z, and z3 at »). This completes case 2(a).

Case 2(b): Let y be of type [3] and vz;z] be the basic 3-cycle in G—N([y]
where y and x; share a neighbor, say y;, and x; is of degree 3 in G.

First observe that y¥ and y; cannot both be of degree 3 or more. If they
were, then they either have a common neighbor, say w, or independent
neighbors, say w; and wp (since G has no 4-cycles). But then G — N[w]
or G — N[{w;,ws}] would contain a leaf-triangle (namely, z and z; at v)
which is impossible.

On the other hand, if y; is of degree 2, then G — N|[z/] contains a double-
leaf (namely, = and y; at y) which is not possible.

Hence we conclude that ¥, is of degree 3 or more, and y is of degree 2.

Now, let the neighbors of zj (other than v and z,) be Y}. Let the set of
vertices (other than =] and Yy) which have a neighbor in Y{ be W. Note
that y; does not belong to W since there are no 4-cycles.

First assume that y; is not adjacent to any vertex in W. Select a maximal
independent set, say I, of vertices in W. If every vertex in Y{ is adjacent
to some vertex in I, then G — N[I U {y1}] contains a double-leaf (namely,
z and zj at v) which is impossible. But if some vertex, say v}, in Y{ is
not adjacent to any vertex in I, then G — N[I U {y}] contains either a
leaf-triangle or double-triangle (in either case z; and yj at z}) which is
impossible. Hence y; must be adjacent to a vertex in W.

In the case that y; is adjacent to a vertex, say w, in W, where w is
adjacent to yi, say, in Y{ we have an Sg. In particular, vzjyjwy yz and z,
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form an induced Sg.

This completes case 2(b) and hence case 2 since y cannot be of type [2]
as z is the only degree two neighbor of v.

Case (3):

Finally, assume v has no degree two neighbors. Hence no vertex is of
type [2].

Case 3(a): First consider the case where y is a vertex belonging to
Na[v], with = the common neighbor of v and y, where y is of type [5]. Let
vx1Y1¥2Z2 be the basic 5-cycle containing » in G — N[y}

3(a)(i): First assume that neither z; nor z, is adjacent to x.

Since no neighbor of v is of degree two in G, we note that y and z; share
a neighbor g} and that y and z, share a neighbor 3. Also z; and z; are
of degree 3 in G. Furthermore, either y; or y2, say y1, must be of degree 2
in G — Ny] since vz1y1y272 is a basic 5-cycle. Thus, in G, ¥, is of degree
2 or 3. But y; cannot be of degree 2, else y; could not be of type (3] nor of
type [5] (keeping in mind that v has no degree 2 neighbors). Hence ¥, is of
degree 3 in G. Let the neighbor, other than z, and y, of y; be w. Then
w must also be adjacent to y. If w = g}, then vz2y2y1y yx and z, form an
Sg (induced, since z2 and z are not adjacent).

3(a)(i1): If y; is of type [5], then the basic 5-cycle in G — N[y;] must
be vzoyhyazs where w is adjacent to z3 (and y) in G and z3 is of degree 3
in G.

Assume z3 # z. Since one of 35 and y3 must be of degree 2 in G — N[y,),
y3 must be. But ys could not be of degree 2 in G as then it could not be
of type [3] nor of type [5] in G (again recalling that there are no degree 2
neighbors of v). Thus y; is of degree 3 in G. Therefore, y3 must be adjacent
to a neighbor of y; but it could not be adjacent to yo (4-cycle) and thus y3
and w must be adjacent. But then vz y,wysyjz2 and z3 form an induced
Ss.

If z3 = z, then the basic 5-cycle in G — N[y1] is vzoysyx where z = z3 is
of degree 3 in G. Since one of y and y5 must be of degree 2 in G — N[y1],
y5 must be. Again ¥} could not be of degree 2 in G else y3 not of type [3]
rior of type [5]. Hence, in G, y5 is adjacent to a neighbor of ;. But 35 and
w adjacent is impossible (4-cycle) so y2 and y5 must be adjacent. But then
vz1y1Y2y5y< and z2 form an induced Ss.

8(a)(i2): If y; is of type [3], then w and » must share a common neighbor,
say z3 (of degree 3 in G), with z3 and v having a common neighbor, say
z4. But this is impossible as G — N[{y,y1}] has a leaf-triangle (namely, z»
and z3 at v).

This completes part 3(a)(i).

Case 3(a)(ii): Next consider the case where one of x; or z3, say z,, is



adjacent to z. Again z; and x2 must be of degree 3 in G. Let the common
neighbor of z, and y be y5. But then zz;y,y2z2y5y and v form an Ss.

If y2 and y; are not adjacent, then the Sg is induced and we are done.

In the event that y, and 34 are adjacent, we note that y; is of degree 3
or more else G — N[z] contains a leaf-triangle (namely, z and y; at y;).
Let Y; be those vertices (other than y; and z;) adjacent to ;.

If y2 is of degree 4 or more, let z be a neighbor other than z,, ¥4 or y; If
z belongs to Y;, then G — N[{2,y}] contains a double-leaf (namely, z, and
z9 at v) which is not possible.

If z is not in Y}, it cannot be adjacent to any vertex in ¥; nor to y (no
4-cycles). But then, selecting any w in Y3, G — N[{w,y, 2}] contains the
same double-leaf (z; and x at v). Thus ¥, is of degree 3 in G.

If z is of degree 4 or more, then y5 must be of type [3] (Case 3(a)(i) rules
out type [5]) where 3} is adjacent to ys, say, which shares a neighbor, z3
say, with v. Furthermore z3 is of degree 3 in G where z§ is the common
neighbor with v. But then vz3ysysy2y1z1 and z2 form an induced Sz (z;
and z3 are not adjacent). Thus we are done or x is of degree 3. Let Y be
those vertices (other than z and 33) adjacent to y and recall that Y; are
those vertices (other than z; and ys) adjacent to ;. Form any maximal
independent set, say I, of G — N[{z2,¥1,%}] that includes at least one
vertex that was in N{v] in G (unless v of degree 3 in G). Now consider
G1 = G — N[I] which must be well-covered. Observe that v is not in G,
(unless v of degree 3 in G). But Gy — N[{y2}] also must be well-covered
which implies there is still at least one neighbor of y, say w, in Y present
in Gy — N[{y2}] else double-leaf at z (namely, z; and y) (if v of degree 3
in G, then leaf-triangle at ). Say w is not adjacent to y; in G;.

But then Gy — N[{z2,¥:1}] contains either a double-leaf or a leaf-triangle
(namely, z and w at y) which is impossible. Hence w must be adjacent to
both y and y;. But then vaywy;yox2 and z; form an induced Ss.

Thus if any y € Na[v] is of type [5], G must contain an induced Ss.

Case 3(b): Next consider the case in which some vertex in N3(v) is of
type [3]. This implies that there is a neighbor z; of v where z; is of degree
3 and v and z; have a common neighbor, say z}. Let the other neighbor of
z; be y; (¥1 is not adjacent to v). Let another neighbor (# v,# z1) of =}
be y1. Now consider y;.

If y, is of type [3], then y; must be adjacent to ys,, say, which in turn is
adjacent to a degree 3 neighbor, say z2, of v. Let the common neighbor
of v and zp be z. If y; and y, had a common neighbor, say z, then
G — N[z] would contain a double-triangle (namely, z; and z, at v) which
is impossible. Similarly, if y; and y2 each had neighbors, say z; and 29
respectively, then, since 2; and 22 could not be adjacent (no 4-cycles),
G — N[{z1, 22}] would also contain the same double-triangle. Thus at least
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one of 3, and yo, say yo, must be of degree 2. This too is impossible as
G — N[{¥}, z4}] contains a double-leaf (z; and y; at y;). Hence y; cannot
be of type [3]. But by Case (3a), y1 of type [5] implies an Ss.

This completes Case 3 and hence the theorem.
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